DRASTICAI, a New Index for Groundwater Vulnerability Assessment—A Portuguese Case Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, T.O.; Ali, S.S.; Al-Ansari, N.A.; Knutsson, S. Possibility of groundwater pollution in Halabja saidsadiq hydrogeological Basin, Iraq using modified DRASTIC model based on AHP and tritium isotopes. Geosciences 2018, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Al-Madhhachi, A.S.T.; Rahi, K.A.; Leabi, W.K. Hydrological impact of ilisu dam on Mosul Dam; the river Tigris. Geosciences 2020, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Roque, N.; Antunes, I.M.H.R.I.; Albuquerque, M.T.D.T.D. Modelação Geoquímica: Uma ferramenta de gestão ambiental. II J. Potencial Científico e Técnico do IPCB 2013, 46–47. [Google Scholar]
- Awawdeh, M.; Obeidat, M.; Zaiter, G. Groundwater vulnerability assessment in the vicinity of Ramtha wastewater treatment plant, North Jordan. Appl. Water Sci. 2015, 5, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Srivastav, S.K.; Kumar, S.; Chakrapani, G.J. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth Sci. 2015, 74, 5475–5490. [Google Scholar] [CrossRef]
- Voudouris, K.; Mandrali, P.; Kazakis, N. Preventing groundwater pollution using vulnerability and risk mapping: The case of the florina basin, NW Greece. Geosciences 2018, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Stigter, T.Y.; Ribeiro, L.; Dill, A.M.M.C. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol. J. 2006, 14, 79–99. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; US Environmental Protection Agency: Washington, DC, USA, 1987; p. 455. [Google Scholar]
- Antunes, I.M.H.R.; Albuquerque, M.T.D.; de Oliveira, S.F.; Roque, N.M.; Seco, M.d.F.M.; Hoyuela, A.; Alonso, L. Riscos e vulnerabilidades na bacia do rio Águeda. In Cuenca del Río Águeda: Un Territorio para dos Países; Sánchez-Bordona, F.C., Ed.; Servicio de Publicaciones, Universidad Europea Miguel de Cervantes: Valladolid, Spain, 2014; p. 92. ISBN 9788494176036. [Google Scholar]
- Albuquerque, M.T.D.; Sanz, G.; Oliveira, S.F.; Martínez-Alegría, R.; Antunes, I.M.H.R. Spatio-Temporal Groundwater Vulnerability Assessment—A Coupled Remote Sensing and GIS Approach for Historical Land Cover Reconstruction. Water Resour. Manag. 2013, 27, 4509–4526. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Ribeiro, L.; Carvalho Dill, A.M.M. Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies - Two Portuguese case studies. J. Hydrol. 2006, 327, 578–591. [Google Scholar] [CrossRef]
- Rodrigues, J.; Canilho, S.; Neto De Carvalho, C. Património Geológico Do Geopark Naturtejo: Aplicações Ao Ensino De Hidrogeologia E Geoquímica E From Naturtejo Geopark: Appli for Learning Hydrogeology and Geochemistry. In Proceedings of the VIII Congresso Ibérico de Geoquímica, Castelo Branco, Portugal, September 2011; Livro de Resumos, pp. 1–7. [Google Scholar]
- Cunha, S.; Silva, á.; Herráez, C.; Pires, V.; Chazarra, A.; Mestre, A.; Nunes, L.; Mendes, M.; Neto, J.; Marques, J.; et al. Atlas Climático Ibérico—Iberian Climate Atlas; Agencia Estatal de Meteorología—Ministerio de Medio Ambiente y Medio Rural y Marino, Ed.; Ministerio de Medio Ambientale: Madrid, Spain, 2011; ISBN 9788478370795. [Google Scholar]
- Sequeira, A. Provável discordância intra Grupo das Beiras na região entre Monfortinho e Idanha-a-Velha. In Proceedings of the XII Reunião do Oeste Peninsular, Evora, Portugal, 20–24 September 1994; pp. 41–52. [Google Scholar]
- Romão, J.A. Boletin Geol. y Minero de Espanha; Instituto Geológico y Minero de España: Madrid, Spain, 1994; pp. 521–530. [Google Scholar]
- Oliveira, J.T.; Pereira, E.; Picarra, J.M.; Young, T.; Romano, M.; Liso Rubio, M.J. O Paleozoico inferior de Portugal: Sintese da estratigrafia e da evolucao paleogeografica. In Paleozóico Inferior de Ibero-América; Universidad de Extremadura: Badajoz, Spain, 1992; pp. 359–376. [Google Scholar]
- Oliveira, J.T.; Pereira, E.; Picarra, J.M.; Young, T.; Romano, M.; Liso Rubio, M.J.; Piçarra, J.M.; Young, T.; Romano, M. O Paleozóico Inferior de Portugal: Síntese da estratigrafia e da evolução paleogeográfica. In Paleozóico Inferior de Ibero-América; Universidad de Extremadura: Badajoz, Spain, 1992; pp. 359–375. [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. Geochemistry of S-type granitic rocks from the reversely zoned Castelo Branco pluton (central Portugal). Lithos 2008, 103, 445–465. [Google Scholar] [CrossRef] [Green Version]
- Neiva, A.M.R.; Campos, T.F.C. Genesis of the zoned granitic pluton of Penamacor-Monsanto, Central Portugal. Mem. Not. Publ. Mus. Lab. Miner. Geol. Univ. Coimbra 1992, 114, 51–68. [Google Scholar]
- Portugal Ferreira, M.; Ivo Alves, E.; Regencio Macedo, C.A. A zonalidade interna de um plutonito: Estruturas condicionantes e idades de evolucao (plutonite do Fundao, Portugal Central). Memorias e Not. Publicacoes do Mus. e Lab. Mineral. e Geol. da Univ. Coimbra 1985, 99, 167–187. [Google Scholar]
- Teixeira, C.; Carvalho, H.F.; Santos, J.P. Carta Geológica de Portugal. 20-B; Serviços Geológicos de Portugal: Lisboa, Portugal, 1975. [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (central Portugal). Lithos 2009, 111, 168–185. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.P. Unidades litostratigráficas do Terciário da Beira Baixa (Portugal). Comun. do Inst. Geológico e Min. 1996, 82, 87–130. [Google Scholar]
- SNIRH. APAmbiente SNIRH Dados de Base. Available online: https://snirh.apambiente.pt/index.php?idMain=2&idItem=1 (accessed on 6 October 2020).
- IGME. BD Puntos Agua v2.0. Available online: http://info.igme.es/BDAguas (accessed on 6 October 2020).
- ARH. Plano de Gestao da Regiao Hidrografica do Tejo; ARH do Tejo, I.P.: Lisbon, Portugal, 2011; 493p. [Google Scholar]
- Lobo-Ferreira, J.P.; Leitão, T.E.; Oliveira, M.M. Portugal’s river basin management plans: Groundwater innovative methodologies, diagnosis, and objectives. Environ. Earth Sci. 2015, 73, 2627–2644. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N. (2012): Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution). doi:10.1594/PANGAEA.788537., Supplement to: Hartmann, J.; Moosdorf, N. The new global lithological map database GLiM: A representation. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. FAO SOILS PORTAL: Harmonized World Soil Database v1.2; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003 [Data Set]; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2018. [Google Scholar]
- Tóth, B.; Weynants, M.; Nemes, A.; Makó, A.; Bilas, G.; Tóth, G. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238. [Google Scholar] [CrossRef]
- Tóth, B.; Weynants, M.; Pásztor, L.; Hengl, T. 3D soil hydraulic database of Europe at 250 m resolution. Hydrol. Process. 2017, 31, 2662–2666. [Google Scholar] [CrossRef] [Green Version]
- Meneses, B.M. A Caraterização do uso e Ocupação do Solo de Portugal Continental; DGT: Enschede, The Netherlands, 2014. [Google Scholar]
- Januário, P.; Neto, J.; Costa Roque, C. Carta administrativa oficial de Portugal (CAOP). Mapping 2008, 31, 36–38. [Google Scholar]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Liu, J.; Peng, Y.; Li, C.; Gao, Z.; Chen, S. An investigation into the hydrochemistry, quality and risk to human health of groundwater in the central region of Shandong Province, North China. J. Clean. Prod. 2021, 282, 125416. [Google Scholar] [CrossRef]
- Seifi, A.; Dehghani, M.; Singh, V.P. Uncertainty analysis of water quality index (WQI) for groundwater quality evaluation: Application of Monte-Carlo method for weight allocation. Ecol. Indic. 2020, 117, 106653. [Google Scholar] [CrossRef]
- Fan, B.L.; Zhao, Z.Q.; Tao, F.X.; Liu, B.J.; Tao, Z.H.; Gao, S.; Zhang, L.H. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. J. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Shirazi, S.M.; Imran, H.M.; Akib, S.; Yusop, Z.; Harun, Z.B. Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ. Earth Sci. 2013, 70, 2293–2304. [Google Scholar] [CrossRef]
- Heiß, L.; Bouchaou, L.; Tadoumant, S.; Reichert, B. Index-based groundwater vulnerability and water quality assessment in the arid region of Tata city (Morocco). Groundw. Sustain. Dev. 2020, 10. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, T.; Zheng, X.; Peng, H.; Wang, H.; Xin, J.; Zhang, B. Assessment of the hydrodynamics role for groundwater quality using an integration of GIS, water quality index and multivariate statistical techniques. J. Environ. Manage. 2020, 273. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.K.; Kadam, A.K.; Ramgir, R.R.; Kashikar, A.S.; Wagh, V.M.; Kandekar, A.M.; Gaikwad, S.P.; Madale, R.B.; Pawar, N.J.; Kamble, K.D. Assessment of the groundwater geochemistry from a part of west coast of India using statistical methods and water quality index. HydroResearch 2020, 3, 48–60. [Google Scholar] [CrossRef]
Parameters | Weight |
---|---|
Depth | 5 |
Recharge | 4 |
Aquifer media | 3 |
Soil media | 2 |
Topography | 1 |
Impact of vadose zone | 5 |
Hydraulic conductivity | 3 |
Anthropogenic influence | 5 |
Parameters | Data Type | Source | Format | Reference |
---|---|---|---|---|
Depth | Interpolation | SNIRH and IGEM | Table | [25,26] |
Recharge | Location Map | ARH Tejo | Raster | [27,28] |
Aquifer media | Geology Map | Global Lithological Map database v1.1 | Polygon | [29] |
Soil media | Soil Map | FAO | Polygon | [30] |
Topography | Elevation Map | Global Digital Elevation Model | Raster | [31] |
Impact of vadose zone | Geology Map | Global Lithological Map database v1.1 | Polygon | [29] |
Hydraulic conductivity | Driven Soil Map | FAO + 3D Hydraulic DB | Raster | [30,32,33] |
Anthropogenic influence | Land Use 2018 | COS 2018 | Polygon | [34] |
Study Area | Administration | CAOP 2020 | Polygon | [35] |
DRASTIC/DRASTICAI | Range | Rating |
---|---|---|
Depth to groundwater (m) | 30.5 | 1 |
22.9–30.5 | 2 | |
15.2–22.9 | 3 | |
9.1–15.2 | 5 | |
4.6–9.1 | 7 | |
Recharge rate (net) (mm) | <50 | 1 |
50–100 | 3 | |
100–150 | 6 | |
150–300 | 8 | |
>300 | 9 | |
Aquifer media | Metamorphic rocks Sedimentary Rocks | 3 |
Acid Volcanic Rocks Intermediate Volcanic Rocks Basic Volcanic Rocks | 3 | |
Acid Plutonic Rocks | 4 | |
Limestone | 6 | |
Soil media | Coarse | 6 |
Medium | 9 | |
Null/No information | 10 | |
Topography (slope) (%) | >18 | 1 |
12–18 | 3 | |
6–12 | 5 | |
2–6 | 9 | |
<2 | 10 | |
Impact of the vadose zone | Metamorphic Rocks Sedimentary Rocks | 4 |
Acid Volcanic Rocks Intermediate Volcanic Rocks Basic Volcanic Rocks | 4 | |
Acid Plutonic Rocks | 4 | |
Limestone | 6 | |
Hydraulic conductivity of the aquifer (m/d) | <4.1 | 1 |
12.2–28.5 | 4 | |
>28.5 | 6 | |
Anthropogenic influence | Water body and waste land | 1 |
Forest and shrub land | 2 | |
Built up with very low density Agriculture | 5 | |
Built up with low density | 7 | |
Built up with medium density | 8 | |
Built up with high density | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, T.; Roque, N.; Rodrigues, J.; Antunes, M.; Silva, C. DRASTICAI, a New Index for Groundwater Vulnerability Assessment—A Portuguese Case Study. Geosciences 2021, 11, 228. https://doi.org/10.3390/geosciences11060228
Albuquerque T, Roque N, Rodrigues J, Antunes M, Silva C. DRASTICAI, a New Index for Groundwater Vulnerability Assessment—A Portuguese Case Study. Geosciences. 2021; 11(6):228. https://doi.org/10.3390/geosciences11060228
Chicago/Turabian StyleAlbuquerque, Teresa, Natália Roque, Joana Rodrigues, Margarida Antunes, and Catarina Silva. 2021. "DRASTICAI, a New Index for Groundwater Vulnerability Assessment—A Portuguese Case Study" Geosciences 11, no. 6: 228. https://doi.org/10.3390/geosciences11060228
APA StyleAlbuquerque, T., Roque, N., Rodrigues, J., Antunes, M., & Silva, C. (2021). DRASTICAI, a New Index for Groundwater Vulnerability Assessment—A Portuguese Case Study. Geosciences, 11(6), 228. https://doi.org/10.3390/geosciences11060228