Mechanical Influence of Inherited Folds in Thrust Development: A Case Study from the Variscan Fold-and-Thrust Belt in SW Sardinia (Italy)
Abstract
:1. Introduction
2. Data and Methodology
3. Geological Background
4. Results
4.1. The Back-Thrusts of the Marganai Area
4.2. Relationships between Inherited Folds and Three-Dimensional Geometry of Back-Thrusts
4.3. Fold Related to the Back-Thrust Emplacement
5. Discussion
5.1. Influence of Inherited Dome-and-Basin Interference Pattern on Back-Thrust Development
5.2. Influence of Inherited Normal Faults on Back-Thrust Development
5.3. Influence of Bedding Attitude on Shear Strength
5.4. Ductile Deformation in the Footwall of Back-Thrusts
6. Conclusions
- The buttressing that triggered back-thrusting can be related to pre-existing folding, the domes, and basins pattern in this case study. Areas with dome structure can be characterized by the extensive development of back-thrusts instead of fore-thrusts. Therefore, a lateral variation in the deformational style can be related to this structural inheritance.
- The non-layer cake stratigraphic setting derived from the inherited folds causes variation of the along strike geometry of thrusts. As a consequence, during the progressive thrust growth, the fault plane may assume alternating concave-upward or concave-downward shapes (i.e., synformal or antiformal) depending on which part of the folds the thrust is cutting across in the footwall.
- Structural analysis highlights that concurrent effect of the attitude of bedding and mechanical properties of the folded lithostratigraphic units could influence the amount of shortening that the thrusts can accommodate. This occurrence, together with the along-strike geometry variation, seems point out a variation of shear strength related to the structural inheritance, which should be corroborated with a mathematical approach.
- Finally, the back-thrusts that accumulate the highest displacement may induce a ductile deformation in the footwall that may result in a complicated inner structure of triangle zones.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bally, A.W.; Gordy, P.L.; Stewart, G.A. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bull. Can. Pet. Geol. 1966, 14, 337–381. [Google Scholar]
- Dahlstrom, C.D. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bull. Can. Pet. Geol. 1970, 18, 332–406. [Google Scholar]
- Elliott, D. The energy balance and deformation mechanisms of thrust sheets. Philos. Trans. R. Soc. Lond. 1976, 283, 289–312. [Google Scholar]
- Chapple, W.M. Mechanics of thin-skinned fold-and-thrust belts. GSA Bull. 1978, 89, 1189–1198. [Google Scholar] [CrossRef]
- McClay, K.R.; Price, N.J. Thrust and Nappe Tectonics, 1st ed.; Special Publications; Geological Society: London, UK, 1981; Volume 9. [Google Scholar]
- Boyer, S.E.; Elliott, D. Thrust Systems. AAPG Bull. 1982, 66, 1196–1230. [Google Scholar]
- Butler, R.W.H. The terminology of structures in thrust belts. J. Struct. Geol. 1982, 4, 239–245. [Google Scholar] [CrossRef]
- Davis, D.; Suppe, J.; Dahlen, F.A. Mechanics of fold/thrust belts and accretionary wedges. J. Geophys. Res. 1983, 88, 1153–1172. [Google Scholar] [CrossRef]
- Mitra, G.; Wojtal, S. Geometries and Mechanism of Thrusting, with Special Reference to the Appalachians; Geological Society of America: Boulder, CO, USA, 1988. [Google Scholar]
- Dahlen, F.A. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. 1990, 18, 55–99. [Google Scholar] [CrossRef]
- McClay, K.R. Thrust Tectonics, 1st ed.; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Hart, B.S. Definition of subsurface stratigraphy, structure and rock properties from 3-D seismic data. Earth Sci. Rev. 1999, 47, 189–218. [Google Scholar] [CrossRef]
- Higgins, S.; Davies, R.J.; Clarke, B. Antithetic fault linkages in a deep water fold and thrust belt. J. Struct. Geol. 2007, 29, 1900–1914. [Google Scholar] [CrossRef]
- Curia, D.; Borghi, P.; Noble, J.; Berkovitch, A.; Justo, D.; Alayón, M. The impact of multifocusing in the processing of land 3D seismic data in a fold and thrust belt setting: Ranquil Norte Block, Neuquén Basin, Argentina. Lead. Edge 2017, 36, 710–792. [Google Scholar] [CrossRef]
- Bulnes, M.; McClay, K. Benefits and limitations of different 2D algorithms used in cross-section restoration of inverted extensional faults: Application to physical experiments. Tectonophysics 1999, 312, 175–189. [Google Scholar] [CrossRef]
- Baur, F.; Di Benedetto, M.; Fuchs, T.; Lampe, C.; Sciamanna, S. Integrating structural geology and petroleum systems modeling—A pilot project from Bolivia’s fold and thrust belt. Mar. Pet. Geol. 2009, 26, 573–579. [Google Scholar] [CrossRef]
- Watkins, H.; Butler, R.W.H.; Bond, C.E. Using laterally compatible cross sections to infer fault growth and linkage models in foreland thrust belts. J. Struct. Geol. 2017, 96, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Obaid, A.K.; Allen, M.B. Landscape expression of tectonics in the Zagros fold-and-thrust belt. Tectonophysics 2019, 766, 20–30. [Google Scholar] [CrossRef]
- Graveleau, F.; Malavieille, J.; Dominguez, S. Experimental modelling of orogenic wedges: A review. Tectonophysics 2012, 538–540, 1–66. [Google Scholar] [CrossRef]
- Ruh, J.B.; Gerya, T.; Burg, J.-P. High-resolution 3D numerical modeling of thrust wedges: Influence of décollement strength on transfer zones. Geochem. Geophys. Geosyst. 2013, 14, 1131–1155. [Google Scholar] [CrossRef]
- McQarrie, N. Crustal scale geometry of the Zagros fold-and-thrust belt, Iran. J. Struct. Geol. 2004, 26, 519–535. [Google Scholar] [CrossRef]
- Hirshmiller, J.; Grujic, D.; Bookhagen, B.; Coutand, I.; Huyghe, P.; Mugnier, J.-L.; Ojha, T. What controls the growth of the Himalayan foreland fold-and-thrust belt? Geology 2014, 42, 247–250. [Google Scholar] [CrossRef]
- MonaLisa; Khwaja, A.A.; Jan, M.Q. Seismic Hazard Assessment of the NW Himalayan Fold-and-Thrust Belt, Pakistan, Using Probabilistic Approach. J. Earthq. Eng. 2007, 11, 257–301. [Google Scholar]
- Mescua, J.F.; Barrionuevo, M.; Giambiagi, L.; Suriano, J.; Spagnotto, S.; Stahlschmidt, E.; de la Cal, H.; Soto, J.L.; Mazzitelli, M. Stress field and active faults in the orogenic front of the Andes in the Malargüe fold-and-thrust belt (35°–36° S). Tectonophysics 2019, 766, 179–193. [Google Scholar] [CrossRef]
- Rivas, C.; Ortiz, G.; Alvarado, P.; Podesta, M.; Martin, A. Modern crustal seismicity in the northern Andean Precordillera, Argentina. Tectonophysics 2019, 762, 144–158. [Google Scholar] [CrossRef]
- Kent, W.N.; Dasgupta, U. Structural evolution in response to fold and thrust belt tectonics in northern Assam. A key to hydrocarbon exploration in the Jaipur anticline area. Mar. Pet. Geol. 2004, 21, 785–803. [Google Scholar] [CrossRef]
- Lacombe, O.; Lave, J.; Roure, F.M.; Verges, J. Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Abir, I.A.; Khan, S.D.; Aziz, G.M.; Tariq, S. Bannu Basin, fold-and-thrust belt of northern Pakistan: Subsurface imaging and its implications for hydrocarbon exploration. Mar. Pet. Geol. 2017, 85, 242–258. [Google Scholar] [CrossRef]
- Lisle, R.; Poblet, J. Preface: Structural analysis of fold-and-thrust belts. Geol. J. 2010, 45, 487–488. [Google Scholar] [CrossRef]
- Morley, C.K.; King, R.; Hillis, R.; Tingay, M.; Backe, G. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review. Earth Sci. Rev. 2011, 104, 41–91. [Google Scholar] [CrossRef]
- Poblet, J.; Lisle, R.J. Kinematic evolution and structural styles of fold-and-thrust belts. Geol. Soc. Lond. Spec. Publ. 2011, 349, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Buiter, S.J.H. A review of brittle compressional wedge models. Tectonophysics 2012, 530, 1–17. [Google Scholar] [CrossRef]
- Lacombe, O.; Ruh, J.; Brown, D.; Nilfouroushan, F. Introduction: Tectonic evolution and mechanics of basement-involved fold-and-thrust belts. Geol. Mag. 2016, 153, 759–762. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, O.; Mazzoli, S.; von Hagke, C.; Rosenau, M.; Fillon, C.; Granado, P. Style of deformation and tectono-sedimentary evolution of fold-and-thrust belts and foreland basins: From nature to models. Tectonophysics 2019, 767, 228163. [Google Scholar] [CrossRef]
- McQuarrie, N.; Ehlers, T.A. Techniques for understanding fold-and-thrust belt kinematics and thermal evolution. In Linkages and Feedbacks in Orogenic Systems; Law, R.D., Thigpen, J.R., Merschat, A.J., Stowell, H.H., Eds.; Geological Society of America: Boulder, CO, USA, 2017; Volume 213, pp. 25–54. [Google Scholar]
- Hammerstein, A.; Di Cuia, R.; Cottam, M.A.; Zamora, G.; Butler, R.W.H. Fold and thrust belts: Structural style, evolution and exploration—An introduction. Geol. Soc. Lond. Spec. Publ. 2020, 490, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kusky, T. A Late Archean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics. Gondwana Res. 2007, 12, 47–66. [Google Scholar] [CrossRef]
- Ball, T.V.; Penney, C.E.; Neufeld, J.A.; Copley, A.C. Controls on the geometry and evolution of thin-skinned fold-thrust belts, and applications to the Makran accretionary prism and Indo–Burman Ranges. Geophys. J. Int. 2019, 218, 247–267. [Google Scholar] [CrossRef] [Green Version]
- Cruciani, F.; Barchi, M.R.; Koyi, H.A.; Porreca, M. Kinematic evolution of a regional-scale gravity-driven deepwater fold-and-thrust belt: The Lamu Basin case-history (East Africa). Tectonophysics 2017, 712–713, 30–44. [Google Scholar] [CrossRef]
- Figueroa, S.; Weiss, J.R.; Hongn, F.; Pingel, H.; Escalante, L.; Elías, L.; Aranda-Viana, R.G.; Strecker, M.R. Late Pleistocene to Recent Deformation in the Thick-Skinned Fold-and-Thrust Belt of Northwestern Argentina (Central Calchaquí Valley, 26° S). Tectonics 2021, 40, e2020TC006394. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, X.; Nunns, A.; Zhang, B.; Jiang, H.; Fu, L.; Zhai, X. Structural styles and evolution of a thin-skinned fold-and-thrust belt with multiple detachments in the eastern Sichuan Basin, South China. J. Struct. Geol. 2021, 142, 104191. [Google Scholar] [CrossRef]
- Alsop, G.I.; Marco, S.; Levi, T.; Weinberger, R. Fold and thrust systems in Mass Transport Deposits. J. Struct. Geol. 2017, 94, 98–115. [Google Scholar] [CrossRef] [Green Version]
- He, W. Influence of mechanical stratigraphy on the deformation evolution of Fold-Thrust Belts: Insights from the analogue modeling of Eastern Sichuan-Western Hunan and Hubei, South China. J. Earth Sci. 2020, 31, 795–807. [Google Scholar] [CrossRef]
- Lee, H.; Jang, Y.; Kwon, S.; Park, M.-H.; Mitra, G. The role of mechanical stratigraphy in the lateral variations of thrust development along the central Alberta Foothills, Canada. Geosci. Front. 2018, 9, 1451–1464. [Google Scholar] [CrossRef]
- Hansberry, R.L.; King, R.; Collins, A.S.; Morley, C.K. Complex structure of an upper-level shale detachment zone: Khao Khwang fold and thrust belt, Central Thailand. J. Struct. Geol. 2014, 67, 140–153. [Google Scholar] [CrossRef]
- Palano, M.; Imprescia, P.; Agnon, A.; Gresta, S. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt. Geophys. J. Int. 2018, 213, 194–209. [Google Scholar] [CrossRef]
- Schleder, Z.; Tamas, D.M.; Krezsek, C.; Arnberger, K.; Tulucan, A. Salt tectonics in the Bend Zone segment of the Carpathian fold and thrust belt, Romania. Int. J. Earth Sci. 2019, 108, 1595–1614. [Google Scholar] [CrossRef]
- Legeay, E.; Ringenbach, J.-C.; Kergaravat, C.; Pichat, A.; Mohn, G.; Vergés, J.; Kavak, K.S.; Callot, J.-P. Structure and kinematics of the Central Sivas Basin (Turkey): Salt deposition and tectonics in an evolving fold-and-thrust belt. Geol. Soc. Lond. Spec. Publ. 2019, 490, 361–396. [Google Scholar] [CrossRef]
- Rahl, J.M.; Haines, S.H.; van der Pluijm, B.A. Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth Planet. Sci. Lett. 2011, 307, 180–190. [Google Scholar] [CrossRef]
- Erdős, Z.; Huismans, R.S.; van der Beek, P. Control of increased sedimentation on orogenic fold-and-thrust belt structure—Insights into the evolution of the Western Alps. Solid Earth 2019, 10, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Tavani, S.; Storti, F.; Lacombe, O.; Corradetti, A.; Muñoz, J.A.; Mazzoli, S. A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges. Earth Sci. Rev. 2015, 141, 82–104. [Google Scholar] [CrossRef]
- Livani, M.; Scrocca, D.; Arecco, P.; Doglioni, C. Structural and stratigraphic control on salient and recess development along a thrust belt front: The Northern Apennines (Po Plain, Italy). J. Geophys. Res. Solid Earth 2018, 123, 4360–4387. [Google Scholar] [CrossRef]
- Martín-González, F.; Fernández-Lozano, J.; De Vicente, G.; Crespo-Martín, C.; Heredia, N. Role of multiple inherited basement structures on orogen geometry and evolution: Insights from analogue modelling. J. Struct. Geol. 2021, 144, 104267. [Google Scholar] [CrossRef]
- McClay, K.R.; Buchanan, P.G. Thrust faults in inverted extensional basins. In Thrust Tectonics; McClay, K.R., Ed.; Springer: Dordrecht, The Netherlands, 1992; pp. 93–104. [Google Scholar]
- Cawood, A.J.; Bond, C.E. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning. J. Struct. Geol. 2018, 106, 54–69. [Google Scholar] [CrossRef]
- Bonini, M.; Sokoutis, D.; Mulugeta, G.; Katrivanos, E. Modelling hanging wall accommodation above rigid thrust ramps. J. Struct. Geol. 2000, 22, 1165–1179. [Google Scholar] [CrossRef]
- Mescua, J.F.; Giambiagi, L.B. Fault inversion vs. new thrust generation: A case study in the Malargüe fold-and-thrust belt, Andes of Argentina. J. Struct. Geol. 2012, 35, 51–63. [Google Scholar] [CrossRef]
- Scisciani, V.; Agostini, S.; Calamita, F.; Pace, P.; Cilli, A.; Giori, I.; Paltrinieri, W. Positive inversion tectonics in foreland fold-and-thrust belts: A reappraisal of the Umbria–Marche Northern Apennines (Central Italy) by integrating geological and geophysical data. Tectonophysics 2014, 637, 218–237. [Google Scholar] [CrossRef]
- Granado, P.; Ferrer, O.; Muñoz, J.A.; Thöny, W.; Strauss, P. Basin inversion in tectonic wedges: Insights from analogue modelling and the Alpine-Carpathian fold-and-thrust belt. Tectonophysics 2017, 703–704, 50–68. [Google Scholar] [CrossRef]
- Granado, P.; Ruh, J.B. Numerical modelling of inversion tectonics in fold-and-thrust belts. Tectonophysics 2019, 763, 14–29. [Google Scholar] [CrossRef]
- Carmignani, L.; Cocozza, T.; Gandin, A.; Pertusati, P.C. The Geology of Iglesiente. In Guide Book Excursion Paleozoic Basement of Sardinia; Carmignani, L., Cocozza, T., Ghezzo, C., Pertusati, P.C., Ricci, C.A., Eds.; Project No. 5, Newsletter Special Issue; IGCP: Siena, Italy, 1986; pp. 31–49. [Google Scholar]
- Carosi, R.; Musumeci, G.; Pertusati, P.C.; Carmignani, L. The Hercynian backthrusts of eastern Iglesiente (SW Sardinia): An example of inversion tectonics. In Contributions to the Geology of Italy with Special Regard the Paleozoic Basement; Carmignani, L., Sassi, F.P., Eds.; No. 276, Newsletter; IGCP: Siena, Italy, 1992; pp. 97–105. [Google Scholar]
- Funedda, A. Foreland- and hinterland-verging structures in fold-and-thrust belt: An example from the Variscan foreland of Sardinia. Int. J. Earth Sci. 2009, 98, 1625–1642. [Google Scholar] [CrossRef]
- ISPRA: Carta Geologica d’Italia Alla Scala 1:50.000. Foglio 555_IGLESIAS. Available online: https://www.isprambiente.gov.it/Media/carg/555_IGLESIAS/Foglio.html (accessed on 10 April 2021).
- Groshong, R.H. 3D Structural Geology, 2nd ed.; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands, 2006; p. 400. [Google Scholar]
- Tearpock, D.J.; Bischke, R.E. Applied Subsurface Geological Mapping with Structural Methods, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 822. [Google Scholar]
- Kim, Y.-S.; Sanderson, D.J. The relationship between displacement and length of faults: A review. Earth Sci. Rev. 2005, 68, 317–334. [Google Scholar] [CrossRef]
- Allan, U.S. Model for Hydrocarbon Migration and Entrapment within Faulted Structures. AAPG Bull. 1989, 73, 803–811. [Google Scholar]
- Carmignani, L.; Carosi, R.; Di Pisa, A.; Gattiglio, M.; Musumeci, G.; Oggiano, G.; Pertusati, P.C. The Hercynian chain in Sardinia (Italy). Geodin. Acta 1994, 7, 31–47. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Funedda, A. Change of nappe transport direction during the Variscan collisional evolution of central-southern Sardinia (Italy). Tectonophysics 2001, 332, 255–273. [Google Scholar] [CrossRef]
- Casini, L.; Funedda, A.; Oggiano, G. A balanced foreland–hinterland deformation model for the Southern Variscan belt of Sardinia, Italy. Geol. J. 2010, 45, 634–649. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The geological map of Sardinia (Italy) at 1:250,000 scale. J. Maps 2016, 12, 826–835. [Google Scholar] [CrossRef]
- Pillola, G.L.; Leone, F.; Loi, A. The Lower Cambrian Nebida Group of Sardinia. In 6th Paleobenthos International Symposium, Guide-Book; Cherchi, A., Ed.; Università di Cagliari: Cagliari, Italy, 1995; pp. 27–62. [Google Scholar]
- Bechstadt, T.; Boni, M. Controls on the evolution of the Cambrian carbonate platform. Mem. Descr. Carta Geol. D’it. Serv. Geol. D’it. 1994, 48, 107–108. [Google Scholar]
- Gandin, A.; Minzoni, N.; Courjault-Rade, P. Shelf to basin transition in the Cambrian–Lower Ordovician of Sardinia (Italy). Geol. Rundsch. 1987, 76, 827–836. [Google Scholar] [CrossRef]
- Teichmüller, R. Zur geologie des thyrrhenisgebietes. Teil 1: Alte und junge Krustenbewegungen im südlichen sardinien. Abh. Von Der Ges. Der Wiss. Zu Göttingen Math. Phys. Kl. 1931, 3, 857–950. [Google Scholar]
- Stille, H. Bemerkungen betreffend die “sardische Faltung” und den Ausdruck “ophiolitisch”. Z. Der Dtsch. Geol. Ges. 1939, 91, 771–773. [Google Scholar]
- von Raumer, J.F.; Stampfli, G.M.; Arenas, R.; Sánchez Martínez, S. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. Int. J. Earth Sci. 2015, 104, 1107–1121. [Google Scholar] [CrossRef]
- Cocco, F.; Oggiano, G.; Funedda, A.; Loi, A.; Casini, L. Stratigraphic, magmatic and structural features of Ordovician tectonics in Sardinia (Italy): A review. J. Iber. Geol. 2018, 44, 619–639. [Google Scholar] [CrossRef]
- Cocco, F.; Funedda, A. The Sardic phase: Field evidence of Ordovician tectonics in SE Sardinia, Italy. Geol. Mag. 2019, 156, 25–38. [Google Scholar] [CrossRef]
- Oriolo, S.; Schulz, B.; Geuna, S.; Gonzàlez, P.D.; Otamendi, J.E.; Sláma, J.; Druguet, E.; Siegesmund, S. Early Paleozoic accretionary orogens along the Western Gondwana margin. Geosci. Front. 2021, 12, 109–130. [Google Scholar] [CrossRef]
- Laske, R.; Bechstadt, T.; Boni, M. The post-Sardic Ordovician series. In Sedimentological, Stratigraphical and Ore Deposits Field Guide of the Autochtonous Cambro-Ordovician of Southwestern Sardinia; Bechstadt, T., Boni, M., Eds.; Memorie Descrittive Della Carta Geologica D’Italia: Roma, Italy, 1994; Volume 48, pp. 115–146. [Google Scholar]
- Leone, F.; Ferretti, A.; Hammann, W.; Loi, A.; Pillola, G.L.; Serpagli, E. A general view on the post-Sardic Ordovician sequence from SW Sardinia. Rend. Soc. Paleont. Ital. 2002, 1, 51–68. [Google Scholar]
- Gnoli, M.; Kriz, F.; Leone, F.; Olivieri, F.; Serpagli, E.; Storch, P. Lithostratigraphic units and biostratigraphy of the Silurian and Early Devonian of Southwest Sardinia. Boll. Della Soc. Paleontol. Ital. 1990, 23, 221–238. [Google Scholar]
- Barca, S.; Farci, A.; Forci, A. I depositi sinorogenici ercinici del Sulcis (Sardegna sud-occidentale). Boll. Della Soc. Geol. Ital. 1998, 117, 407–419. [Google Scholar]
- Pasci, S.; Pertusati, P.C.; Salvadori, I.; Murtas, M. I rilevamenti CARG del foglio geologico 555 “Iglesias” e le nuove implicazioni strutturali sulla tettonica della “Fase Sarda”. Rend. Online Della Soc. Geol. Ital. 2008, 3, 614–615. [Google Scholar]
- Ramsay, J.G. Folding and Fracturing of Rocks; McGraw-Hill: New York, NY, USA, 1967; Volume 568. [Google Scholar]
- Fossen, H.; Cavalcante, G.C.G. Shear zones—A review. Earth Sci. Rev. 2017, 171, 434–455. [Google Scholar] [CrossRef]
- Dutta, D.; Mukherjee, S. Opposite shear senses: Geneses, global occurrences, numerical simulations and a case study from the Indian western Himalaya. J. Struct. Geol. 2019, 126, 357–392. [Google Scholar] [CrossRef]
- Xu, S.; Fukuyama, E.; Ben-Zion, Y.; Ampuero, J.-P. Dynamic rupture activation of backthrust fault branching. Tectonophysics 2015, 644–645, 161–183. [Google Scholar] [CrossRef]
- Carmignani, L.; Funedda, A.; Oggiano, G.; Pasci, S. Tectono-sedimentary evolution of southwest Sardinia in the Paleogene: Pyrenaic or Apenninic Dynamic? Geodin. Acta 2004, 17, 275–287. [Google Scholar] [CrossRef]
- Butler, R.W.H. Thrust sequences. J. Geol. Soc. 1987, 144, 619–634. [Google Scholar] [CrossRef]
- Morley, C.K. Out-of-Sequence Thrusts. Tectonics 1988, 7, 539–561. [Google Scholar] [CrossRef]
- Smit, J.H.W.; Brun, J.P.; Sokoutis, D. Deformation of brittle-ductile thrust wedges in experiments and nature. J. Geophys. Res. 2003, 108, 2480. [Google Scholar] [CrossRef]
- Bose, N.; Mukherjee, S. Field documentation and genesis of back-structures in ductile and brittle regimes from the foreland part of a collisional orogen: Examples from the Darjeeling–Sikkim Lesser Himalaya, India. Int. J. Earth Sci. 2019, 108, 1333–1350. [Google Scholar] [CrossRef]
- Braathen, A.; Bergh, S.G.; Maher, H.D. Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. GSA Bull. 1999, 111, 1468–1485. [Google Scholar] [CrossRef]
- Erickson, S.G.; Strayer, L.M.; Suppe, J. Initiation and reactivation of faults during movement over a thrust-fault ramp: Numerical mechanical models. J. Struct. Geol. 2001, 23, 11–23. [Google Scholar] [CrossRef]
- Banks, C.J.; Warburton, J. ‘Passive-roof’ duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J. Struct. Geol. 1986, 8, 229–237. [Google Scholar] [CrossRef]
- Baby, P.; Hérail, G.; Salinas, R.; Sempere, T. Geometry and kinematic evolution of passive roof duplexes deduced from cross section balancing: Example from the foreland thrust system of the southern Bolivian Subandean Zone. Tectonics 1992, 11, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Jadoon, S.K.; Ding, L.; Jadoon, I.A.K.; Baral, U.; Qasim, M.; Idrees, M. Interpretation of the Eastern Sulaiman fold-and-thrust belt, Pakistan: A passive roof duplex. J. Struct. Geol. 2019, 126, 231–244. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, X.; Liu, H.; Kumar, P.; Pei, S.; Kind, R.; Zhang, Z.; Teng, J.; Ding, L.; Gao, X.; et al. The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. USA 2010, 107, 11229–11233. [Google Scholar] [CrossRef] [Green Version]
- Schultz, R.A. Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res. 2000, 105, 12035–12052. [Google Scholar] [CrossRef]
- Fabbi, S.; Smeraglia, L. Pop-up structure in massive carbonate-hosted fold-and-thrust belt: Insight from field mapping and 2D kinematic model in the central Apennines. J. Struct. Geol. 2019, 126, 258–271. [Google Scholar] [CrossRef]
- Cotton, J.T.; Koyi, H.A. Modeling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan. GSA Bull. 2000, 112, 351–363. [Google Scholar] [CrossRef]
- Li, J.; Mitra, S. Geometry and evolution of fold-thrust structures at the boundaries between frictional and ductile detachments. Mar. Pet. Geol. 2017, 85, 16–34. [Google Scholar] [CrossRef]
- Gutscher, M.-A.; Kukowski, N.; Malavieille, J.; Lallemand, S. Cyclical behavior of thrust wedges: Insights from high basal friction sandbox experiments. Geology 1996, 24, 135–138. [Google Scholar] [CrossRef]
- Bose, S.; Mandal, N.; Saha, P.; Sarkar, S.; Lithgow-Bertelloni, C. Thrust initiation and its control on tectonic wedge geometry: An insight from physical and numerical models. J. Struct. Geol. 2014, 67 Pt A, 37–49. [Google Scholar] [CrossRef]
- Bonini, M.; Sani, F.; Antonielli, B. Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics 2012, 522–523, 55–88. [Google Scholar] [CrossRef]
- Malz, A.; Madritsch, H.; Meier, B.; Kley, J. An unusual triangle zone in the external northern Alpine foreland (Switzerland): Structural inheritance, kinematics and implications for the development of the adjacent Jura fold-and-thrust belt. Tectonophysics 2016, 670, 127–143. [Google Scholar] [CrossRef]
- Butler, R.W.H. The influence of pre-existing basin structure on thrust system evolution in the Western Alps. Geol. Soc. Lond. Spec. Publ. 1989, 44, 105–122. [Google Scholar] [CrossRef]
- Tavarnelli, E. Ancient synsedimentary structural control on thrust ramp development: An example from the Northern Apennines, Italy. Terra Nova 1996, 8, 65–74. [Google Scholar] [CrossRef]
- Cardello, G.L.; Doglioni, C. From Mesozoic rifting to Apennine orogeny: The Gran Sasso range (Italy). Gondwana Res. 2015, 27, 1307–1334. [Google Scholar] [CrossRef]
- Scisciani, V.; Tavarnelli, E.; Calamita, F. The interaction of extensional and contractional deformations in the outer zones of the Central Apennines, Italy. J. Struct. Geol. 2002, 24, 1647–1658. [Google Scholar] [CrossRef]
- Albanese, C.; Sulli, A. Backthrusts and passive roof duplexes in fold-and-thrust belts: The case of Central-Western Sicily based on seismic reflection data. Tectonophysics 2012, 514–517, 180–198. [Google Scholar] [CrossRef]
- Turienzo, M.M.; Dimieri, L.V. Geometric and kinematic model for basement-involved backthrusting at Diamante River, southern Andes, Mendoza province, Argentina. J. South Am. Earth Sci. 2005, 19, 111–125. [Google Scholar] [CrossRef]
- Lebinson, F.O.; Turienzo, M.M.; Sanchez, N.; Araujo, V.S.; D’Annunzio, M.C.; Dimieri, L.V. The structure of the northern Agrio fold and thrust belt (37°30’S), Neuquén Basin, Argentina. Andean Geol. 2018, 45, 249–273. [Google Scholar] [CrossRef]
- Bulnes, M.; Aller, J. Three-dimensional geometry of large-scalefault-propagation folds in the Cantabrian Zone, NW Iberian Peninsula. J. Struct. Geol. 2002, 24, 827–846. [Google Scholar] [CrossRef]
- Alonso, J.L.; Marcos, A.; Suarez, A. Paleogeografic inversion resulting from large out of sequence breaching thrusts: The Leon Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol. Acta 2009, 7, 451–473. [Google Scholar]
- Bulnes, M.; Poblet, J.; Uzkeda, H.; Rodriguez-Alvarez, I. Mechanical stratigraphy influence on fault-related folds development: Insights from the Cantabrian Zone (NW Iberian Peninsula). J. Struct. Geol. 2019, 118, 87–103. [Google Scholar] [CrossRef]
- Alsop, G.I.; Marco, S.; Weinberger, R.; Levi, T. Upslope-verging back thrusts developed during downslope-directed slumping of mass transport deposits. J. Struct. Geol. 2017, 100, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Bechstad, T.; Boni, M. Sedimentological, stratigraphical and ore deposits field guide of the autochthonous Cambro-ordovician of southwestern Sardinia. Mem. Descr. Carta Geol. D’it. Serv. Geol. D’it 1994, 48, 434. [Google Scholar]
- Boni, M.; Balassone, G.; Iannace, A. Base metal ores in the Lower Paleozoic of southwestern Sardinia. Soc. Econ. Geol. Spec. Publ. 1996, 4, 18–28. [Google Scholar]
- Bradley, D.C.; Leach, D.L. Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands. Min. Depos. 2003, 38, 652–667. [Google Scholar] [CrossRef]
- Apotria, T.G. Thrust sheet rotation and out-of-plane strains associated with oblique ramps: An example from the Wyoming salient U.S.A. J. Struct. Geol. 1995, 17, 647–662. [Google Scholar] [CrossRef]
- Zamora-Valcarce, G.; Zapata, T. Building a valid structural model in a triangle zone: An example from the Neuquén fold and thrust belt, Argentina. Interpretation 2015, 3–4, SAA117–SAA131. [Google Scholar] [CrossRef]
Back-Thrust | Lenght (m) | Dip Direction (°) | Dip (°) | Displacement (m) | Distance from the Nappe Front (m) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Displaced Stratigraphic Contacts | N | H | V | |||||||
1 | A | 9000 m | 1500 m | N310 | 13° | not evaluable | not evaluable | not evaluable | not evaluable | 11,500 m |
B | 2500 m | N300 | 37° | NEB1-NEB2 | 500 m | 400 m | 300 m | 13,500 m | ||
NEB2-GON1 | 500 m | 400 m | 300 m | |||||||
C | 2500 m | N250 | 41° | NEB1-NEB2 | 1360 m | 1200 m | 650 m | 14,000 m | ||
NEB2-GON1 | 1360 m | 1200 m | 650 m | |||||||
D | 2500 m | N245 | 45° | NEB2-GON1 | 530 m | 400 m | 350 m | 13,000 m | ||
2 | 3000 m | N300 | 8° | minimum displacement evaluable | 1300 m | 1300 m | 100 m | 12,500 m | ||
3 | 400 m | N300 | 70° | not evaluable | not evaluable | not evaluable | not evaluable | 11,800 m | ||
4 | 500 m | N315 | 53° | not evaluable | not evaluable | not evaluable | not evaluable | 11,500 m | ||
5 | 1400 m | N330 | 68° | GON2-CAB | 470 m | 450 m | 150 m | 12,500 m | ||
6 | 750 m | N300 | 68° | GON1-GON2 | 50 | 40 m | 25 | 12,300 m | ||
7 | 1100 m | N300 | 73° | GON1-GON2 | −200 m | −75 m | −170 m | 12,000 m | ||
GON2-CAB | 540 m | 300 m | 450 m | |||||||
8 | 500 m | N305 | 75° | NEB1-NEB2 | 40 m | 10 m | 40 m | 12,000 m | ||
NEB2-GON1 | 30 m | 10 m | 30 m | |||||||
9 | 500 m | N325 | 71° | NEB1-NEB2 | 60 m | 30 m | 50 m | 11,500 m | ||
10 | 400 m | N280 | 76° | GON1-GON2 | 60 m | 20 m | 60 m | 11,000 m | ||
11 | A | 2300 | 1000 m | N270 | 56° | GON1-GON2 | 50 m | 30 m | 40 m | 10,500 m |
B | 1300 m | N290 | 76° | NEB2-GON1 | −80 m | −30 m | −70 m | 10,500 m | ||
GON1-GON2 | −60 m | −20 m | −50 m | |||||||
GON2-CAB | 70 m | 30 m | 70 m | |||||||
12 | 500 m | N332 | 62° | NEB1-NEB2 | −60 m | −40 m | −40 m | 10,800 m | ||
13 | A | 3600 | 1300 m | N270 | 63° | not evaluable | not evaluable | not evaluable | not evaluable | 10,000 m |
B | 2300 m | N270 | 68° | NEB2-GON1 | 130 m | 50 m | 120 m | 9500 m | ||
GON1-GON2 | 270 m | 100 m | 250 m | |||||||
GON2-CAB | 1200 m | 450 m | 1110 m | |||||||
14 | 2700 m | N240 | 59° | not evaluable | not evaluable | not evaluable | not evaluable | 9200 m | ||
15 | 300 m | N300 | 45° | not evaluable | not evaluable | not evaluable | not evaluable | 9000 m | ||
16 | 1300 m | N255 | 45° | NEB2-GON1 | 140 m | 100 m | 100 m | 9200 m | ||
17 | 1000 m | N230 | 45° | not evaluable | not evaluable | not evaluable | not evaluable | 9000 m | ||
18 | 500 m | N290 | 37° | not evaluable | not evaluable | not evaluable | not evaluable | 8500 m | ||
19 | 1200 m | N265 | 33° | not evaluable | not evaluable | not evaluable | not evaluable | 8000 m | ||
20 | 1700 m | N250 | 39° | GON2-CAB | 190 m | 150 m | 120 m | 7500 m | ||
21 | 1500 m | N250 | 41° | not evaluable | not evaluable | not evaluable | not evaluable | 7000 m | ||
22 | 1400 m | N300 | 27° | GON1-GON2 | 30 m | 30 m | 10 m | 8000 m | ||
23 | 1200 m | N310 | 27° | not evaluable | not evaluable | not evaluable | not evaluable | 7500 m | ||
24 | 1700 m | N300 | 39° | not evaluable | not evaluable | not evaluable | not evaluable | 7200 m | ||
25 | 600 m | N280 | 40° | not evaluable | not evaluable | not evaluable | not evaluable | 7000 m | ||
26 | 700 m | N275 | 20° | not evaluable | not evaluable | not evaluable | not evaluable | 7000 m | ||
27 | 400 m | N280 | 45° | not evaluable | not evaluable | not evaluable | not evaluable | 6800 m | ||
28 | 600 m | N270 | 23° | not evaluable | not evaluable | not evaluable | not evaluable | 5500 m | ||
29 | 2000 m | N270 | 15° | minimum displacement evaluable | 2070 m | 2000 m | 535 m | 4500 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocco, F.; Funedda, A. Mechanical Influence of Inherited Folds in Thrust Development: A Case Study from the Variscan Fold-and-Thrust Belt in SW Sardinia (Italy). Geosciences 2021, 11, 276. https://doi.org/10.3390/geosciences11070276
Cocco F, Funedda A. Mechanical Influence of Inherited Folds in Thrust Development: A Case Study from the Variscan Fold-and-Thrust Belt in SW Sardinia (Italy). Geosciences. 2021; 11(7):276. https://doi.org/10.3390/geosciences11070276
Chicago/Turabian StyleCocco, Fabrizio, and Antonio Funedda. 2021. "Mechanical Influence of Inherited Folds in Thrust Development: A Case Study from the Variscan Fold-and-Thrust Belt in SW Sardinia (Italy)" Geosciences 11, no. 7: 276. https://doi.org/10.3390/geosciences11070276
APA StyleCocco, F., & Funedda, A. (2021). Mechanical Influence of Inherited Folds in Thrust Development: A Case Study from the Variscan Fold-and-Thrust Belt in SW Sardinia (Italy). Geosciences, 11(7), 276. https://doi.org/10.3390/geosciences11070276