Characteristics of Sub-Aerially Emplaced Pyroclasts in the Surtsey Eruption Deposits: Implications for Diverse Surtseyan Eruptive Styles
Abstract
:1. Introduction
1.1. The Eruptions of Surtsey and Surtseyan Volcanism
1.2. Pyroclast Microtextures
1.2.1. Surtseyan Edifice–building Subaqueous Deposits
1.2.2. Surtseyan Subaerial Deposits
2. Materials and Methods
2.1. Samples
2.2. Analytical Methods
3. Results
3.1. Grain Size and Componentry Analysis
3.2. Textures of Surtseyan Pyroclasts
3.2.1. Ash
3.2.2. Lapilli
4. Discussion
4.1. Pyroclast Groundmass
4.2. Pyroclast Porosity
4.3. Grain Shape
4.4. Controls of Particle Diversity for Surtsey
4.5. Deviant Particles? Implications of “Non-Standard” Particles from a Defining Eruption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakobsson, S.P.; Moore, J.G. The Surtsey Research Drilling Project of 1979. Surtsey Res. Progress Rep. 1982, 9, 76–93. [Google Scholar]
- Thorarinsson, S. Sitt Af Hverju Um Surtseyjargosið [Surtsey]. Natturufroeingurinn 1996, 35, 153–212. [Google Scholar]
- Thorarinsson, S. Surtsey, the New Island in the North Atlantic. Reykjavik: Almenna Bokofelagid; Viking Press: New York, NY, USA, 1967. [Google Scholar]
- Thorarinsson, S.; Einarsson, T.; Sigvaldason, G.; Elisson, G. The Submarine Eruption off the Vestmann Islands 1963–64: A Preliminary Report. Bull. Volcanol. 1964, 27, 435–445. [Google Scholar] [CrossRef]
- Thorarinsson, S. Submarine Eruptions around Iceland. Náttúrufræðingurinn 1965, 35, 49–74. [Google Scholar]
- Thorarinsson, S. The Surtsey Eruption and Related Scientific Work. Polar Rec. 1967, 13, 571. [Google Scholar] [CrossRef]
- Tazieff, H. Sur le mécanisme des éruptions basaltiques sous-marines à faibles profundeurs et la genèse d’hyaloclastites associées. Geol. Rundsch 1968, 57, 955–966. [Google Scholar] [CrossRef]
- Walker, G.P.L.; Croasdale, R. Characteristics of Some Basaltic Pyroclastics. Bull. Volcanol. 1971, 35, 303–317. [Google Scholar] [CrossRef]
- Walker, G.P.L. Explosive Volcanic Eruptions—A New Classification Scheme. Geol. Rundsch. 1973, 62, 431–446. [Google Scholar] [CrossRef]
- Lorenz, V. Vesiculated Tuffs and Related Features. Sedimentology 1974, 21, 273–291. [Google Scholar] [CrossRef]
- Kokelaar, B.P. The Mechanism of Surtseyan Volcanism. J. Geol. Soc. 1983, 140, 939–944. [Google Scholar] [CrossRef]
- Kokelaar, B.P.; Durant, G.P. The Submarine Eruption and Erosion of Surtla (Surtsey), Iceland. J. Volcanol. Geotherm. Res. 1983, 19, 239–246. [Google Scholar] [CrossRef]
- Moore, J.G. Structure and Eruptive Mechanisms at Surtsey Volcano, Iceland. Geol. Mag. 1985, 122, 649. [Google Scholar] [CrossRef]
- White, J.D.L. Pre-Emergent Construction of a Lacustrine Basaltic Volcano, Pahvant Butte, Utah (USA). Bull. Volcanol. 1996, 58, 249–262. [Google Scholar] [CrossRef]
- White, J.D.L.; Houghton, B.F. Surtseyan and Related Phreatomagmatic Eruptions. In Encyclopedia of Volcanoes; Academic Press: Cambridge, MA, USA, 2000; pp. 495–511. [Google Scholar]
- Thordarson, T. Physical Volcanology of Surtsey, Iceland: A Preliminary Report. Surtsey Res. 2000, 11, 109–126. Available online: Https://Surtsey.Is/Wp-Content/Uploads/2019/08/2000_XII_4_02.Pdf (accessed on 28 January 2022).
- Thordarson, T. Studies in Volcanology: The Legacy of George Walker; Geological Society of London: London, UK, 2009; ISBN 978-1-86239-280-9. [Google Scholar]
- Schipper, C.I.; Jakobsson, S.P.; White, J.D.L.; Palin, J.M.; Bush-Marcinowski, T. The Surtsey Magma Series. Sci. Rep. 2015, 5, 11498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thordarson, T.; Sigmarsson, O. Effusive Activity in the 1963–1967 Surtsey Eruption, Iceland: Flow Emplacement and Growth of Small Lava Shields. Studies in Volcanology: The Legacy of George Walker. Spec. Pub. IAVCEI 2009, 2, 53–84. [Google Scholar]
- Machado, F.; Parsons, W.H.; Richards, A.F.; Mulford, J.W. Capelinhos Eruption of Fayal Volcano, Azores, 1957-1958. J. Geophys. Res. 1962, 67, 3519–3529. [Google Scholar] [CrossRef]
- Waters, A.C.; Fisher, R.V. Base Surges and Their Deposits: Capelinhos and Taal Volcanoes. J. Geophys. Res. 1971, 76, 5596–5614. [Google Scholar] [CrossRef]
- Cole, P.D.; Guest, J.E.; Duncan, A.M.; Pacheco, J.-M. Capelinhos 1957–1958, Faial, Azores: Deposits Formed by an Emergent Surtseyan Eruption. Bull. Volcanol. 2001, 63, 204–220. [Google Scholar] [CrossRef]
- Baker, E.T.; Massoth, G.J. Observations and Sampling of an Ongoing Subsurface Eruption of Kavachi Volcano, Solomon Islands, May 2000. Geology 2002, 30, 975–978. [Google Scholar] [CrossRef]
- Sorrentino, L.; Cas, R.A.F.; Stilwell, J.D. Evolution and Facies Architecture of Paleogene Surtseyan Volcanoes on Chatham Islands, New Zealand, Southwest Pacific Ocean. J. Volcanol. Geotherm. Res. 2011, 202, 1–21. [Google Scholar] [CrossRef]
- Moorhouse, B.L.; White, J.D.L.; Scott, J.M. Cape Wanbrow: A Stack of Surtseyan-Style Volcanoes Built over Millions of Years in the Waiareka–Deborah Volcanic Field, New Zealand. J. Volcanol. Geotherm. Res. 2015, 298, 27–46. [Google Scholar] [CrossRef]
- Verolino, A.; White, J.D.L.; Brenna, M. Eruption Dynamics at Pahvant Butte Volcano, Utah, Western USA: Insights from Ash-Sheet Dispersal, Grain Size, and Geochemical Data. Bull. Volcanol. 2018, 80, 81. [Google Scholar] [CrossRef]
- Verolino, A.; White, J.D.L.; Dürig, T.; Cappuccio, F. Black Point—Pyroclasts of a Surtseyan Eruption Show No Change during Edifice Growth to the Surface from 100 m Water Depth. J. Volcanol. Geotherm. Res. 2019, 384, 85–102. [Google Scholar] [CrossRef]
- Büttner, R.; Dellino, P.; La Volpe, L.; Lorenz, V.; Zimanowski, B. Thermohydraulic Explosions in Phreatomagmatic Eruptions as Evidenced by the Comparison between Pyroclasts and Products from Molten Fuel Coolant Interaction Experiments: THERMOHYDRAULIC EXPLOSIONS. J. Geophys. Res. 2002, 107, ECV 5-1–ECV 5-14. [Google Scholar] [CrossRef]
- Cantelli, A.; Johnson, S.; White, J.; Parker, G. Sediment Sorting in the Deposits of Turbidity Currents Created by Experimental Modeling of Explosive Subaqueous Eruptions. J. Geol. 2008, 116, 76–93. [Google Scholar] [CrossRef]
- McGuinness, M.J.; Greenbank, E.; Schipper, C.I. Modelling Vapour Transport in Surtseyan Bombs. J. Volcanol. Geotherm. Res. 2016, 318, 103–113. [Google Scholar] [CrossRef]
- Verolino, A.; White, J.D.L.; Zimanowski, B. Particle Transport in Subaqueous Eruptions: An Experimental Investigation. J. Volcanol. Geotherm. Res. 2017, 349, 298–310. [Google Scholar] [CrossRef]
- Greenbank, E.; McGuinness, M.J.; Schipper, C.I. A Theoretical Model of Surtseyan Bomb Fragmentation. Proc. R. Soc. A 2021, 477, 20210166. [Google Scholar] [CrossRef]
- Schipper, C.I.; Le Voyer, M.; Moussallam, Y.; White, J.D.L.; Thordarson, T.; Kimura, J.-I.; Chang, Q. Degassing and Magma Mixing during the Eruption of Surtsey Volcano (Iceland, 1963–1967): The Signatures of a Dynamic and Discrete Rift Propagation Event. Bull. Volcanol. 2016, 78, 33. [Google Scholar] [CrossRef]
- Schipper, C.I.; Moussallam, Y. Temporal Redox Variation in Basaltic Tephra from Surtsey Volcano (Iceland). Bull. Volcanol. 2017, 79, 71. [Google Scholar] [CrossRef]
- Romagnoli, C.; Jakobsson, S.P. Post-Eruptive Morphological Evolution of Island Volcanoes: Surtsey as a Modern Case Study. Geomorphology 2015, 250, 384–396. [Google Scholar] [CrossRef]
- Schipper, C.I.; White, J.D.L. Magma-Slurry Interaction in Surtseyan Eruptions. Geology 2016, 44, 195–198. [Google Scholar] [CrossRef]
- Sayyadi, S.; Einarsson, P.; Gudmundsson, M.T. Seismic Activity Associated with the 1963–1967 Surtsey Eruption off the Coast of South Iceland. Bull. Volcanol. 2021, 83, 54. [Google Scholar] [CrossRef]
- Jackson, M.D.; Couper, S.; Stan, C.V.; Ivarsson, M.; Czabaj, M.W.; Tamura, N.; Parkinson, D.; Miyagi, L.M.; Moore, J.G. Authigenic Mineral Texture in Submarine 1979 Basalt Drill Core, Surtsey Volcano, Iceland. Geochem. Geophys. Geosyst. 2019, 20, 3751–3773. [Google Scholar] [CrossRef] [Green Version]
- Kleine, B.I.; Stefánsson, A.; Kjartansdóttir, R.; Prause, S.; Weisenberger, T.B.; Reynolds, H.I.; Sveinbjörnsdóttir, Á.E.; Jackson, M.D.; Gudmundsson, M.T. The Surtsey Volcano Geothermal System: An Analogue for Seawater-Oceanic Crust Interaction with Implications for the Elemental Budget of the Oceanic Crust. Chem. Geol. 2020, 550, 119702. [Google Scholar] [CrossRef]
- Prause, S.; Weisenberger, T.B.; Cappelletti, P.; Grimaldi, C.; Rispoli, C.; Jónasson, K.; Jackson, M.D.; Gudmundsson, M.T. Alteration Progress within the Surtsey Hydrothermal System, SW Iceland—A Time-Lapse Petrographic Study of Cores Drilled in 1979 and 2017. J. Volcanol. Geotherm. Res. 2020, 392, 106754. [Google Scholar] [CrossRef]
- Cashman, K.; Scheu, B. Magmatic Fragmentation. In The Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., Rymer, H., Stix, J., McNutt, S., Eds.; Academic Press: New York, NY, USA, 2015; pp. 464–470. [Google Scholar]
- Zimanowski, B.; Büttner, R.; Dellino, P.; White, J.D.L.; Wohletz, K.H. Water-Magma Interaction and Phreatomagmatic Fragmentation. In The Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., Rymer, H., Stix, J., McNutt, S., Eds.; Academic Press: New York, NY, USA, 2015; pp. 473–484. [Google Scholar]
- Cashman, K.V.; Mangan, M.T. Physical Aspects of Magmatic Degassing II. Constraints on Vesiculation Processes Form Textural Studies of Eruptive Products; Carroll, M.R., Ed.; Volatiles in Magmas, Mineralogical Society of America: Chantilly, VA, USA, 1994; pp. 447–478. [Google Scholar]
- Shea, T.; Houghton, B.F.; Gurioli, L.; Cashman, K.V.; Hammer, J.E.; Hobden, B.J. Textural Studies of Vesicles in Volcanic Rocks: An Integrated Methodology. J. Volcanol. Geotherm. Res. 2010, 190, 271–289. [Google Scholar] [CrossRef]
- Schipper, C.I.; White, J.D.L.; Houghton, B.F. Syn- and Post-Fragmentation Textures in Submarine Pyroclasts from Lō`ihi Seamount, Hawai`i. J. Volcanol. Geotherm. Res. 2010, 191, 93–106. [Google Scholar] [CrossRef]
- Lautze, N.C.; Houghton, B.F. Physical Mingling of Magma and Complex Eruption Dynamics in the Shallow Conduit at Stromboli Volcano, Italy. Geology 2005, 33, 425. [Google Scholar] [CrossRef]
- Sable, J.E.; Houghton, B.F.; Wilson, C.J.N.; Carey, R.J. Eruption Mechanisms during the Climax of the Tarawera 1886 Basaltic Plinian Eruption Inferred from Microtextural Characteristics of the Deposits. In Studies in Volcanology: The Legacy of George Walker; Special Publications of IAVCEI; The Geological Society Of London: London, UK, 2009; Volume 2, pp. 129–154. [Google Scholar]
- Stovall, W.K.; Houghton, B.F.; Gonnermann, H.; Fagents, S.A.; Swanson, D.A. Eruption Dynamics of Hawaiian-Style Fountains: The Case Study of Episode 1 of the Kīlauea Iki 1959 Eruption. Bull. Volcanol. 2011, 73, 511–529. [Google Scholar] [CrossRef]
- McPhie, J.; White, J.D.L.; Gorny, C.; Jackson, M.D.; Gudmundsson, M.T.; Couper, S. Lithofacies from the 1963-1967 Surtsey Eruption in SUSTAIN Drill Cores SE-2a, SE-2b and SE-03. Surtsey Res. 2020, 14, 19–32. [Google Scholar] [CrossRef]
- Moore, J.G.; Jackson, M.D. Observations on the Structure of Surtsey. Surtsey Res. 2020, 14, 33–45. [Google Scholar] [CrossRef]
- Kokelaar, P. Magma-Water Interactions in Subaqueous and Emergent Basaltic. Bull. Volcanol. 1986, 48, 275–289. [Google Scholar] [CrossRef]
- Murtagh, R.M.; White, J.D.L. Pyroclast Characteristics of a Subaqueous to Emergent Surtseyan Eruption, Black Point Volcano, California. J. Volcanol. Geotherm. Res. 2013, 267, 75–91. [Google Scholar] [CrossRef]
- Shimano, T.; Nakada, S. Vesiculation Path of Ascending Magma in the 1983 and the 2000 Eruptions of Miyakejima Volcano, Japan. Bull. Volcanol. 2006, 68, 549–566. [Google Scholar] [CrossRef]
- Mattsson, H.B. Textural Variation in Juvenile Pyroclasts from an Emergent, Surtseyan-Type, Volcanic Eruption: The Capelas Tuff Cone, São Miguel (Azores). J. Volcanol. Geotherm. Res. 2010, 189, 81–91. [Google Scholar] [CrossRef]
- Murtagh, R.M.; White, J.D.L.; Sohn, Y.K. Pyroclast Textures of the Ilchulbong ‘Wet’ Tuff Cone, Jeju Island, South Korea. J. Volcanol. Geotherm. Res. 2011, 201, 385–396. [Google Scholar] [CrossRef]
- Liu, E.J.; Cashman, K.V.; Rust, A.C. Optimising Shape Analysis to Quantify Volcanic Ash Morphology. GeoResJ 2015, 8, 14–30. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.L.; Houghton, B.F. Primary Volcaniclastic Rocks. Geology 2006, 34, 677. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Processes Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Deardorff, N.; Cashman, K. Rapid Crystallization during Recycling of Basaltic Andesite Tephra: Timescales Determined by Reheating Experiments. Sci. Rep. 2017, 7, 46364. [Google Scholar] [CrossRef] [Green Version]
- Büttner, R.; Dellino, P.; Zimanowski, B. Identifying Magma–Water Interaction from the Surface Features of Ash Particles. Nature 1999, 401, 688–690. [Google Scholar] [CrossRef]
- Heiken, G. Morphology and Petrography of Volcanic Ashes. GSA Bull. 1972, 83, 1961–1988. [Google Scholar] [CrossRef]
- Heiken, G. Atlas of Volcanic Ash. Smithson. Contrib. Earth Sci. 1974, 1–101. [Google Scholar] [CrossRef]
- Wohletz, K.H. Mechanisms of Hydrovolcanic Pyroclast Formation: Grain-Size, Scanning Electron Microscopy, and Experimental Studies. J. Volcanol. Geotherm. Res. 1983, 17, 31–63. [Google Scholar] [CrossRef]
- Kano, K. A Shallow-Marine Alkali-Basalt Tuff Cone in the Middle Miocene Jinzai Formation, Izumo, SW Japan. J. Volcanol. Geotherm. Res. 1998, 87, 173–191. [Google Scholar] [CrossRef]
- White, R.V.; Castillo, P.R.; Neal, C.R.; Fitton, J.G.; Godard, M. Phreatomagmatic Eruptions on the Ontong Java Plateau: Chemical and Isotopic Relationship to Ontong Java Plateau Basalts. Geol. Soc. Lond. Spec. Publ. 2004, 229, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Graettinger, A.H.; Skilling, I.; McGarvie, D.; Höskuldsson, Á. Subaqueous Basaltic Magmatic Explosions Trigger Phreatomagmatism: A Case Study from Askja, Iceland. J. Volcanol. Geotherm. Res. 2013, 264, 17–35. [Google Scholar] [CrossRef]
- Self, S. Large-Scale Phreatomagmatic Silicic Volcanism: A Case Study from New Zealand. J. Volcanol. Geotherm. Res. 1983, 17, 433–469. [Google Scholar] [CrossRef]
- Houghton, B.F.; Hackett, W.R. Strombolian and Phreatomagmatic Deposits of Ohakune Craters, Ruapehu, New Zealand: A Complex Interaction between External Water and Rising Basaltic Magma. J. Volcanol. Geotherm. Res. 1984, 21, 207–231. [Google Scholar] [CrossRef]
- Wohletz, K.H. Explosive Magma-Water Interactions: Thermodynamics, Explosion Mechanisms, and Field Studies. Bull. Volcanol. 1986, 48, 245–264. [Google Scholar] [CrossRef]
- Cioni, R.; Sbrana, A.; Vecci, R. Morphologic Features of Juvenile Pyroclasts from Magmatic and Phreatomagmatic Deposits of Vesuvius. J. Volcanol. Geotherm. Res. 1992, 51, 61–78. [Google Scholar] [CrossRef]
- Zimanowski, B.; Büttner, R.; Lorenz, V.; Häfele, H.-G. Fragmentation of Basaltic Melt in the Course of Explosive Volcanism. J. Geophys. Res. Solid Earth 1997, 102, 803–814. [Google Scholar] [CrossRef] [Green Version]
- De Rita, D.; Giordano, G.; Esposito, A.; Fabbri, M.; Rodani, S. Large Volume Phreatomagmatic Ignimbrites from the Colli Albani Volcano (Middle Pleistocene, Italy). J. Volcanol. Geotherm. Res. 2002, 118, 77–98. [Google Scholar] [CrossRef]
- Martin, U.; Németh, K.; Auer, A.; Breitkreuz, C.; Freiberg, T.B. Mio-Pliocene Phreatomagmatic Volcanism in a Fluvio-Lacustrine Basin in Western Hungary. Geolines 2003, 15, 84–90. [Google Scholar]
- Porreca, M.; Giordano, G.; Mattei, M.; Musacchio, P. Evidence of Two Holocene Phreatomagmatic Eruptions at Stromboli Volcano (Aeolian Islands) from Paleomagnetic Data. Geophys. Res. Lett. 2006, 33, L21316. [Google Scholar] [CrossRef]
- Németh, K.; Martin, U. Shallow Sill and Dyke Complex in Western Hungary as a Possible Feeding System of Phreatomagmatic Volcanoes in “Soft-Rock” Environment. J. Volcanol. Geotherm. Res. 2007, 159, 138–152. [Google Scholar] [CrossRef]
- Austin-Erickson, A.; Büttner, R.; Dellino, P.; Ort, M.H.; Zimanowski, B. Phreatomagmatic Explosions of Rhyolitic Magma: Experimental and Field Evidence. J. Geophys. Res. 2008, 113, B11201. [Google Scholar] [CrossRef] [Green Version]
- Geshi, N.; Oikawa, T. Phreatomagmatic Eruptions Associated with the Caldera Collapse during the Miyakejima 2000 Eruption, Japan. J. Volcanol. Geotherm. Res. 2008, 176, 457–468. [Google Scholar] [CrossRef]
- Wong, L.J.; Larsen, J.F. The Middle Scoria Sequence: A Holocene Violent Strombolian, Subplinian and Phreatomagmatic Eruption of Okmok Volcano, Alaska. Bull. Volcanol. 2009, 72, 17. [Google Scholar] [CrossRef]
- Németh, K. Volcanic Glass Textures, Shape Characteristics and Compositions of Phreatomagmatic Rock Units from the Western Hungarian Monogenetic Volcanic Fields and Their Implications for Magma Fragmentation. Open Geosci. 2010, 2, 399–419. [Google Scholar] [CrossRef]
- Martí, J.; Planagumà, L.; Geyer, A.; Canal, E.; Pedrazzi, D. Complex Interaction between Strombolian and Phreatomagmatic Eruptions in the Quaternary Monogenetic Volcanism of the Catalan Volcanic Zone (NE of Spain). J. Volcanol. Geotherm. Res. 2011, 201, 178–193. [Google Scholar] [CrossRef]
- Van Otterloo, J.; Cas, R.A.F.; Sheard, M.J. Eruption Processes and Deposit Characteristics at the Monogenetic Mt. Gambier Volcanic Complex, SE Australia: Implications for Alternating Magmatic and Phreatomagmatic Activity. Bull. Volcanol. 2013, 75, 737. [Google Scholar] [CrossRef]
- Tarff, R.W.; Day, S.J. Chilled Margin Fragmentation as a Trigger for Transition from Strombolian to Phreatomagmatic Explosive Activity at Cova de Paul Crater, Santo Antao, Cape Verde Islands. Bull. Volcanol. 2013, 75, 735. [Google Scholar] [CrossRef]
- Iverson, N.A.; Lieb-Lappen, R.; Dunbar, N.W.; Obbard, R.; Kim, E.; Golden, E. The First Physical Evidence of Subglacial Volcanism under the West Antarctic Ice Sheet. Sci. Rep. 2017, 7, 11457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado, G.E.; Mele, D.; Dellino, P.; de Moor, J.M.; Avard, G. Are the Ashes from the Latest Eruptions (2010–2016) at Turrialba Volcano (Costa Rica) Related to Phreatic or Phreatomagmatic Events? J. Volcanol. Geotherm. Res. 2016, 327, 407–415. [Google Scholar] [CrossRef]
- Aydar, E.; ÇİNer, A.; Ersoy, O.; ÉCochard, E.; Fouache, E.G. Volcanic Ash and Tsunami Record of the Minoan Late Bronze Age Eruption (Santorini) in a Distal Setting, Southwestern Turkey. J. Quat. Sci. 2021, 36, 586–597. [Google Scholar] [CrossRef]
- White, J.D.L.; Valentine, G.A. Magmatic versus Phreatomagmatic Fragmentation: Absence of Evidence Is Not Evidence of Absence. Geosphere 2016, 12, 1478–1488. [Google Scholar] [CrossRef]
- Stovall, W.K.; Houghton, B.F.; Hammer, J.E.; Fagents, S.A.; Swanson, D.A. Vesiculation of High Fountaining Hawaiian Eruptions: Episodes 15 and 16 of 1959 Kīlauea Iki. Bull. Volcanol. 2012, 74, 441–455. [Google Scholar] [CrossRef]
- Polacci, M.; Corsaro, R.; Andronico, D. Coupled Textural and Compositional Characterization of Basaltic Scoria: Insights into the Transition from Strombolian to Fire Fountain Activity at Mount Etna, Italy. Geology 2006, 34, 201. [Google Scholar] [CrossRef]
- Lautze, N.; Taddeucci, J.; Andronico, D.; Houghton, B.; Niemeijer, A.; Scarlato, P. Insights into Explosion Dynamics and the Production of Ash at Stromboli from Samples Collected in Real-Time, October 2009. In Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 2013; Volume 498, pp. 125–139. ISBN 978-0-8137-2498-0. [Google Scholar]
- Fisher, R.V.; Schmincke, H.U. Pyroclastic Rocks; Springer: Berlin, Germany, 1984; p. 472. [Google Scholar]
- Moreland, W.M.; Thordarson, T.; Houghton, B.F.; Larsen, G. Driving Mechanisms of Subaerial and Subglacial Explosive Episodes during the 10th Century Eldgjá Fissure Eruption, Southern Iceland. Volcanica 2019, 2, 129–150. [Google Scholar] [CrossRef]
- Cimarelli, C.; Di Traglia, F.; Taddeucci, J. Basaltic Scoria Textures from a Zoned Conduit as Precursors to Violent Strombolian Activity. Geology 2010, 38, 439–442. [Google Scholar] [CrossRef]
- Costantini, L.; Houghton, B.F.; Bonadonna, C. Constraints on Eruption Dynamics of Basaltic Explosive Activity Derived from Chemical and Microtextural Study: The Example of the Fontana Lapilli Plinian Eruption, Nicaragua. J. Volcanol. Geotherm. Res. 2010, 189, 207–224. [Google Scholar] [CrossRef]
- D’Oriano, C.; Bertagnini, A.; Cioni, R.; Pompilio, M. Identifying Recycled Ash in Basaltic Eruptions. Sci. Rep. 2015, 4, 5851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hantusch, M.; Lacanna, G.; Ripepe, M.; Montenegro, V.; Valderrama, O.; Farias, C.; Caselli, A.; Gabellini, P.; Cioni, R. Low-Energy Fragmentation Dynamics at Copahue Volcano (Argentina) as Revealed by an Infrasonic Array and Ash Characteristics. Front. Earth Sci. 2021, 9, 92. [Google Scholar] [CrossRef]
- Houghton, B.F.; Wilson, C.J.N. A Vesicularity Index for Pyroclastic Deposits. Bull. Volcanol. 1989, 51, 451–462. [Google Scholar] [CrossRef]
- Polacci, M.; Mancini, L.; Baker, D.R. The Contribution of Synchrotron X-Ray Computed Microtomography to Understanding Volcanic Processes. J. Synchrotron Rad. 2010, 17, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giachetti, T.; Burgisser, A.; Arbaret, L.; Druitt, T.H.; Kelfoun, K. Quantitative Textural Analysis of Vulcanian Pyroclasts (Montserrat) Using Multi-Scale X-Ray Computed Microtomography: Comparison with Results from 2D Image Analysis. Bull. Volcanol. 2011, 73, 1295–1309. [Google Scholar] [CrossRef] [Green Version]
- Verolino, A. Surtseyan Volcanism: Case Studies from Pahvant Butte and Black Point. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2019. [Google Scholar]
- Rust, A.C.; Cashman, K.V. Permeability Controls on Expansion and Size Distributions of Pyroclasts. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Browning, J.; Tuffen, H.; James, M.R.; Owen, J.; Castro, J.M.; Halliwell, S.; Wehbe, K. Post-Fragmentation Vesiculation Timescales in Hydrous Rhyolitic Bombs from Chaitén Volcano. J. South Am. Earth Sci. 2020, 104, 102807. [Google Scholar] [CrossRef]
- Taddeucci, J.; Pompilio, M.; Scarlato, P. Conduit Processes during the July–August 2001 Explosive Activity of Mt. Etna (Italy): Inferences from Glass Chemistry and Crystal Size Distribution of Ash Particles. J. Volcanol. Geotherm. Res. 2004, 137, 33–54. [Google Scholar] [CrossRef]
- Bae, S.-G.; Choo, C.-O.; Jang, Y.-D. Mineralogical Characteristics of Tachylite occurring in Basic Dike, Basaltic Agglomerate Formation, Ulleung Island and Its Implications of Volcanic Activity. J. Mineral. Soc. Korea 2012, 25, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Saar, M.O.; Manga, M. Permeability-Porosity Relationship in Vesicular Basalts. Geophys. Res. Lett. 1999, 26, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.; Melnik, O.; Spieler, O.; Scheu, B.; Dingwell, D.B. Permeability and Degassing of Dome Lavas Undergoing Rapid Decompression: An Experimental Determination. Bull. Volcanol. 2005, 67, 526–538. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.; Scheu, B.; Spieler, O.; Dingwell, D.B. Permeability Control on Magma Fragmentation. Geology 2008, 36, 399. [Google Scholar] [CrossRef]
- Gonnermann, H.M.; Giachetti, T.; Fliedner, C.; Nguyen, C.T.; Houghton, B.F.; Crozier, J.A.; Carey, R.J. Permeability During Magma Expansion and Compaction. J. Geophys. Res. Solid Earth 2017, 122, 9825–9848. [Google Scholar] [CrossRef]
- Taddeucci, J.; Edmonds, M.; Houghton, B.F.; James, M.R.; Vergniolle, S. Hawaiian and Strombolian Eruptions. In The Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., Rymer, H., Stix, J., McNutt, S., Eds.; Academic Press: New York, NY, USA, 2015; pp. 485–499. [Google Scholar]
- Dürig, T.; White, J.D.L.; Murch, A.P.; Zimanowski, B.; Büttner, R.; Mele, D.; Dellino, P.; Carey, R.J.; Schmidt, L.S.; Spitznagel, N. Deep-sea eruptions boosted by induced fuel–coolant explosions. Nat. Geosci. 2020, 13, 498–503. [Google Scholar] [CrossRef]
- Houghton, B.F.; Gonnermann, H.M. Basaltic Explosive Volcanism: Constraints from Deposits and Models. Geochemistry 2008, 68, 117–140. [Google Scholar] [CrossRef]
- White, J.D.L.; Ross, P.-S. Maar-Diatreme Volcanoes: A Review. J. Volcanol. Geotherm. Res. 2011, 201, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Costa, A. Plume Height, Volume, and Classification of Explosive Volcanic Eruptions Based on the Weibull Function. Bull. Volcanol. 2013, 75, 742. [Google Scholar] [CrossRef] [Green Version]
- Wohletz, K.H.; Sheridan, M.F. Hydrovolcanic Explosions; II, Evolution of Basaltic Tuff Rings and Tuff Cones. Am. J. Sci. 1983, 283, 385–413. [Google Scholar] [CrossRef]
- Wohletz, K.H.; McQueen, R.G. Experimental Studies of Hydromagmatic Volcanism. In Inception, Evolution, and Hazards; Panel on Explosive Volcanism; National Academy Press: Washington, DC, USA, 1984; pp. 158–169. [Google Scholar]
- Schipper, C.I.; White, J.D.L.; Houghton, B.F. Textural, Geochemical, and Volatile Evidence for a Strombolian-like Eruption Sequence at Lōihi Seamount, Hawaii. J. Volcanol. Geotherm. Res. 2011, 207, 16–32. [Google Scholar] [CrossRef]
Sample Name | Size Fraction | Eruption Date | Collected By | Sampling Location | Analysis | Deposit Description |
---|---|---|---|---|---|---|
1991 and 2014 field campaigns on Surtsey | ||||||
S-4,6 | Ash/Lapilli | Feb ′64 | JDL White, CI Schipper | Surtur II flank | 1, 2, 3 | See text (Section 2.1) |
S-17,17 | Feb ′64 | JDL White, CI Schipper | Surtur I flank | 1, 2, 3 | See text (Section 2.1) | |
S-7,3 | Feb ′64 | JDL White, CI Schipper | Surtur I flank | 1, 2, 3 | See text (Section 2.1) | |
S-16,16 | Feb ′64 | JDL White, CI Schipper | Surtur I flank | 1, 2, 3 | See text (Section 2.1) | |
S-15,15 | Feb ′64 | JDL White, CI Schipper | Surtur I flank | 1, 2, 3 | See text (Section 2.1) | |
S-14 | Feb ′64 | JDL White, CI Schipper | Surtur I flank | 1, 2, 3 | See text (Section 2.1) | |
S-13,13 | Feb ′64 | JDL White, CI Schipper | Surtur I flank | 1, 2, 3 | See text (Section 2.1) | |
S-12,13 | Feb ′64 | JDL White, CI Schipper | Surtur II flank | 1, 2, 3 | See text (Section 2.1) | |
SY 01 to SY 20 | Ash/Lapilli | Feb ′64 | T Thordarson | Surtur I flank | 4, 6 | See text (Section 2.1) |
Collection of the Icelandic Natural History Museum | ||||||
Sur1-801 | Ash (Surtur I) | 17 Nov ′63 | G Kjartansson | Collected from fallout onboard v/s Odni, 3 km from Surtsey | 4, 5 | Greyish tephra, poorly sorted, with outsized (~1 cm) flaky particle. |
Sur1-9809 | 15 Nov ′63 | S Thorarinsson | Collected from fallout onboard v/s Albert | 4, 5 | Well sorted tephra, lacking much ultrafine material. Larger grains have ropy, achnelithic-like surfaces. | |
Sur1-9810 | 15 Nov ′63 | S Thorarinsson | Collected from fallout onboard v/s Albert | 4, 5 | ? | |
Sur1-9811 | 16 Nov ′63 | S Thorarinsson | Collected during fallout onboard fishing vessel Haraldur | 4, 5 | Graded greyish tephra | |
Sur1-9813 | 23 Nov ′63 | S Thorarinsson | Collected from fallout onboard v/s Thor | 4, 5 | Greyish fine-grained tephra | |
Sur1-9816 | 1 Dec ′63 | S Thorarinsson | Collected from fallout onboard v/s Ódinn at 7 pm | 3 | Greyish fine-grained tephra, with ultrafine component. | |
Syrt-9833 | Jun-Jul ′65 | ? | Syrtlingur tephra collected atop Surtur II lavas | 4, 5 | Fine-coarse ash with small flakes <4 mm wide. | |
Syrt-11220 | Jul ′65 | P. Helgasyni | Syrtlingur tephra collected on Syrtlingur | 3 | Well sorted black medium ash. Completely non vesicular—sideromelane and crystals. | |
Jol-9846 | 29 Aug ′66 | SP Jakobsson | Jólnir tephra collected on N Surtsey | 3 | Tephra. Fine to coarse dusty ash. | |
SLF-4680 | 21 Aug ′66 | ? | collected close to crater mouth of Surtur II | 4, 5 | Pele’s hair and tears | |
SDC79-176.0 | Ash | 8–14 Nov ′63 | SP Jakobsson | Base of the 1979 Surtsey Drill Core (176 m deep, ~120 m.b.s.l.) | 3 | Unconsolidated and unaltered tephra rich in vesicular grains. |
Resolution | dmin | Groundmass | Porosity | Nv | Permeability (m2) | ||||
---|---|---|---|---|---|---|---|---|---|
Sample | (μm px−1) | (μm) | (%) | (cm−3) | kx | ky | kz | kavg | |
10-08-91-07 (−2.0 phi lapilli) | |||||||||
SY-01 | 2.5 | 5.8 | Transitional | 38 | 1.39 × 106 | 1.67 × 10−12 | 2.05 × 10−12 | 2.32 × 10−12 | 2.01 × 10−12 |
SY-02 * | 2.9 | 8.4 | Transitional | 42 | 3.20 × 106 | 1.75 × 10−12 | 1.25 × 10−12 | 1.37 × 10−12 | 1.46 × 10−12 |
SY-03 | 2.8 | 9.4 | Sideromelane | 53 | 1.54 × 106 | 2.81 × 10−11 | 4.06 × 10−11 | 3.04 × 10−11 | 3.30 × 10−11 |
SY-04 * | 2.8 | 11.2 | Tachylite | 24 | 8.30 × 106 | 3.58 × 10−13 | 1.90 × 10−13 | 3.37 × 10−13 | 2.95 × 10−13 |
SY-05 | 2.8 | 6.1 | Sideromelane | 51 | 1.64 × 106 | 3.03 × 10−11 | 3.25 × 10−11 | 2.91 × 10−11 | 3.06 × 10−11 |
SY-06 | 3.0 | 12.2 | Transitional | 32 | 1.60 × 106 | 8.14 × 10−13 | 8.87 × 10−13 | 6.07 × 10−13 | 7.69 × 10−13 |
SY-08 | 2.6 | 2.8 | Transitional | 34 | 1.96 × 106 | 1.42 × 10−12 | 2.26 × 10−12 | 2.15 × 10−12 | 1.94 × 10−12 |
SY-09 | 2.8 | 5.0 | Transitional | 31 | 3.89 × 106 | 3.30 × 10−13 | 3.00 × 10−13 | 6.33 × 10−13 | 4.21 × 10−13 |
SY-10 * | 2.6 | 6.7 | Sideromelane | 47 | 1.85 × 106 | 5.60 × 10−12 | 4.25 × 10−12 | 5.44 × 10−12 | 5.10 × 10−12 |
SY-10 | 2.6 | 5.1 | Transitional | 56 | 8.66 × 105 | 1.83 × 10−11 | 1.16 × 10−11 | 1.59 × 10−11 | 1.53 × 10−11 |
SY-11 | 3.1 | 8.2 | Sideromelane | 51 | 1.10 × 106 | 1.59 × 10−11 | 1.75 × 10−11 | 1.09 × 10−11 | 1.48 × 10−11 |
SY-12 | 2.8 | 16.5 | Sideromelane | 48 | 4.05 × 105 | 1.31 × 10−11 | 2.24 × 10−11 | 1.76 × 10−11 | 1.77 × 10−11 |
SY-15 * | 1.7 | 27.8 | Tachylite | 6 | 4.27 × 106 | no percolation | |||
SY-16 | 2.6 | 6.2 | Sideromelane | 34 | 2.27 × 106 | 1.24 × 10−12 | 1.29 × 10−12 | 1.30 × 10−12 | 1.28 × 10−12 |
SY-17 | 3.0 | 19.0 | Transitional | 42 | 7.54 × 105 | 3.65 × 10−12 | 5.27 × 10−12 | 6.03 × 10−12 | 4.98 × 10−12 |
SY-18 | 2.8 | 5.3 | Sideromelane | 44 | 1.48 × 106 | 4.67 × 10−12 | 5.42 × 10−12 | 5.54 × 10−12 | 5.21 × 10−12 |
SY-19 | 2.6 | 24.0 | Sideromelane | 35 | 2.16 × 106 | 1.73 × 10−12 | 1.46 × 10−12 | 4.70 × 10−12 | 2.63 × 10−12 |
SY-20 | 3.4 | 16.4 | Transitional | 59 | 8.77 × 105 | 4.29 × 10−11 | 6.17 × 10−11 | 1.14 × 10−11 | 3.87 × 10−11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verolino, A.; White, J.D.L.; Baxter, R.J.M.; Schipper, C.I.; Thordarson, T. Characteristics of Sub-Aerially Emplaced Pyroclasts in the Surtsey Eruption Deposits: Implications for Diverse Surtseyan Eruptive Styles. Geosciences 2022, 12, 79. https://doi.org/10.3390/geosciences12020079
Verolino A, White JDL, Baxter RJM, Schipper CI, Thordarson T. Characteristics of Sub-Aerially Emplaced Pyroclasts in the Surtsey Eruption Deposits: Implications for Diverse Surtseyan Eruptive Styles. Geosciences. 2022; 12(2):79. https://doi.org/10.3390/geosciences12020079
Chicago/Turabian StyleVerolino, Andrea, James D. L. White, Rachael J. M. Baxter, C. Ian Schipper, and Thor Thordarson. 2022. "Characteristics of Sub-Aerially Emplaced Pyroclasts in the Surtsey Eruption Deposits: Implications for Diverse Surtseyan Eruptive Styles" Geosciences 12, no. 2: 79. https://doi.org/10.3390/geosciences12020079
APA StyleVerolino, A., White, J. D. L., Baxter, R. J. M., Schipper, C. I., & Thordarson, T. (2022). Characteristics of Sub-Aerially Emplaced Pyroclasts in the Surtsey Eruption Deposits: Implications for Diverse Surtseyan Eruptive Styles. Geosciences, 12(2), 79. https://doi.org/10.3390/geosciences12020079