Provenance Variability in Coeval Slope Channel Systems: Hermod S2 Member Sandstone (Eocene), South Viking Graben (North Sea)
Abstract
:1. Introduction
2. Geological Setting
2.1. Basin Formation and Statigraphy
2.2. Geology of the Hinterland
3. Materials and Methods
4. Regional Provenance Characteristics in Hermod S2 Mbr Sandstones
4.1. Conventional Heavy Mineral and Provenance-Sensitive Ratio Data
4.2. Garnet Asssemblages
4.3. Comparison with Regional Garnet Provenance Data
5. Caterpillar Discovery Characterization
5.1. Sedimentology and Log Character
5.2. Conventional Heavy Mineral and Provenance-Sensitive Ratio Data
5.3. Garnet Compositional Data
6. Discussion
6.1. Controls on Provenance Variations in the Hermod S2
6.2. Stratigraphic Evolution of Hermod S2 Mbr Provenance Signature in Caterpillar
6.3. Provenance of Hermod S2 Mbr Sandstone
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Den Hartog Jager, D.; Giles, M.R.; Griffiths, G.R. Evolution of Paleogene submarine fans of the North Sea in space and time. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 1993, 4, 59–71. [Google Scholar] [CrossRef]
- Ahmadi, Z.M.; Sawyers, M.; Kenyon-Roberts, S.; Stanworth, C.W.; Kugler, K.A.; Kristensen, J.; Fugelli, E.M.G. Paleocene. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, 1st ed.; Evans, D., Graham, C., Armour, A., Bathurst, P., Eds.; The Geological Society of London: London, UK, 2003; pp. 215–259. [Google Scholar]
- Brunstad, H.; Gradstein, F.; Vergara, L.; Lie, J.E.; Hammer, Ø. A Revision of the Rogaland Group, Norwegian North Sea; University of Oslo: Oslo, Norway, 2009. [Google Scholar]
- Eldrett, J.; Tripsanas, E.; Davis, C.; McKie, T.; Vieira, M.; Osterloff, P.; Sandison, T. Sedimentological evolution of Sele Formation deep-marine depositional systems of the Central North Sea. Geol. Soc. Lond. Spec. Publ. 2015, 403, 63–98. [Google Scholar] [CrossRef]
- Hurst, A.; Cartwright, J. (Eds.) Sand Injectites: Implications for Hydrocarbon Exploration and Production, AAPG Memoir 87; American Association of Petroleum Geologists: Tulsa, OK, USA, 2007. [Google Scholar]
- Huuse, M.; Jackson, C.A.; Van Rensbergen, P.; Davies, R.J.; Flemings, P.B.; Dixon, R.J. Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview. Basin Res. 2010, 22, 342–360. [Google Scholar] [CrossRef]
- Duranti, D. Large-scale Sand Injection in the Paleogene of the North Sea: Modeling of Energy and Flow Velocities. In Sand Injectites: Implications for Hydrocarbon Exploration and Production; Cartwright, J., Hurst, A., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2007; Volume AAPG Memoir 87, pp. 129–139. [Google Scholar]
- Huuse, M.; Cartwright, J.; Gras, R.; Hurst, A. Kilometre-scale sandstone intrusions in the Eocene of the Outer Moray Firth (UK North Sea): Migration paths, reservoirs and potential drilling hazards. Pet. Geol. Conf. Proc. 2005, 6, 1577–1594. [Google Scholar] [CrossRef]
- Hurst, A.; Cartwright, J.; Duranti, D.; Huuse, M.; Nelson, M. Sand injectites: An emerging global play in deep-water clastic environments. Pet. Geol. Conf. Proc. 2005, 6, 133–144. [Google Scholar] [CrossRef]
- Hurst, A.; Huuse, M.; Duranti, D.; Vigorito, M.; Jameson, E.; Schwab, A. Application of outcrop analogues in successful exploration of a sand injection complex, Volund Field, Norwegian North Sea. Geol. Soc. Spec. Publ. 2016, 436, 75–92. [Google Scholar] [CrossRef]
- Szarawarska, E.; Huuse, M.; Hurst, A.; de Boer, W.; Lu, L.; Molyneux, S.; Rawlinson, P.B. Three-dimensional seismic characterisation of large-scale sandstone intrusions in the lower Palaeogene of the North Sea: Completely injected vs. in situ remobilised sandbodies. Basin Res. 2010, 22, 517–532. [Google Scholar] [CrossRef]
- Schwab, A.; Jameson, E.; Townsley, A. Volund Field: Development of an Eocene sandstone injection complex, offshore Norway. Geol. Soc. Spec. Publ. 2015, 403, 247–260. [Google Scholar] [CrossRef]
- White, N.; Lovell, B. Measuring the pulse of a plume with the sedimentary record. Nature 1997, 387, 888–891. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.; Wilkinson, G.C. Stratigraphic evolution of sand provenance during Paleocene deposition in the Northern North Sea area. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 1993, 4, 73–84. [Google Scholar] [CrossRef]
- Morton, A.C. Lower Tertiary Sand Development in Viking Graben, North Sea. AAPG Bull. 1982, 66, 1542–1559. [Google Scholar]
- Hurst, A.; Morton, A.C. Provenance models: The role of sandstone mineral-chemical stratigraphy. Geol. Soc. Spec. Publ. 2014, 386, 7–26. [Google Scholar] [CrossRef]
- Humphreys, B.; Morton, A.C.; Hallsworth, C.; Gatliff, R.W.; Riding, J.B. An integrated approach to provenance studies: A case example from the Upper Jurassic of the Central Graben, North Sea. Geol. Soc. Spec. Publ. 1991, 57, 251–262. [Google Scholar] [CrossRef]
- Morton, A.C. The provenance and distribution of the Palaeocene sands of the central North Sea. J. Pet Geol. 1979, 2, 11–21. [Google Scholar] [CrossRef]
- Morton, A.C. Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. Mineral. Assoc. Can. Short Course Ser. 2012, 42, 133–165. [Google Scholar]
- Morton, A.C.; McFadyen, S.; Hurst, A.; Pyle, J.; Rose, P. Constraining the origin of reservoirs formed by sandstone intrusions: Insights from heavy mineral studies of the Eocene in the Forties area, United Kingdom central North Sea. AAPG Bull. 2014, 98, 545–561. [Google Scholar] [CrossRef]
- Hurst, A.; Morton, A.C.; Scott, A.; Vigorito, M.; Frei, D. Heavy-mineral assemblages in sandstone intrusions: Panoche giant injection complex, California, U.S.A. Panoche. J. Sediment. Res. 2017, 87, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.C.; Hallsworth, C. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Plate Tectonics and Heavy Mineral Suites of Modern Sands. Dev. Sedimentol. 2007, 58, 741–763. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Andò, S.; Resentini, A.; Vezzoli, G.; Lustrino, M. Weathering and Relative Durability of Detrital Minerals in Equatorial Climate: Sand Petrology and Geochemistry in the East African Rift. J. Geol. 2013, 121, 547–580. [Google Scholar] [CrossRef]
- Morton, A.C. Stability of detrital heavy minerals in Tertiary sandstones from the North Sea basin. Clay Miner. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Stability of Detrital Heavy Minerals During Burial Diagenesis. Dev. Sedimentol. 2007, 58, 215–245. [Google Scholar]
- Morton, A.C. Influences of provenance and diagenesis on detrital garnet suites in the Paleocene Forties Sandstone, central North Sea. J. Sediment. Res. 1987, 57, 1027–1032. [Google Scholar]
- Morton, A.C.; Hallsworth, C.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Pet. Geol. 2004, 21, 393–410. [Google Scholar] [CrossRef]
- Morton, A.C. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology 1985, 32, 553–566. [Google Scholar] [CrossRef]
- Kilhams, B.; Morton, A.C.; Borella, R.; Wilkins, A.; Hurst, A. Understanding the provenance and reservoir quality of the Sele Formation sandstones of the UK Central Graben utilizing detrital garnet suites. Geol. Soc. Spec. Publ. 2014, 386, 129–142. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of Heavy Minerals. Dev. Sedimentol. 2007, 58, 345–391. [Google Scholar]
- Zanella, E.; Coward, M.P. Structural framework. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, 1st ed.; Evans, D., Graham, C., Armour, A., Bathurst, P., Eds.; The Geological Society of London: London, UK, 2003; Volume 45, pp. 45–59. [Google Scholar]
- Badley, M.E.; Price, J.D.; Rambech Dahl, C.; Agdestein, T. The structural evolution of the northern Viking Graben and its bearing upon extensional modes of basin formation. J. Geol. Soc. 1988, 145, 455–472. [Google Scholar] [CrossRef]
- Bryn, B.K.L.; Ackers, M.A. Unravelling the nature of deep-marine sandstones through the linkage of seismic geomorphologies to sedimentary facies; the Hermod Fan, Norwegian North Sea. In From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin, 1st ed.; Martinius, A.W., Ravnås, R., Howell, J.A., Steel, R.J., Wonham, J.P., Eds.; International Association of Sedimentologists: Chichester, UK, 2014; Volume 9781118920466, pp. 647–676. [Google Scholar]
- Hadler-Jacobsen, F.; Johannessen, E.P.; Ashton, N.; Henriksen, S.; Johnson, S.D.; Kristensen, J.B. Submarine fan morphology and lithology distribution: A predictable function of sediment delivery, gross shelf-to-basin relief, slope gradient and basin topography. Pet. Geol. Conf. Proc. 2005, 6, 1121–1145. [Google Scholar] [CrossRef]
- Jones, E.; Jones, R.; Ebdon, C.; Ewen, D.; Milner, P.; Plunkett, J.; Hudson, G.; Slater, P. Eocene. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, 1st ed.; Evans, D., Graham, C., Armour, A., Bathurst, P., Eds.; The Geological Society of London: London, UK, 2003; pp. 261–277. [Google Scholar]
- McKie, T.; Rose, P.T.S.; Hartley, A.J.; Jones, D.W.; Armstrong, T.L. Tertiary deep-marine reservoirs of the North Sea region: An introduction. Geol. Soc. Spec. Publ. 2015, 403, 1–16. [Google Scholar] [CrossRef]
- Mudge, D.C.; Copestake, P. Lower Palaeogene stratigraphy of the northern North Sea. Mar. Pet. Geol. 1992, 9, 287–301. [Google Scholar] [CrossRef]
- Deegan, C.E.; Scull, B.J. A Standard Lithostratigraphic Nomenclature for the Central and Northern North Sea; Norwegian Petroleum Directorate Bulletin: Stavanger, Norway, 1977; Volume 1. [Google Scholar]
- Dixon, R.J.; Pearce, J. Tertiary sequence stratigraphy and play fairway definition, Bruce-Beryl Embayment, Quadrant 9, UKCS. Nor. Pet. Soc. Spec. Publ. 1995, 5, 443–469. [Google Scholar] [CrossRef]
- Ichron Ltd. Stratigraphic Correlation of Boyla-Caterpillar Wells; Ichron Ltd: Rudheath, UK, 2011. [Google Scholar]
- Biostrat: Wells and Samples. Available online: http://nhm2.uio.no/norges/full/sample_data.php? (accessed on 5 July 2021).
- Skjærpe, I.; Tøllefsen, I.; Endresen, T. Developing Viper-Kobra: Maximizing Recovery by Exploiting the Unique Characteristics of the Sand Injectite Environment; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2018. [Google Scholar]
- Flinn, D. Interpretative Map of Shetland Geology; Hall Publishing: Hoboken, NJ, USA, 2014. [Google Scholar]
- Read, H.H. The Metamorphic Geology of Unst in the Shetland Islands. Q. J. Geol. Soc. 1934, 90, 637–688. [Google Scholar] [CrossRef]
- Read, H.H. The metamorphic history of Unst, Shetland. Proc. Geol. Assoc. 1936, 47, 283–293. [Google Scholar] [CrossRef]
- Flinn, D.; Miller, J.A.; Roddom, D. The age of the Norwick hornblendic schists of Unst and Fetlar and the obduction of the Shetland ophiolite. Scott. J. Geol. 1991, 27, 11–19. [Google Scholar] [CrossRef]
- Spray, J.G. Thrust-related metamorphism beneath the Shetland Islands oceanic fragment, northeast Scotland. Can. J. Earth Sci. 1988, 25, 1760–1776. [Google Scholar] [CrossRef]
- Chesher, J.A. Geology of the United Kingdom, Ireland and the Adjacent Continental Shelf (North Sheet); British Geological Survey: Nottingham, UK, 1991. [Google Scholar]
- Mange, M.A.; Maurer, H. Heavy Minerals in Colour; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Galehouse, J.S. Point Counting. In Procedures in Sedimentary Petrology, 1st ed.; Carver, R.E., Ed.; Wilrey Interscience: London, UK, 1971; pp. 385–408. [Google Scholar]
- Morton, A.C.; Hallsworth, C.; Kunka, J.; Ewan, L.; Payne, S.; Walder, D. Heavy-mineral stratigraphy of the Clair Group (Devonian-Carboniferous) in the Clair Field, West of Shetland, U.K. In Application of Modern Stratigraphic Techniques: Theory and Case Histories; Ratcliffe, K.T., Zaitlin, B.A., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 2010; Volume 94, pp. 183–199. [Google Scholar]
- Krippner, A.; Meinhold, G.; Morton, A.C.; Von Eynatten, H. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sediment. Geol. 2014, 306, 36–52. [Google Scholar] [CrossRef]
- Jolley, D.W.; Morton, A.C. Understanding basin sedimentary provenance: Evidence from allied phytogeographic and heavy mineral analysis of the Palaeocene of the NE Atlantic. J. Geol. Soc. 2007, 164, 553–563. [Google Scholar] [CrossRef]
- Ichron Ltd. Sedimentology, Petrography and Reservoir Quality of the Cored Hermod (Palaeocene) Interval in Well 24/9-10S, Norwegian North Sea; Ichron Ltd: Rudheath, UK, 2012. [Google Scholar]
- Enjolras, J.M.; Gouadain, J.; Mutti, E.; Pizon, J. New turbiditic model for the Lower Tertiary sands in the South Viking Graben. In Proceedings of the Habitat of Hydrocarbons on the Norwegian Continental Shelf, International Conference, 1–3 October 1985; Spencer, A.M., Ed.; Graham & Trotman: Totnes, UK, 1986; pp. 171–178. [Google Scholar]
- Mudge, D.C. Regional controls on Lower Tertiary sandstone distribution in the North Sea and NE Atlantic margin basins. Geol. Soc. Spec. Publ. 2015, 403, 17–42. [Google Scholar] [CrossRef] [Green Version]
- McInerney, F.A.; Wing, S.L. The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annu. Rev. Earth Planet. Sci. 2011, 39, 489–516. [Google Scholar] [CrossRef] [Green Version]
- Foreman, B.Z.; Heller, P.L.; Clementz, M.T. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature 2012, 491, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.J.; Ellis, M.A.; Mounteney, I.; Kender, S. Palaeoclimatic implications of highresolution clay mineral assemblages preceding and across the onset of the Palaeocene-Eocene Thermal Maximum, North Sea Basin. Clay Min. 2016, 51, 793–813. [Google Scholar] [CrossRef] [Green Version]
- Gibson, T.G.; Bybell, L.M.; Mason, D.B. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin. Sediment. Geol. 2000, 134, 65–92. [Google Scholar] [CrossRef]
- Robert, C.; Kennett, J.P. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology 1994, 22, 211–214. [Google Scholar] [CrossRef]
- Bowen, G.J.; Beerling, D.J.; Koch, P.L.; Zachos, J.C.; Quattlebaum, T. A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 2004, 432, 495–499. [Google Scholar] [CrossRef]
- Pujalte, V.; Schmitz, B.; Baceta, J.I. Sea-level changes across the Paleocene–Eocene interval in the Spanish Pyrenees, and their possible relationship with North Atlantic magmatism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 393, 45–60. [Google Scholar] [CrossRef]
- Nagy, J.; Jargvoll, D.; Dypvik, H.; Jochmann, M.; Riber, L. Environmental changes during the Paleocene–Eocene Thermal Maximum in Spitsbergen as reflected by benthic foraminifera. Polar Res. 2013, 32, 19737. [Google Scholar] [CrossRef]
- Kender, S.; Stephenson, M.H.; Riding, J.B.; Leng, M.J.; Knox, R.W.O.; Peck, V.L.; Kendrick, C.P.; Ellis, M.A.; Vane, C.H.; Jamieson, R. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 2012, 353, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Hubert, J.F. A Zircon-Tourmaline-Rutile Maturity Index and the Interdependence of the Composition of Heavy Mineral Assemblages with the Gross Composition and Texture of Sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar]
- Hallsworth, C.R.; Morton, A.C.; Dore, G. Contrasting mineralogy of Upper Jurassic sandstones in the Outer Moray Firth, North Sea: Implications for the evolution of sediment dispersal patterns. Geol. Soc. Lond. Spec. Publ. 1996, 114, 131–144. [Google Scholar] [CrossRef]
- Morton, A.C.; Herries, R.; Fanning, M. Correlation of Triassic Sandstones in the Strathmore Field, West of Shetland, Using Heavy Mineral Provenance Signatures. Dev. Sedimentol. 2007, 58, 1037–1072. [Google Scholar] [CrossRef]
- Andrews, S.D.; Morton, A.C.; Decou, A.; Frei, D. Reconstructing drainage pathways in the North Atlantic during the Triassic utilizing heavy minerals, mineral chemistry, and detrital zircon geochronology. Geosphere 2021, 17, 479–500. [Google Scholar] [CrossRef]
Index | Mineral Pairs | Index Determination |
---|---|---|
ATi | Apatite, Tourmaline | % apatite in total apatite plus tourmaline |
GZi | Garnet, Zircon | % garnet in total garnet plus zircon |
RuZi | Rutile, Zircon | % rutile in total rutile plus zircon |
SZi | Staurolite, Zircon | % staurolite in total staurolite plus zircon |
ZTi | Zircon, Tourmaline | % zircon in total zircon plus tourmaline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luzinski, W.M.; Morton, A.C.; Hurst, A.; Tøllefsen, I.I.; Cater, J. Provenance Variability in Coeval Slope Channel Systems: Hermod S2 Member Sandstone (Eocene), South Viking Graben (North Sea). Geosciences 2022, 12, 450. https://doi.org/10.3390/geosciences12120450
Luzinski WM, Morton AC, Hurst A, Tøllefsen II, Cater J. Provenance Variability in Coeval Slope Channel Systems: Hermod S2 Member Sandstone (Eocene), South Viking Graben (North Sea). Geosciences. 2022; 12(12):450. https://doi.org/10.3390/geosciences12120450
Chicago/Turabian StyleLuzinski, Wiktor Marek, Andrew C. Morton, Andrew Hurst, Ingeborg Ims Tøllefsen, and John Cater. 2022. "Provenance Variability in Coeval Slope Channel Systems: Hermod S2 Member Sandstone (Eocene), South Viking Graben (North Sea)" Geosciences 12, no. 12: 450. https://doi.org/10.3390/geosciences12120450
APA StyleLuzinski, W. M., Morton, A. C., Hurst, A., Tøllefsen, I. I., & Cater, J. (2022). Provenance Variability in Coeval Slope Channel Systems: Hermod S2 Member Sandstone (Eocene), South Viking Graben (North Sea). Geosciences, 12(12), 450. https://doi.org/10.3390/geosciences12120450