Early Evolution of the Adelaide Superbasin
Abstract
:1. Introduction
2. Geological Background
2.1. Adelaide Superbasin
2.2. Callanna Group
3. Materials and Methods
4. Results
5. Discussion
5.1. Provenance and Maximum Depositional Ages
5.1.1. Paralana Quartzite, Including Shanahan Conglomerate Member
5.1.2. Lady Don Quartzite
5.1.3. Cadlareena Volcanics
5.1.4. Comparison to Basal Central Superbasin Sequences
5.2. Zircon Trace Element Geochemistry
5.3. Willouran Large Igneous Province and Palaeogeography
5.4. Early Evolution of the Adelaide Superbasin
6. Conclusions
- Revised constraints on the timing of initial deposition within the Adelaide Superbasin, between ≥893 ± 9 Ma and c. 830 Ma.
- The identification of an enigmatic source of young (<1000 Ma) zircon in the basal stratigraphic unit.
- The Arkaroola Subgroup represents early, syn-rift deposition within half-grabens, developed in an initial pulse of extension that likely exploited pre-existing crustal weakness.
- The central and northern Flinders Ranges formed the initial arm of the rift system but failed to progress to continental breakup.
- Basal Centralian Superbasin and Adelaide Superbasin stratigraphic units had different primary detrital sources.
- Support for a potential late Mesoproterozoic source region to the east of the basin.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Use of NIST610 as Primary 207Pb/206Pb Standard
References
- Halverson, G.P.; Hurtgen, M.T.; Porter, S.M.; Collins, A.S. Neoproterozoic-Cambrian Biogeochemical Evolution. In Developments in Precambrian Geology; Gaucher, C., Sial, A.N., Frimmel, H.E., Halverson, G.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 16, pp. 351–365. [Google Scholar]
- Shields, G.A.; Strachan, R.A.; Porter, S.M.; Halverson, G.P.; Macdonald, F.A.; Plumb, K.A.; de Alvarenga, C.J.; Banerjee, D.M.; Bekker, A.; Bleeker, W.; et al. A template for an improved rock-based subdivision of the pre-Cryogenian timescale. J. Geol. Soc. 2021, 179. [Google Scholar] [CrossRef]
- Tostevin, R.; Mills, B.J.W. Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus 2020, 10, 20190137. [Google Scholar] [CrossRef] [PubMed]
- Alcott, L.J.; Krause, A.J.; Hammarlund, E.U.; Bjerrum, C.J.; Scholz, F.; Xiong, Y.; Hobson, A.J.; Neve, L.; Mills, B.J.W.; März, C.; et al. Development of Iron Speciation Reference Materials for Palaeoredox Analysis. Geostand. Geoanal. Res. 2020, 44, 581–591. [Google Scholar] [CrossRef]
- Gernon, T.M.; Hincks, T.K.; Tyrrell, T.; Rohling, E.J.; Palmer, M.R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nat. Geosci. 2016, 9, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Mills, B.J.W.; Krause, A.J.; Scotese, C.R.; Hill, D.J.; Shields, G.A.; Lenton, T.M. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 2019, 67, 172–186. [Google Scholar] [CrossRef]
- Merdith, A.S.; Williams, S.E.; Collins, A.S.; Tetley, M.G.; Mulder, J.A.; Blades, M.L.; Young, A.; Armistead, S.E.; Cannon, J.; Zahirovic, S.; et al. Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-Sci. Rev. 2021, 214, 103477. [Google Scholar] [CrossRef]
- Merdith, A.S.; Williams, S.E.; Müller, R.D.; Collins, A.S. Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Res. 2017, 299, 132–150. [Google Scholar] [CrossRef]
- Collins, A.S.; Blades, M.L.; Merdith, A.S.; Foden, J.D. Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Commun. Earth Environ. 2021, 2, 75. [Google Scholar] [CrossRef]
- Lloyd, J.C.; Blades, M.L.; Counts, J.W.; Collins, A.S.; Amos, K.J.; Wade, B.P.; Hall, J.W.; Hore, S.; Ball, A.L.; Shahin, S.; et al. Neoproterozoic geochronology and provenance of the Adelaide Superbasin. Precambrian Res. 2020, 350, 105849. [Google Scholar] [CrossRef]
- Bogdanova, S.V.; Pisarevsky, S.A.; Li, Z.-X. Assembly and Breakup of Rodinia (Some results of IGCP project 440). Stratigr. Geol. Correl. 2009, 17, 259–274. [Google Scholar] [CrossRef]
- Cawood, P.A.; Strachan, R.A.; Pisarevsky, S.A.; Gladkochub, D.P.; Murphy, J.B. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 2016, 449, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Brookfield, M.E. Neoproterozoic Laurentia-Australia fit. Geology 1993, 21, 683–686. [Google Scholar] [CrossRef]
- Dalziel, I.W.D. OVERVIEW: Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. GSA Bull. 1997, 109, 16–42. [Google Scholar] [CrossRef]
- Hoffman, P.F. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science 1991, 252, 1409–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlstrom, K.E.; Harlan, S.S.; Williams, M.L.; McLelland, J.; Geissman, J.W.; Ahäll, K.-I. Refining Rodinia: Geologic evidence for the Australia-western US connection in the Proterozoic. GSA Today 1999, 9, 1–7. [Google Scholar] [CrossRef]
- Moores, E.M. Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis. Geology 1991, 19, 425–428. [Google Scholar] [CrossRef]
- Wingate, M.T.D.; Pisarevsky, S.A.; Evans, D.A.D. Rodinia connections between Australia and Laurentia: No SWEAT, no AUSWUS? Terra Nova 2002, 14, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-X.; Zhang, L.; Powell, C.M. South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? Geology 1995, 23, 407–410. [Google Scholar] [CrossRef]
- Wen, B.; Evans, D.A.D.; Li, Y.-X. Neoproterozoic paleogeography of the Tarim Block: An extended or alternative “missing-link” model for Rodinia? Earth Planet. Sci. Lett. 2017, 458, 92–106. [Google Scholar] [CrossRef]
- Wen, B.; Evans, D.A.D.; Wang, C.; Li, Y.-X.; Jing, X. A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly. Geology 2018, 46, 687–690. [Google Scholar] [CrossRef]
- Sprigg, R.C. Sedimentation in the Adelaide Geosyncline and the formation of the continental terrace. In Sir Douglas Mawson Anniversary Volume; Glaessner, M.F., Sprigg, R.C., Eds.; The University of Adelaide: Adelaide, Australia, 1952; pp. 153–159. [Google Scholar]
- Preiss, W.V. Adelaide Geosyncline—Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics; Drexel, J.F., Ed.; Geological Survey of South Australia: Adelaide, Australia, 1987; p. 428. [Google Scholar]
- Preiss, W.V. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Res. 2000, 100, 21–63. [Google Scholar] [CrossRef]
- Counts, J.W. Sedimentology, Provenance, and Salt-Sediment Interaction in the Ediacaran Pound Subgroup, Flinders Ranges, South Australia. Ph.D. Thesis, University of Adelaide, Adelaide, South Australia, 2016. [Google Scholar]
- Mackay, W.G. Structure and Sedimentology of the Curdimurka Subgroup, Northern Adelaide Fold Belt, South Australia. Ph.D. Thesis, University of Tasmania, Hobart, Tasmania, 2011. [Google Scholar]
- Job, A.L. Evolution of the Basal Adelaidean in the Northern Flinders Ranges: Deposition, Provenance and Deformation of the Callanna and Lower Burra Groups. Ph.D. Thesis, University of Adelaide, Adelaide, South Australia, 2011. [Google Scholar]
- Keeman, J.; Turner, S.; Haines, P.W.; Belousova, E.; Ireland, T.; Brouwer, P.; Foden, J.; Wörner, G. New UPb, Hf and O isotope constraints on the provenance of sediments from the Adelaide Rift Complex—Documenting the key Neoproterozoic to early Cambrian succession. Gondwana Res. 2020, 83, 248–278. [Google Scholar] [CrossRef]
- Callen, R.A. Curnamona; Department of Mines and Energy: Adelaide, Australia, 1990; p. 56.
- Preiss, W.V.; Alexander, E.M.; Cowley, W.M.; Schwarz, M.P. Towards defining South Australia’s geological provinces and sedimentary basins. MESA J. 2002, 27, 39–52. [Google Scholar]
- Mulder, J.A.; Berry, R.F.; Halpin, J.A.; Meffre, S.; Everard, J.L. Depositional age and correlation of the Oonah Formation: Refining the timing of Neoproterozoic basin formation in Tasmania. Aust. J. Earth Sci. 2018, 65, 391–407. [Google Scholar] [CrossRef]
- Drexel, J.F.; Preiss, W.V. (Eds.) The Geology of South Australia; Geological Survey of South Australia: Adelaide, Australia, 1995; Volume 2. [Google Scholar]
- Foden, J.D.; Elburg, M.A.; Dougherty-Page, J.; Burtt, A. The timing and duration of the Delamerian orogeny: Correlation with the Ross Orogen and implications for Gondwana assembly. J. Geol. 2006, 114, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Foden, J.D.; Elburg, M.A.; Turner, S.; Clark, C.; Blades, M.L.; Cox, G.; Collins, A.S.; Wolff, K.; George, C. Cambro-Ordovician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin. Gondwana Res. 2020, 81, 490–521. [Google Scholar] [CrossRef]
- Counts, J.W. The Adelaide Rift Complex in the Flinders Ranges: Geologic history, Past Investigations and Relevant Analogues; Report Book 2017/00016; Geological Survey of South Australia: Adelaide, Australia, 2017; p. 47. [Google Scholar]
- Cowley, W.M. Geological setting of exceptional geological features of the Flinders Ranges. Aust. J. Earth Sci. 2020, 67, 763–785. [Google Scholar] [CrossRef]
- Forbes, B.G.; Murrell, B.; Preiss, W.V. Subdivision of lower Adelaidean, Willouran Ranges. Q. Geol. Notes 1981, 79, 7–16. [Google Scholar]
- Thomson, B.P. The lower boundary of the Adelaide system and older basement relationships in south Australia. J. Geol. Soc. Aust. 1966, 13, 203–228. [Google Scholar] [CrossRef]
- Mawson, D. Sturtian tillite of Mount Jacob and Mount Warren Hastings, north Flinders Ranges. Trans. Roy. Soc. S. Aust. 1949, 72, 244–251. [Google Scholar]
- Preiss, W.V. Neoproterozoic. In The Geology of South Australia; Drexel, J.F., Preiss, W.V., Parker, A.J., Eds.; Bulletin; Geological Survey of South Australia: Adelaide, Australia, 1993; Volume 1, pp. 171–204. [Google Scholar]
- Cooper, P.F.; Tuckwell, K.D. The upper Precambrian Adelaidean of the Broken Hill area—A new subdivision. Q. Notes-Geol. Surv. N. S. W. 1971, 3, 8–16. [Google Scholar]
- Coats, R.P.; Blissett, A.H. Regional and Economic Geology of the Mount Painter Province; Geological Survey of South Australia: Adelaide, Australia, 1971. [Google Scholar]
- Hillyard, D. Willouran Basic Province: Stratigraphy of Late Proterozoic flood basalts, Adelaide Geosyncline, South Australia. In The Evolution of a Late Precambrian Early Palaeozoic Rift Complex: The Adelaide Geosyncline; Special Publication (No. 16); Jago, J.B., Moore, P.S., Eds.; Geological Society of Australia Inc.: Sydney, Australia, 1990; pp. 34–48. [Google Scholar]
- Crawford, A.J.; Hillyard, D. Geochemistry of Late Proterozoic tholeiitic flood basalts, Adelaide Geosyncline, South Australia. In The Evolution of a Late Precambrian Early Palaeozoic Rift Complex: The Adelaide Geosyncline; Special Publication (No. 16); Jago, J.B., Moore, P.S., Eds.; Geological Society of Australia Inc.: Sydney, Australia, 1990; pp. 49–67. [Google Scholar]
- Powell, C.M. Assembly and Break-up of Rodinia Leading to Formation of Gondwana Land. In The Assembly and Breakup of Rodinia; Bird, R.T., Ed.; Geological Society of Australia Abstracts; Geological Society of Australia: Sydney, Australia, 1998; pp. 49–53. [Google Scholar]
- Wade, C.E.; McAvaney, S.O.; Gordan, G.A. The Beda Basalt: New geochemistry, isotopic data and its definition. MESA J. 2014, 73, 24–39. [Google Scholar]
- Wang, X.-C.; Li, X.-H.; Li, Z.-X.; Liu, Y.; Yang, Y.-H. The Willouran basic province of South Australia: Its relation to the Guibei large igneous province in South China and the breakup of Rodinia. Lithos 2010, 119, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Wingate, M.T.D.; Campbell, I.H.; Compston, W.; Gibson, G.M. Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Res. 1998, 87, 135–159. [Google Scholar] [CrossRef]
- Huang, Q.; Kamenetsky, V.S.; McPhie, J.; Ehrig, K.; Meffre, S.; Maas, R.; Thompson, J.; Kamenetsky, M.; Chambefort, I.; Apukhtina, O.; et al. Neoproterozoic (ca. 820–830Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambrian Res. 2015, 271, 160–172. [Google Scholar] [CrossRef]
- Werner, M.; Dutch, R.A.; Pawley, M.J.; Krapf, C.B.E. Amata Dolerite, Musgrave Province: Connections to Neoproterozoic mantle plume magmatism within Rodinia. MESA J. 2018, 87, 34–45. [Google Scholar]
- Travers, D.C. Geochronology, Geochemistry and Petrogenesis of Mafic Magmatism in the Coompana Province. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2015. [Google Scholar]
- Matenco, L.C.; Haq, B.U. Multi-scale depositional successions in tectonic settings. Earth-Sci. Rev. 2020, 200, 102991. [Google Scholar] [CrossRef]
- Ambrose, G.J.; Flint, R.B.; Webb, A.W. Precambrian and Palaeozoic Geology of the Peake and Denison Ranges; Geological Survey of South Australia: Adelaide, Australia, 1981; p. 73. [Google Scholar]
- Hearon IV, T.E.; Rowan, M.G.; Lawton, T.F.; Hannah, P.T.; Giles, K.A. Geology and tectonics of Neoproterozoic salt diapirs and salt sheets in the eastern Willouran Ranges, South Australia. Basin Res. 2015, 27, 183–207. [Google Scholar] [CrossRef]
- Preiss, W.V. Stratigraphy and Tectonics of the Worumba Anticline and Associated Intrusive Breccias; Geological Survey of South Australia: Adelaide, Australia, 1985. [Google Scholar]
- Preiss, W.V. The River Broughton Beds-a Willouran sequence in the Spalding inlier. Q. Geol. Notes 1974, 49, 2–8. [Google Scholar]
- Fabris, A.J.; Constable, S.A.; Conor, C.H.H.; Woodhouse, A.; Hore, S.B.; Fanning, M. Age, origin, emplacement and mineral potential of the Oodla Wirra Volcanics, Nackara Arc, central Flinders Ranges. MESA J. 2005, 37, 44–52. [Google Scholar]
- Stüeken, E.E.; Buick, R.; Lyons, T.W. Revisiting the depositional environment of the Neoproterozoic Callanna Group, South Australia. Precambrian Res. 2019, 334, 105474. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J. Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochem. Geophys. Geosystems 2012, 13, Q05007. [Google Scholar] [CrossRef]
- Dröllner, M.; Barham, M.; Kirkland, C.L.; Ware, B. Every zircon deserves a date: Selection bias in detrital geochronology. Geol. Mag. 2021, 158, 1135–1142. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Košler, J.; Gehrels, G.E.; Jackson, S.E.; McLean, N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.N.; Sylvester, P.; Vermeesch, P.; et al. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology-Uncertainty Propagation, Age Interpretation and Data Reporting. Geostand. Geoanal. Res. 2016, 40, 311–332. [Google Scholar] [CrossRef] [Green Version]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand. Newslett. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Norris, A.; Danyushevsky, L. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. In Proceedings of the Goldschmidt, Boston, MA, USA, 12–17 August 2018. [Google Scholar]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Verdel, C.; Campbell, M.J.; Allen, C.M. Detrital zircon petrochronology of central Australia, and implications for the secular record of zircon trace element composition. Geosphere 2021, 17, 538–560. [Google Scholar] [CrossRef]
- Anenburg, M. Rare earth mineral diversity controlled by REE pattern shapes. Mineral. Mag. 2020, 84, 629–639. [Google Scholar] [CrossRef]
- O’Neill, H.S.C. The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts. J. Petrol. 2016, 57, 1463–1508. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Pupin, J.P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Ludwig, K.R. On the Treatment of Concordant Uranium-Lead Ages. Geochim. Cosmochim. Acta 1998, 62, 665–676. [Google Scholar] [CrossRef]
- Vermeesch, P. On the treatment of discordant detrital zircon U–Pb data. Geochronology 2021, 3, 247–257. [Google Scholar] [CrossRef]
- Armit, R.J.; Betts, P.G.; Schaefer, B.F.; Pankhurst, M.J.; Giles, D. Provenance of the Early Mesoproterozoic Radium Creek Group in the northern Mount Painter Inlier: Correlating isotopic signatures to inform tectonic reconstructions. Precambrian Res. 2014, 243, 63–87. [Google Scholar] [CrossRef]
- Wade, C.E. Definition of the Mesoproterozoic Ninnerie Supersuite, Curnamona Province, South Australia. MESA J. 2011, 62, 25–42. [Google Scholar]
- Wade, C.E.; Reid, A.J.; Wingate, M.T.D.; Jagodzinski, E.A.; Barovich, K. Geochemistry and geochronology of the c. 1585Ma Benagerie Volcanic Suite, southern Australia: Relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province. Precambrian Res. 2012, 206–207, 17–35. [Google Scholar] [CrossRef]
- Kromkhun, K.; Foden, J.D.; Hore, S.B.; Baines, G. Geochronology and Hf isotopes of the bimodal mafic–felsic high heat producing igneous suite from Mt Painter Province, South Australia. Gondwana Res. 2013, 24, 1067–1079. [Google Scholar] [CrossRef]
- Reid, A.J.; Jagodzinski, E.A.; Fraser, G.L.; Pawley, M.J. SHRIMP U–Pb zircon age constraints on the tectonics of the Neoarchean to early Paleoproterozoic transition within the Mulgathing Complex, Gawler Craton, South Australia. Precambrian Res. 2014, 250, 27–49. [Google Scholar] [CrossRef]
- Reid, A.J.; Payne, J.L. Magmatic zircon Lu–Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia. Lithos 2017, 292–293, 294–306. [Google Scholar] [CrossRef]
- Williams, M.A.; Reid, A.J. Linking lithostratigraphy to mineral potential for the Archean to earliest Paleoproterozoic Mulgathing Complex, central Gawler Craton. MESA J. 2021, 94, 4–18. [Google Scholar]
- Smithies, R.H.; Howard, H.M.; Evins, P.M.; Kirkland, C.L.; Bodorkos, S.; Wingate, M.T.D. The West Musgrave Complex-New Geological Insights from Recent Mapping, Geochronology, and Geochemical Studies; Record 2008/19; Geological Survey of Western Australia: Perth, Australia, 2008. [Google Scholar]
- Smithies, R.H.; Howard, H.M.; Evins, P.M.; Kirkland, C.L.; Kelsey, D.E.; Hand, M.; Wingate, M.T.D.; Collins, A.S.; Belousova, E.A. High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia. J. Petrol. 2011, 52, 931–958. [Google Scholar] [CrossRef] [Green Version]
- Wade, B.P.; Kelsey, D.E.; Hand, M.; Barovich, K.M. The Musgrave Province: Stitching north, west and south Australia. Precambrian Res. 2008, 166, 370–386. [Google Scholar] [CrossRef]
- Smits, R.G.; Collins, W.J.; Hand, M.; Dutch, R.; Payne, J. A Proterozoic Wilson cycle identified by Hf isotopes in central Australia: Implications for the assembly of Proterozoic Australia and Rodinia. Geology 2014, 42, 231–234. [Google Scholar] [CrossRef]
- Howard, H.M.; Smithies, R.H.; Kirkland, C.L.; Kelsey, D.E.; Aitken, A.; Wingate, M.T.D.; Quentin de Gromard, R.; Spaggiari, C.V.; Maier, W.D. The burning heart—The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia. Gondwana Res. 2015, 27, 64–94. [Google Scholar] [CrossRef]
- Korsch, R.J.; Huston, D.L.; Henderson, R.A.; Blewett, R.S.; Withnall, I.W.; Fergusson, C.L.; Collins, W.J.; Saygin, E.; Kositcin, N.; Meixner, A.J.; et al. Crustal architecture and geodynamics of North Queensland, Australia: Insights from deep seismic reflection profiling. Tectonophysics 2012, 572–573, 76–99. [Google Scholar] [CrossRef] [Green Version]
- Fergusson, C.L.; Henderson, R.A.; Fanning, C.M.; Withnall, I.W. Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia: Implications for the tectonic history of the East Gondwana continental margin. J. Geol. Soc. 2007, 164, 215–225. [Google Scholar] [CrossRef]
- Wysoczanski, R.J.; Allibone, A.H. Age, Correlation, and Provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville Age Detritus on the Margin of East Antarctica. J. Geol. 2004, 112, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Page, R.W.; Conor, C.H.H.; Stevens, B.P.J.; Gibson, G.M.; Preiss, W.V.; Southgate, P.N. Correlation of Olary and Broken Hill Domains, Curnamona Province: Possible Relationship to Mount Isa and Other North Australian Pb-Zn-Ag-Bearing Successions. Econ. Geol. 2005, 100, 663–676. [Google Scholar] [CrossRef]
- Conor, C.H.H.; Preiss, W.V. Understanding the 1720–1640Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, Southeastern Australia: Implications for tectonics, basin evolution and ore genesis. Precambrian Res. 2008, 166, 297–317. [Google Scholar] [CrossRef]
- Payne, J.L.; Barovich, K.M.; Hand, M. Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions. Precambrian Res. 2006, 148, 275–291. [Google Scholar] [CrossRef]
- Barovich, K.M.; Hand, M. Tectonic setting and provenance of the Paleoproterozoic Willyama Supergroup, Curnamona Province, Australia: Geochemical and Nd isotopic constraints on contrasting source terrain components. Precambrian Res. 2008, 166, 318–337. [Google Scholar] [CrossRef]
- McAvaney, S. The Cooyerdoo Granite: Paleo- and Mesoarchean basement of the Gawler Craton. MESA J. 2012, 65, 31–40. [Google Scholar]
- Close, D.F. Chapter 21: Musgrave Province. In Geology and Mineral Resources of the Northern Territory; Special Publication 5; Ahmad, M., Munson, T.J., Eds.; Northern Territory Geological Survey: Darwin, Australia, 2013. [Google Scholar]
- Hand, M.; Reid, A.; Jagodzinski, L. Tectonic Framework and Evolution of the Gawler Craton, Southern Australia. Econ. Geol. 2007, 102, 1377–1395. [Google Scholar] [CrossRef]
- Morrissey, L.J.; Barovich, K.M.; Hand, M.; Howard, K.E.; Payne, J.L. Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna (Columbia). Geosci. Front. 2019, 10, 175–194. [Google Scholar] [CrossRef]
- Payne, J.L.; Ferris, G.; Barovich, K.M.; Hand, M. Pitfalls of classifying ancient magmatic suites with tectonic discrimination diagrams: An example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precambrian Res. 2010, 177, 227–240. [Google Scholar] [CrossRef]
- Walter, M.R.; Veevers, J.J.; Calver, C.R.; Grey, K. Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Res. 1995, 73, 173–195. [Google Scholar] [CrossRef]
- Munson, T.J.; Kruse, P.D.; Ahmad, M. Chapter 22: Centralian Superbasin. In Geology and Mineral Resources of the Northern Territory; Special Publication 5; Ahmad, M., Munson, T.J., Eds.; Northern Territory Geological Survey: Darwin, Australia, 2013. [Google Scholar]
- Normington, V.J.; Donnellan, N.C. Characterisation of the Neoproterozoic Succession of the Northeastern Amadeus Basin, Northern Territory; Record 2020-010; Northern Territory Geological Survey: Darwin, Australia, 2020. [Google Scholar]
- Haines, P.W.; Allen, H.J. Geological Reconnaissance of the Southern Murraba Basin, Western Australia: Revised Stratigraphic Position within the Centralian Superbasin and Hydrocarbon Potential; Record 2017/4; Geological Survey of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Normington, V.J.; Edgoose, C.J. Neoproterozoic stratigraphic revisions to key drillholes in the Amadeus Basin—implications for basin palaeogeography and petroleum and minerals potential. In Proceedings of the AGES 2018, Alice Springs, Australia, 20–21 March 2018. [Google Scholar]
- Maidment, D.W.; Williams, I.S.; Hand, M. Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Res. 2007, 19, 335–360. [Google Scholar] [CrossRef]
- Al-Kiyumi, M. Constraining the Age and Provenance of the Basal Quartzites of the Centralian Superbasin. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2018. [Google Scholar]
- Fernandes, C.M.; Duffles Teixeira, P.A.; Mendes, J.C. Constraining crystallization conditions during the Cambro-Ordovician post-collisional magmatism at Araçuaí belt (SE Brazil): Zircon as key petrologic witness. J. S. Am. Earth. Sci. 2021, 108, 103235. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Cheadle, M.J.; Mazdab, F.K.; Wooden, J.L.; Swapp, S.; Schwartz, J.J. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Mineral. Petrol. 2009, 158, 757–783. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol. 2015, 170, 46. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Kemp, A.I.S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol. 2006, 226, 144–162. [Google Scholar] [CrossRef]
- Campbell, M.J.; Rosenbaum, G.; Allen, C.M.; Spandler, C. Continental crustal growth processes revealed by detrital zircon petrochronology: Insights from Zealandia. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019075. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Collins, A.S.; Reddy, S.M.; Buchan, C.; Mruma, A. Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania). Earth Planet. Sci. Lett. 2004, 224, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Anenburg, M.; Williams, M.J. Quantifying the Tetrad Effect, Shape Components, and Ce–Eu–Gd Anomalies in Rare Earth Element Patterns. Math. Geosci. 2021, 54, 47–70. [Google Scholar] [CrossRef]
- Li, Z.-X.; Powell, C.M. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci. Rev. 2001, 53, 237–277. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, G.; Liu, Q.; Han, Y.; Yao, J.; Li, J. Zircons from the Tarim basement provide insights into its positions in Columbia and Rodinia supercontinents. Precambrian Res. 2020, 341, 105621. [Google Scholar] [CrossRef]
- Cawood, P.A.; Wang, W.; Zhao, T.; Xu, Y.; Mulder, J.A.; Pisarevsky, S.A.; Zhang, L.; Gan, C.; He, H.; Liu, H.; et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Sci. Rev. 2020, 204, 103169. [Google Scholar] [CrossRef]
- Cawood, P.A.; Zhao, G.; Yao, J.; Wang, W.; Xu, Y.; Wang, Y. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Sci. Rev. 2018, 186, 173–194. [Google Scholar] [CrossRef] [Green Version]
- Hui, B.; Dong, Y.; Zhang, F.; Sun, S.; He, S. Neoproterozoic active margin in the northwestern Yangtze Block, South China: New clues from detrital zircon U–Pb geochronology and geochemistry of sedimentary rocks from the Hengdan Group. Geol. Mag. 2021, 158, 842–858. [Google Scholar] [CrossRef]
- Wu, G.; Yang, S.; Liu, W.; Nance, R.D.; Chen, X.; Wang, Z.; Xiao, Y. Switching from advancing to retreating subduction in the Neoproterozoic Tarim Craton, NW China: Implications for Rodinia breakup. Geosci. Front. 2021, 12, 161–171. [Google Scholar] [CrossRef]
- Merdith, A.S.; Collins, A.S.; Williams, S.E.; Pisarevsky, S.A.; Foden, J.D.; Archibald, D.B.; Blades, M.L.; Alessio, B.L.; Armistead, S.E.; Plavsa, D.; et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 2017, 50, 84–134. [Google Scholar] [CrossRef]
- Park, Y.; Swanson-Hysell, N.L.; Xian, H.; Zhang, S.; Condon, D.J.; Fu, H.; Macdonald, F.A. A Consistently High-Latitude South China From 820 to 780 Ma: Implications for Exclusion from Rodinia and the Feasibility of Large-Scale True Polar Wander. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021541. [Google Scholar] [CrossRef]
- Cawood, P.A.; Wang, Y.; Xu, Y.; Zhao, G. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 2013, 41, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Korsch, R.J.; Kositcin, N. South Australian Seismic and MT Workshop 2010; Record 2010/10; Geoscience Australia: Canberra, Australian, 2010. [Google Scholar]
- Keranen, K.; Klemperer, S.L. Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts. Earth Planet. Sci. Lett. 2008, 265, 96–111. [Google Scholar] [CrossRef]
- Corti, G. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth-Sci. Rev. 2009, 96, 1–53. [Google Scholar] [CrossRef]
- Williams, F.M. Understanding Ethiopia: Geology and Scenery, 1st ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Purcell, P.G. Re-imagining and re-imaging the development of the East African Rift. Pet. Geosci. 2018, 24, 21–40. [Google Scholar] [CrossRef]
- Varet, J. Geology of Afar (East Africa), 1st ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zwaan, F.; Corti, G.; Keir, D.; Sani, F. A review of tectonic models for the rifted margin of Afar: Implications for continental break-up and passive margin formation. J. Afr. Earth Sci. 2020, 164, 103649. [Google Scholar] [CrossRef]
- Boone, S.C.; Balestrieri, M.-L.; Kohn, B. Tectono-Thermal Evolution of the Red Sea Rift. Front. Earth Sci. 2021, 9, 588. [Google Scholar] [CrossRef]
- Stein, S.; Stein, C.A.; Elling, R.; Kley, J.; Keller, G.R.; Wysession, M.; Rooney, T.; Frederiksen, A.; Moucha, R. Insights from North America’s failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics 2018, 744, 403–421. [Google Scholar] [CrossRef]
- Allen, D.J.; Braile, L.W.; Hinze, W.J.; Mariano, J. Chapter 10 The midcontinent rift system, U.S.A.: A major proterozoic continental rift. In Developments in Geotectonics; Olsen, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 25, pp. 375–407, XVI–XIX. [Google Scholar]
- Meaney, K.J. Proterozoic crustal growth in the southeastern Gawler Craton: The development of the Barossa Complex, and an assessment of the detrital zircon method. Doctoral Thesis, University of Adelaide, Adelaide, South Australia, 2017. [Google Scholar]
- Morrissey, L.J.; Hand, M.; Wade, B.P.; Szpunar, M.A. Early Mesoproterozoic metamorphism in the Barossa Complex, South Australia: Links with the eastern margin of Proterozoic Australia. Aust. J. Earth Sci. 2013, 60, 769–795. [Google Scholar] [CrossRef]
- Nordsvan, A.R.; Collins, W.J.; Li, Z.-X.; Spencer, C.J.; Pourteau, A.; Withnall, I.W.; Betts, P.G.; Volante, S. Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna. Geology 2018, 46, 251–254. [Google Scholar] [CrossRef]
- Rutherford, L.; Hand, M.; Barovich, K. Timing of Proterozoic metamorphism in the southern Curnamona Province: Implications for tectonic models and continental reconstructions. Aust. J. Earth Sci. 2007, 54, 65–81. [Google Scholar] [CrossRef]
- Tiddy, C.J.; Giles, D. Suprasubduction zone model for metal endowment at 1.60–1.57 Ga in eastern Australia. Ore Geol. Rev. 2020, 122, 103483. [Google Scholar] [CrossRef]
- Volante, S.; Pourteau, A.; Collins, W.J.; Blereau, E.; Li, Z.X.; Smit, M.; Evans, N.J.; Nordsvan, A.R.; Spencer, C.J.; McDonald, B.J.; et al. Multiple P–T–d–t paths reveal the evolution of the final Nuna assembly in northeast Australia. J. Metamorph. Geol. 2020, 38, 593–627. [Google Scholar] [CrossRef]
- Hill, R.I.; Campbell, I.H.; Davies, G.F.; Griffiths, R.W. Mantle Plumes and Continental Tectonics. Science 1992, 256, 186. [Google Scholar] [CrossRef] [PubMed]
- Armit, R.J.; Betts, P.G.; Schaefer, B.F.; Ailleres, L. Constraints on long-lived Mesoproterozoic and Palaeozoic deformational events and crustal architecture in the northern Mount Painter Province, Australia. Gondwana Res. 2012, 22, 207–226. [Google Scholar] [CrossRef]
- Paul, E.; Flöttmann, T.; Sandiford, M. Structural geometry and controls on basement-involved deformation in the northern Flinders Ranges, Adelaide Fold Belt, South Australia. Aust. J. Earth Sci. 1999, 46, 343–354. [Google Scholar] [CrossRef]
- Barovich, K.M.; Foden, J. A Neoproterozoic flood basalt province in southern-central Australia: Geochemical and Nd isotope evidence from basin fill. Precambrian Res. 2000, 100, 213–234. [Google Scholar] [CrossRef]
- Fanning, C.M.; Ludwig, K.R.; Forbes, B.G.; Preiss, W.V. Single and multiple grain U–Pb zircon analyses for the early Adelaidean Rook Tuff, Willouran Ranges, South Australia. In Eighth Australian Geological Convention: “Earth Resources in Space and Time”; Abstracts 10; Geological Society of Australia: Sydney, Australia, 1986; pp. 71–72. [Google Scholar]
- Armistead, S.E.; Collins, A.S.; Buckman, S.; Atkins, R. Age and geochemistry of the Boucaut Volcanics in the Neoproterozoic Adelaide Rift Complex, South Australia. Aust. J. Earth Sci. 2020, 68, 580–589. [Google Scholar] [CrossRef]
- Preiss, W.V.; Drexel, J.F.; Reid, A.J. Definition and age of the Kooringa Member of the Skillogalee Dolomite: Host for Neoproterozoic (c. 790 Ma) porphyry related copper mineralisation at Burra. MESA J. 2009, 55, 19–33. [Google Scholar]
- Von der Borch, C.C. Evolution of late proterozoic to early paleozoic Adelaide foldbelt, Australia: Comparisons with postpermian rifts and passive margins. Tectonophysics 1980, 70, 115–134. [Google Scholar] [CrossRef]
- Zhao, J.-x.; McCulloch, M.T.; Korsch, R.J. Characterisation of a plume-related~800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet. Sci. Lett. 1994, 121, 349–367. [Google Scholar] [CrossRef]
- McKenzie, D.P.; Davies, D.; Molnar, P. Plate Tectonics of the Red Sea and East Africa. Nature 1970, 226, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Harding, D.J.; Kusky, T.M. Early continental breakup boundary and migration of the Afar triple junction, Ethiopia. GSA Bull. 2003, 115, 1053–1067. [Google Scholar] [CrossRef]
- Barberi, F.; Tazieff, H.; Varet, J. Volcanism in the Afar depression: Its tectonic and magmatic significance. Tectonophysics 1972, 15, 19–29. [Google Scholar] [CrossRef]
- Lloyd, J.; Collins, A.; Blades, M.; Gilbert, S.; Amos, K. LA-ICP-MS detrital zircon standards results. Figshare 2022. [Google Scholar] [CrossRef]
- Lloyd, J.; Collins, A.; Blades, M.; Amos, K.; Gilbert, S. Callanna Group detrital zircon dataset (Lloyd et al.). Figshare 2022. [Google Scholar] [CrossRef]
- Kuhn, B.K.; Birbaum, K.; Luo, Y.; Günther, D. Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology. J. Anal. At. Spectrom. 2010, 25, 21–27. [Google Scholar] [CrossRef]
- Thompson, J.M.; Meffre, S.; Danyushevsky, L. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by LA-ICPMS. J. Anal. At. Spectrom. 2018, 33, 221–230. [Google Scholar] [CrossRef]
- Allen, C.M.; Campbell, I.H. Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chem. Geol. 2012, 332–333, 157–165. [Google Scholar] [CrossRef]
- Miliszkiewicz, N.; Walas, S.; Tobiasz, A. Current approaches to calibration of LA-ICP-MS analysis. J. Anal. At. Spectrom. 2015, 30, 327–338. [Google Scholar] [CrossRef]
- Marillo-Sialer, E.; Woodhead, J.; Hergt, J.; Greig, A.; Guillong, M.; Gleadow, A.; Evans, N.; Paton, C. The zircon ‘matrix effect’: Evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS. J. Anal. At. Spectrom. 2014, 29, 981–989. [Google Scholar] [CrossRef]
- Košler, J.; Wiedenbeck, M.; Wirth, R.; Hovorka, J.; Sylvester, P.; Míková, J. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon—Implications for elemental fractionation during ICP-MS analysis. J. Anal. At. Spectrom. 2005, 20, 402–409. [Google Scholar] [CrossRef]
- Schaltegger, U.; Schmitt, A.K.; Horstwood, M.S.A. U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chem. Geol. 2015, 402, 89–110. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Ver Hoeve, T.J.; Scoates, J.S.; Wall, C.J.; Weis, D.; Amini, M. Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology. Chem. Geol. 2018, 483, 201–217. [Google Scholar] [CrossRef]
- Souders, A.K.; Sylvester, P.J. Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J. Anal. At. Spectrom. 2010, 25, 975–988. [Google Scholar] [CrossRef]
- Guillong, M.; Wotzlaw, J.-F.; Looser, N.; Laurent, O. Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: Matrix issues and a potential calcite validation reference material. Geochronology 2020, 2, 155–167. [Google Scholar] [CrossRef]
- Halpin, J.A.; Jensen, T.; McGoldrick, P.; Meffre, S.; Berry, R.F.; Everard, J.L.; Calver, C.R.; Thompson, J.; Goemann, K.; Whittaker, J.M. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell Supergroup, North America. Precambrian Res. 2014, 250, 50–67. [Google Scholar] [CrossRef]
- Large, R.R.; Meffre, S.; Burnett, R.; Guy, B.; Bull, S.; Gilbert, S.E.; Goemann, K.; Danyushevsky, L.V. Evidence for an Intrabasinal Source and Multiple Concentration Processes in the Formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ. Geol. 2013, 108. [Google Scholar] [CrossRef]
- Standish, C.; Dhuime, B.; Chapman, R.; Coath, C.; Hawkesworth, C.; Pike, A. Solution and laser ablation MC-ICP-MS lead isotope analysis of gold. J. Anal. At. Spectrom. 2013, 28, 217–225. [Google Scholar] [CrossRef]
- Schaltegger, U.; Ovtcharova, M.; Gaynor, S.P.; Schoene, B.; Wotzlaw, J.-F.; Davies, J.F.H.L.; Farina, F.; Greber, N.D.; Szymanowski, D.; Chelle-Michou, C. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology. J. Anal. At. Spectrom. 2021. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lloyd, J.C.; Collins, A.S.; Blades, M.L.; Gilbert, S.E.; Amos, K.J. Early Evolution of the Adelaide Superbasin. Geosciences 2022, 12, 154. https://doi.org/10.3390/geosciences12040154
Lloyd JC, Collins AS, Blades ML, Gilbert SE, Amos KJ. Early Evolution of the Adelaide Superbasin. Geosciences. 2022; 12(4):154. https://doi.org/10.3390/geosciences12040154
Chicago/Turabian StyleLloyd, Jarred C., Alan S. Collins, Morgan L. Blades, Sarah E. Gilbert, and Kathryn J. Amos. 2022. "Early Evolution of the Adelaide Superbasin" Geosciences 12, no. 4: 154. https://doi.org/10.3390/geosciences12040154
APA StyleLloyd, J. C., Collins, A. S., Blades, M. L., Gilbert, S. E., & Amos, K. J. (2022). Early Evolution of the Adelaide Superbasin. Geosciences, 12(4), 154. https://doi.org/10.3390/geosciences12040154