Late Cretaceous through Cenozoic Paleoenvironmental History of the Bagua Basin, Peru: Paleoelevation Comparisons with the Central Andean Plateau
Abstract
:1. Introduction
2. Background
2.1. Geological Setting
2.2. Climate and Ecology
2.3. Basin Evolution and Stratigraphy
Paleosols in the Bagua Basin
3. Materials and Methods
4. Results
4.1. Modern δ18O and δ13C
4.2. Fundo El Triunfo and Sambimera Formations δ18O and δ13C
5. Interpretation
5.1. Modern δ18O and δ13C
5.2. Fundo El Triunfo and Sambimera Formations δ18O and δ13C
6. Discussion: Paleogeography of the Northernmost Central Andes
7. Potential Drivers of the Contrasting Elevation Histories of the Northernmost Central Andes and the Central Andean Plateau
7.1. Shortening Estimates
7.2. Overriding Plate Velocity
7.3. Subduction Angle: Slab Dip
7.4. Precipitation Regimes
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos, V.A.; Folguera, A. Andean flat-slab subduction through time. Geol. Soc. Lond. Spec. Publ. 2009, 327, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Casas, F.; Molnar, P. Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics 1987, 6, 233–248. [Google Scholar] [CrossRef]
- Haschke, M.R.; Scheuber, E.; Gunther, A.; Reutter, K.-J. Evolutionary cycles during the Andean orogeny: Repeated slab breakoff and flat subduction? Terra Nova 2002, 14, 49–55. [Google Scholar] [CrossRef]
- Strecker, M.; Alonso, R.; Bookhagen, B.; Carrapa, B.; Hilley, G.; Sobel, E.; Trauth, M. Tectonics and Climate of the Southern Central Andes. Annu. Rev. Earth Planet. Sci. 2007, 35, 747–787. [Google Scholar] [CrossRef] [Green Version]
- Garzione, C.N.; McQuarrie, N.; Perez, N.D.; Ehlers, T.A.; Beck, S.L.; Kar, N.; Eichelberger, N.; Chapman, A.D.; Ward, K.M.; Ducea, M.N.; et al. Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus. Annu. Rev. Earth Planet. Sci. 2017, 45, 529–559. [Google Scholar] [CrossRef]
- Sundell, K.E.; Saylor, J.; Lapen, T.J.; Horton, B.K. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 2019, 9, 4877. [Google Scholar] [CrossRef] [Green Version]
- Eude, A.; Roddaz, M.; Brichau, S.; Brusset, S.; Calderon, Y.; Baby, P.; Soula, J.-C. Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section. Tectonics 2015, 34, 715–730. [Google Scholar] [CrossRef]
- Scherrenberg, A.F.; Kohn, B.P.; Holcombe, R.J.; Rosenbaum, G. Thermotectonic history of the Marañón Fold–Thrust Belt, Peru: Insights into mineralisation in an evolving orogen. Tectonophysics 2016, 667, 16–36. [Google Scholar] [CrossRef]
- McQuarrie, N.; Barnes, J.; Ehlers, T.A. Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17° S). Tectonics 2008, 27, 0278–7407. [Google Scholar] [CrossRef]
- McQuarrie, N.; Horton, B.K.; Zandt, G.; Beck, S.; DeCelles, P.G. Lithospheric evolution of the Andean fold–thrust belt, Bolivia, and the origin of the central Andean plateau. Tectonophysics 2005, 399, 15–37. [Google Scholar] [CrossRef]
- George, S.W.; Horton, B.K.; Jackson, L.J.; Moreno, F.; Carlotto, V.; Garzione, C.N. Sediment provenance variations during contrasting Mesozoic-early Cenozoic tectonic regimes of the northern Peruvian Andes and Santiago-Marañón foreland basin. In Andean Tectonics; Horton, B.K., Folguera, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 269–296. [Google Scholar] [CrossRef]
- Horton, B. Sedimentary record of Andean mountain building. Earth-Sci. Rev. 2018, 178, 279–309. [Google Scholar] [CrossRef]
- Mégard, F. The Andean orogenic period and its major structures in central and northern Peru. J. Geol. Soc. 1984, 141, 893–900. [Google Scholar] [CrossRef]
- Arriagada, C.; Cobbold, P.R.; Roperch, P. Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid-Cretaceous. Tectonics 2006, 25, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Mpodozis, C.; Arriagada, C.; Basso, M.; Roperch, P.; Cobbold, P.; Reich, M. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes. Tectonophysics 2005, 399, 125–154. [Google Scholar] [CrossRef]
- Díaz, G.C. Contribution to the knowledge of the Domeyko Range in the Andes of Northern Chile. Geol. Rundsch. 1977, 66, 374–404. [Google Scholar] [CrossRef]
- Haschke, M.; Günther, A. Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 2003, 31, 933–936. [Google Scholar] [CrossRef]
- Scheuber, E.; Reutter, K.-J. Magmatic arc tectonics in the Central Andes between 21° and 25° S. Tectonophysics 1992, 205, 127–140. [Google Scholar] [CrossRef]
- Sundell, K.E.; George, S.W.; Carrapa, B.; Gehrels, G.E.; Ducea, M.N.; Saylor, J.E.; Pepper, M. Crustal Thickening of the Northern Central Andean Plateau Inferred from Trace Elements in Zircon. Geophys. Res. Lett. 2022, 49, e2021GL096443. [Google Scholar] [CrossRef]
- Coutand, I.; Cobbold, P.R.; De Urreiztieta, M.; Gautier, P.; Chauvin, A.; Gapais, D.; Rossello, E.A.; López-Gamundí, O. Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics 2001, 20, 210–234. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Horton, B.K. Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. GSA Bull. 2003, 115, 58–77. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Carrapa, B.; Horton, B.K.; E Gehrels, G. Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics 2011, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Gillis, R.J.; Horton, B.K.; Grove, M. Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: Implications for Cenozoic exhumation of the central Andean plateau. Tectonics 2006, 25. [Google Scholar] [CrossRef]
- Hermoza, W.; Brusset, S.; Baby, P.; Gil, W.; Roddaz, M.; Guerrero, N.; Bolaños, R. The Huallaga foreland basin evolution: Thrust propagation in a deltaic environment, northern Peruvian Andes. J. S. Am. Earth Sci. 2005, 19, 21–34. [Google Scholar] [CrossRef]
- Moreno, F.; Garzione, C.N.; George, S.W.M.; Horton, B.K.; Williams, L.; Jackson, L.J.; Carlotto, V.; Richter, F.; Bandeian, A. Coupled Andean Growth and Foreland Basin Evolution, Campanian–Cenozoic Bagua Basin, Northern Peru. Tectonics 2020, 39, e2019TC005967. [Google Scholar] [CrossRef]
- Echavarria, L.; Hernández, R.; Allmendinger, R.W.; Reynolds, J. Subandean thrust and fold belt of northwestern Argentina: Geometry and timing of the Andean evolution. AAPG Bull. 2003, 87, 965–985. [Google Scholar] [CrossRef]
- Uba, C.E.; Kley, J.; Strecker, M.R.; Schmitt, A. Unsteady evolution of the Bolivian Subandean thrust belt: The role of enhanced erosion and clastic wedge progradation. Earth Planet. Sci. Lett. 2009, 281, 134–146. [Google Scholar] [CrossRef]
- Lease, R.O.; Ehlers, T.A.; Enkelmann, E. Large along-strike variations in the onset of Subandean exhumation: Implications for Central Andean orogenic growth. Earth Planet. Sci. Lett. 2016, 451, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Calderon, Y.; Baby, P.; Hurtado, C.; Brusset, S. Thrust tectonics in the Andean retro-foreland basin of northern Peru: Permian inheritances and petroleum implications. Mar. Pet. Geol. 2017, 82, 238–250. [Google Scholar] [CrossRef]
- Saylor, J.; Horton, B.K. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 2014, 387, 120–131. [Google Scholar] [CrossRef]
- Leier, A.; McQuarrie, N.; Garzione, C.; Eiler, J. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth Planet. Sci. Lett. 2013, 371–372, 49–58. [Google Scholar] [CrossRef]
- Garzione, C.N.; Auerbach, D.J.; Smith, J.J.-S.; Rosario, J.J.; Passey, B.; Jordan, T.; Eiler, J.M. Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes. Earth Planet. Sci. Lett. 2014, 393, 173–181. [Google Scholar] [CrossRef]
- Bershaw, J.; Garzione, C.N.; Higgins, P.; MacFadden, B.J.; Anaya, F.; Alvarenga, H. Spatial–temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet. Sci. Lett. 2010, 289, 530–538. [Google Scholar] [CrossRef]
- Garzione, C.N.; Molnar, P.; Libarkin, J.C.; MacFadden, B.J. Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett. 2006, 241, 543–556. [Google Scholar] [CrossRef]
- Ghosh, P.; Garzione, C.N.; Eiler, J.M. Rapid Uplift of the Altiplano Revealed Through 13C-18O Bonds in Paleosol Carbonates. Science 2006, 311, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Kar, N.; Garzione, C.N.; Jaramillo, C.; Shanahan, T.; Carlotto, V.; Pullen, A.; Moreno, F.; Anderson, V.; Moreno, E.; Eiler, J. Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth Planet. Sci. Lett. 2016, 447, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.; Gregory-Wodzicki, K.M.; Wright, K.L. Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: Implications for the uplift history of the Central Andes. Am. J. Bot. 2001, 88, 1545–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hergarten, S.; Robl, J.; Stüwe, K. Extracting topographic swath profiles across curved geomorphic features. Earth Surf. Dyn. 2014, 2, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R.; Balco, G.; Willett, S.D. Climate, tectonics, and the morphology of the Andes. Geology 2001, 29, 579–582. [Google Scholar] [CrossRef]
- Pfiffner, A.; Gonzalez, L. Mesozoic–Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences 2013, 3, 262–310. [Google Scholar] [CrossRef]
- Noble, D.C.; McKee, E.H.; Mourier, T.; Mégard, F. Cenozoic stratigraphy, magmatic activity, compressive deformation, and uplift in northern Peru. Geol. Soc. Am. Bull. 1990, 102, 1105–1113. [Google Scholar] [CrossRef]
- Bookhagen, B.; Strecker, M.R. Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Weather Spark. Available online: https://weatherspark.com/ (accessed on 13 April 2022).
- Climate Data Climate Data for Cities Worldwide—Climate-Data.Org. Available online: https://en.climate-data.org/ (accessed on 13 April 2022).
- Särkinen, T.; Iganci, J.R.; Linares-Palomino, R.; Simon, M.F.; E Prado, D. Forgotten forests—Issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecol. 2011, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A New Global Map of Terrestrial Ecoregions Provides an Innovative Tool for Conserving Biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Eva, H.D.; Belward, A.S.; De Miranda, E.E.; Di Bella, C.M.; Gond, V.; Huber, O.; Jones, S.; Sgrenzaroli, M.; Fritz, S. A land cover map of South America. Glob. Chang. Biol. 2004, 10, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Bershaw, J.; Saylor, J.; Garzione, C.N.; Leier, A.; Sundell, K.E. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau. Geochim. Cosmochim. Acta 2016, 194, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Vuille, M.; Bradley, R.S.; Werner, M.; Healy, R.; Keimig, F. Modeling δ 18 O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J. Geophys. Res. Earth Surf. 2003, 108, D6. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. Clim. Chang. Cont. Isot. Rec. 2013, 78, 1–36. [Google Scholar] [CrossRef]
- NInsel, N.; Poulsen, C.; Ehlers, T.A.; Sturm, C. Response of meteoric δ18O to surface uplift — Implications for Cenozoic Andean Plateau growth. Earth Planet. Sci. Lett. 2012, 317–318, 262–272. [Google Scholar] [CrossRef]
- Lenters, J.; Cook, K.H. On the Origin of the Bolivian High and Related Circulation Features of the South American Climate. J. Atmos. Sci. 1997, 54, 656–678. [Google Scholar] [CrossRef]
- Insel, N.; Poulsen, C.J.; Ehlers, T.A. Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim. Dyn. 2009, 35, 1477–1492. [Google Scholar] [CrossRef]
- Ampuero, A.; Stríkis, N.M.; Apaéstegui, J.; Vuille, M.; Novello, V.F.; Espinoza, J.C.; Cruz, F.W.; Vonhof, H.; Mayta, V.C.; Martins, V.T.S.; et al. The Forest Effects on the Isotopic Composition of Rainfall in the Northwestern Amazon Basin. J. Geophys. Res. Atmos. 2020, 125, e2019JD031445. [Google Scholar] [CrossRef]
- Fiorella, R.P.; Poulsen, C.; Zolá, R.S.P.; Jeffery, M.L.; Ehlers, T.A. Modern and long-term evaporation of central Andes surface waters suggests paleo archives underestimate Neogene elevations. Earth Planet. Sci. Lett. 2015, 432, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Poage, M.A. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology 2000, 28, 115–118. [Google Scholar] [CrossRef]
- Quade, J.; Garzione, C.; Eiler, J. Paleoelevation Reconstruction using Pedogenic Carbonates. Rev. Miner. Geochem. 2007, 66, 53–87. [Google Scholar] [CrossRef]
- Garzione, C.N.; Dettman, D.L.; Horton, B.K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 212, 119–140. [Google Scholar] [CrossRef]
- Cerling, T.E.; Quade, J. Stable Carbon and Oxygen Isotopes in Soil Carbonates. Clim. Chang. Cont. Isot. Rec. 2013, 78, 217–231. [Google Scholar] [CrossRef]
- Fox, D.L.; Koch, P.L. Tertiary history of C4 biomass in the Great Plains, USA. Geology 2003, 31, 809. [Google Scholar] [CrossRef] [Green Version]
- Cerling, T.E.; Harris, J.M.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V.; Ehleringer, J.R. Global vegetation change through the Miocene/Pliocene boundary. Nature 1997, 389, 153–158. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cerling, T.E. C3 and C4 photosynthesis. In Encyclopedia of Global Environmental Change, The Earth System: Biological and Ecological Dimensions of Global Environmental Change; Wiley: Chichester, UK, 2002; Volume 2, pp. 186–190. [Google Scholar]
- Cerling, T.E.; Wang, Y.; Quade, J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 1993, 361, 344–345. [Google Scholar] [CrossRef]
- Sage, R.F. The evolution of C4 photosynthesis. New Phytol. 2004, 161, 341–370. [Google Scholar] [CrossRef]
- Sage, R.F.; Monson, R.K.; Ehleringer, J.R.; Adachi, S.; Pearcy, R.W. Some like it hot: The physiological ecology of C4 plant evolution. Oecologia 2018, 187, 941–966. [Google Scholar] [CrossRef]
- Garzione, C.N.; Hoke, G.D.; Libarkin, J.C.; Withers, S.; MacFadden, B.; Eiler, J.; Ghosh, P.; Mulch, A. Rise of the Andes. Science 2008, 320, 1304–1307. [Google Scholar] [CrossRef] [Green Version]
- Mulch, A.; Uba, C.E.; Strecker, M.R.; Schoenberg, R.; Chamberlain, C.P. Late Miocene climate variability and surface elevation in the central Andes. Earth Planet. Sci. Lett. 2010, 290, 173–182. [Google Scholar] [CrossRef]
- Kim, S.-T.; O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Bottinga, Y. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. J. Phys. Chem. 1968, 72, 800–808. [Google Scholar] [CrossRef]
- Gonfiantini, R. Environmental isotopes in lake studies. In Handbook of Environmental Isotope Geochemistry, the Terrestrial Environment; Elsevier: Amsterdam, The Netherlands, 1986; Volume 2, pp. 113–168. [Google Scholar]
- Chacaltana, C.A.; Valdivia, W.; Peña, D.F. Estudio geológico de la cuenca Santiago sectores Centro y Sur. Bol. Ser. D Estud. Reg. 2012, 30, 1607–5617. [Google Scholar]
- Hurtado, C.; Roddaz, M.; Santos, R.V.; Baby, P.; Antoine, P.-O.; Dantas, E.L. Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Res. 2018, 63, 152–168. [Google Scholar] [CrossRef]
- Krystopowicz, N.J.; A Currie, C. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet. Sci. Lett. 2013, 361, 195–207. [Google Scholar] [CrossRef]
- Bird, P. Finite element modeling of lithosphere deformation: The Zagros collision orogeny. Tectonophysics 1978, 50, 307–336. [Google Scholar] [CrossRef]
- Kay, R.; Kay, S. Delamination and delamination magmatism. Tectonophysics 1993, 219, 177–189. [Google Scholar] [CrossRef]
- Kay, S.M.; Coira, B.L. Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustalflow under the Central Andean Altiplano-Puna Plateau. In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision; The Geological Society of America: Boulder, CO, USA, 2009; Volume 204, p. 229. [Google Scholar]
- England, P.; Houseman, G. Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res. Solid Earth 1989, 94, 17561–17579. [Google Scholar] [CrossRef]
- Bird, P. Continental delamination and the Colorado Plateau. J. Geophys. Res. Earth Surf. 1979, 84, 7561–7571. [Google Scholar] [CrossRef]
- Molnar, P.; England, P.; Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 1993, 31, 357–396. [Google Scholar] [CrossRef]
- Clark, M.K.; Royden, L.H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 2000, 28, 703–706. [Google Scholar] [CrossRef]
- Harrison, T.M.; Copeland, P.; Kidd, W.S.F.; Yin, A.N. Raising Tibet. Science 1992, 255, 1663–1670. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, S.V.; Babeyko, A.Y. What drives orogeny in the Andes? Geology 2005, 33, 617–620. [Google Scholar] [CrossRef]
- Gerbault, M.; Martinod, J.; Hérail, G. Possible orogeny-parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 2005, 399, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Husson, L.; Sempere, T. Thickening the Altiplano crust by gravity-driven crustal channel flow. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Beck, S.L.; Zandt, G.; Myers, S.C.; Wallace, T.C.; Silver, P.G.; Drake, L. Crustal-thickness variations in the central Andes. Geology 1996, 24, 407–410. [Google Scholar] [CrossRef]
- Tassara, A.; Götze, H.-J.; Schmidt, S.; Hackney, R. Three-dimensional density model of the Nazca plate and the Andean continental margin. J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Kley, J. Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics 1996, 15, 763–775. [Google Scholar] [CrossRef]
- Kley, J.; Müller, J.; Tawackoli, S.; Jacobshagen, V.; Manutsoglu, E. Pre-Andean and Andean-age deformation in the Eastern Cordillera of southern Bolivia. J. S. Am. Earth Sci. 1997, 10, 1–19. [Google Scholar] [CrossRef]
- Baby, P.; Rochat, P.; Mascle, G.; Hérail, G. Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology 1997, 25, 883–886. [Google Scholar] [CrossRef]
- Roeder, D. Andean-age structure of eastern Cordillera (province of La Paz, Bolivia). Tectonics 1988, 7, 23–39. [Google Scholar] [CrossRef]
- Roeder, D.; Chamberlain, R.L. Structural Geology of Sub-Andean Fold and Thrust Belt in Northwestern Bolivia. In M 62: Petroleum Basins of South America; The American Association of Petroleum: Tulsa, OK, USA, 1995. [Google Scholar] [CrossRef]
- McQuarrie, N. The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau. Geol. Soc. Am. Bull. 2002, 114, 950–963. [Google Scholar] [CrossRef]
- Sheffels, B.M. Lower bound on the amount of crustal shortening, in the central Bolivian Andes. Geology 1990, 18, 812–815. [Google Scholar] [CrossRef]
- Anderson, R.B.; Long, S.P.; Horton, B.K.; Calle, A.Z.; Ramirez, V. Shortening and structural architecture of the Andean fold-thrust belt of southern Bolivia (21° S): Implications for kinematic development and crustal thickening of the central Andes. Geosphere 2017, 13, 538–558. [Google Scholar] [CrossRef] [Green Version]
- Gil Rodriguez, W.; Baby, P.; Ballard, J.-F. Structure et contrôle paléogéographique de la zone subandine péruvienne. C. R. L’Acad. Sci.-Ser. IIA-Earth Planet. Sci. 2001, 333, 741–748. [Google Scholar] [CrossRef]
- Aleman, A.M.; Marksteiner, R.X. Structural styles in the Santiago fold and thrust belt, Peru: A salt related orogenic belt. In Géodynamique Andine: Résumés Étendus = Andean Geodynamics: Extended Abstracts = Geodinamica Andina: Resumenes Expandidos; Orstom: Paris, France, 1993. [Google Scholar]
- Baca Alvarez, M.A. Evolución Tectónica y Sedimentológica Cenozoica de la Cuenca Bagua (Norte del Perú) y sus Implicancias Geodinámicas. Bachelor’s Thesis, Universidad Nacional San Antonio del Cusco, Cusco, Peru, 2004. [Google Scholar]
- Scherrenberg, A.F.; Holcombe, R.J.; Rosenbaum, G. The persistence and role of basin structures on the 3D architecture of the Marañón Fold-Thrust Belt, Peru. J. S. Am. Earth Sci. 2014, 51, 45–58. [Google Scholar] [CrossRef]
- Horton, B.K. Tectonic Regimes of the Central and Southern Andes: Responses to Variations in Plate Coupling During Subduction. Tectonics 2018, 37, 402–429. [Google Scholar] [CrossRef]
- Maloney, K.T.; Clarke, G.L.; Klepeis, K.A.; Quevedo, L. The Late Jurassic to present evolution of the Andean margin: Drivers and the geological record. Tectonics 2013, 32, 1049–1065. [Google Scholar] [CrossRef]
- Gutscher, M.-A.; Spakman, W.; Bijwaard, H.; Engdahl, E.R. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics 2000, 19, 814–833. [Google Scholar] [CrossRef]
- Mamani, M.; Worner, G.; Sempere, T. Geochemical variations in igneous rocks of the Central Andean orocline (13 S to 18 S): Tracing crustal thickening and magma generation through time and space. GSA Bull. 2009, 122, 162–182. [Google Scholar] [CrossRef]
- Jordan, T.E.; Isacks, B.L.; Allmendinger, R.W.; Brewer, J.A.; Ramos, V.A.; Ando, C.J. Andean tectonics related to geometry of subducted Nazca plate. GSA Bull. 1983, 94, 341–361. [Google Scholar] [CrossRef]
- Kay, S.; Godoy, E.; Kurtz, A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. GSA Bull. 2005, 117, 67. [Google Scholar] [CrossRef]
- James, D.E.; Sacks, S. Cenozoic formation of the Central Andes: A geophysical perspective. Soc. Econ. Geol. Spec. Publ. 1999, 7, 1–25. [Google Scholar]
- Sandeman, H.A.; Clark, A.H.; Farrar, E. An Integrated Tectono-Magmatic Model for the Evolution of the Southern Peruvian Andes (13–20 °S) since 55 Ma. Int. Geol. Rev. 1995, 37, 1039–1073. [Google Scholar] [CrossRef]
- Gutscher, M.-A.; Olivet, J.-L.; Aslanian, D.; Eissen, J.-P.; Maury, R. The “lost inca plateau”: Cause of flat subduction beneath peru? Earth Planet. Sci. Lett. 1999, 171, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, G.; Giles, D.; Saxon, M.; Betts, P.G.; Weinberg, R.; Duboz, C. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth Planet. Sci. Lett. 2005, 239, 18–32. [Google Scholar] [CrossRef]
- Hampel, A. The migration history of the Nazca Ridge along the Peruvian active margin: A re-evaluation. Earth Planet. Sci. Lett. 2002, 203, 665–679. [Google Scholar] [CrossRef]
- Müller, J.P.; Kley, J.; Jacobshagen, V. Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21 S). Tectonics 2002, 21, 1-1–1-24. [Google Scholar] [CrossRef]
- Willett, S.D. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res. Earth Surf. 1999, 104, 28957–28981. [Google Scholar] [CrossRef]
- McQuarrie, N.; Ehlers, T.A.; Barnes, J.B.; Meade, B. Temporal variation in climate and tectonic coupling in the central Andes. Geology 2008, 36, 999. [Google Scholar] [CrossRef]
- Davis, D.; Suppe, J.; Dahlen, F.A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. Earth Surf. 1983, 88, 1153–1172. [Google Scholar] [CrossRef]
- Dahlen, F.A. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. 1990, 18, 55–99. [Google Scholar] [CrossRef]
- Woodward, N.B. Geological applicability of critical-wedge thrust-belt models. GSA Bull. 1987, 99, 827. [Google Scholar] [CrossRef]
- Rohrmann, A.; Sachse, D.; Mulch, A.; Pingel, H.; Tofelde, S.; Alonso, R.N.; Strecker, M.R. Miocene orographic uplift forces rapid hydrological change in the southern central Andes. Sci. Rep. 2016, 6, 35678. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, C.J.; Ehlers, T.A.; Insel, N. Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes. Science 2010, 328, 490–493. [Google Scholar] [CrossRef] [PubMed]
Location | ID | Latitude | Longitude | Elevation | δDmw‰ (VSMOW) | δ18Omw‰ (VSMOW) |
---|---|---|---|---|---|---|
Eastern Cordillera | 14BB01w | −5.2945 | −78.3909 | 708 | −42.8 | −7.0 |
14BB02w | −5.2956 | −78.3807 | 677 | −41.3 | −6.9 | |
14BB03w | −5.2956 | −78.3807 | 677 | −44.9 | −7.3 | |
14BB04w | −5.2905 | −78.3840 | 727 | −38.8 | −6.8 | |
14BB05w | −5.3045 | −78.4278 | 338 | −40.6 | −6.8 | |
14BB06w | −5.3628 | −78.4513 | 345 | −39.7 | −6.7 | |
14BB07w | −5.4028 | −78.4486 | 358 | −40.1 | −6.2 | |
14BB09w | −5.4279 | −78.4550 | 341 | −44.4 | −7.0 | |
16BG60w | −5.2990 | −78.4247 | 375 | −39.9 | −6.1 | |
16BG61w | −5.2836 | −78.3865 | 795 | −39.3 | −6.4 | |
16BG64w | −5.3931 | −78.4496 | 354 | −37.0 | −6.6 | |
FM1601 | −4.7467 | −78.1237 | 253 | −33.1 | −5.9 | |
FM1602 | −4.9802 | −78.2273 | 441 | −18.5 | −4.0 | |
FM1603 | −4.6114 | −77.7141 | 211 | −29.0 | −4.9 | |
FM1604 | −5.2406 | −78.3611 | 368 | −33.5 | −5.7 | |
FM1605 | −5.2808 | −78.3761 | 840 | −38.6 | −6.6 | |
14BB08w 1 | −5.4078 | −78.4531 | 335 | −72.9 | −10.4 | |
Bagua Basin | 14BB10w | −5.4690 | −78.5119 | 398 | −54.5 | −8.5 |
14BB11w | −5.5604 | −78.6861 | 441 | −49.0 | −7.4 | |
16BG42w | −5.7253 | −78.3147 | 855 | −49.8 | −7.7 | |
16BG43w | −5.7253 | −78.3147 | 855 | −46.5 | −7.1 | |
16BG45w | −5.7207 | −78.2739 | 1012 | −54.6 | −8.2 | |
16BG46w | −5.7277 | −78.3451 | 697 | −50.1 | −8.2 | |
16BG49w | −5.6041 | −78.4208 | 998 | −48.8 | −7.3 | |
16BG50w | −5.6030 | −78.3987 | 1500 | −52.6 | −8.0 | |
16BG52w | −5.6071 | −78.4422 | 767 | −45.5 | −7.2 | |
16BG59w | −5.7777 | −78.3934 | 471 | −44.8 | −6.2 | |
16BG67w 2 | −5.6363 | −78.5298 | 434 | 9.0 | −1.1 | |
Western Cordillera | 14BB12w | −5.8870 | −78.8277 | 565 | −61.6 | −8.9 |
14BB13w | −6.0102 | −78.8586 | 659 | −60.0 | −8.8 | |
14BB14w | −6.0205 | −79.0055 | 811 | −59.8 | −9.0 | |
14BB15w | −6.0066 | −79.1643 | 934 | −59.5 | −9.0 | |
14BB16w | −5.9517 | −79.2310 | 1007 | −64.1 | −9.4 | |
14BB17w | −5.8000 | −79.3739 | 1194 | −65.9 | −9.7 | |
14BB18w | −5.7867 | −79.4279 | 1302 | −50.4 | −7.0 |
Sample | δ13C‰ (VPDB) | δ18O‰ (VPDB) | δ18Omw‰ (VSMOW) | δ13Co‰ (VPDB) | Type |
---|---|---|---|---|---|
16BG40c | −8.4 | −5.5 | −3.2 | −23.0 | Pedogenic carbonate |
14BB52C | −8.9 | −4.2 | −1.9 | −23.5 | Snail carbonate shell |
14BB01CB | −11.1 | −4.2 | −1.9 | −25.8 | Snail carbonate shell |
Sample | δ13C‰ (VPDB) | Type |
---|---|---|
16BG10p | −30.2 | Bush |
16BG03p | −29.5 | Bush |
16BG01p | −28.3 | Bush |
16BG02p | −27.1 | Bush |
16BG11p | −26.9 | Bush |
16BG12p | −25.8 | Bush |
16BG06p | −13.8 | Grass |
16BG08p | −13.5 | Grass |
16BG14p | −12.8 | Grass |
Arithmetic mean | −23.1 | - |
Formation | Strat Meter | Sample | δ13Cpc‰ (VPDB) | δ18Opc‰ (VPDB) | δ18Omw‰ (VSMOW) | δ13Co‰ (VPDB) |
---|---|---|---|---|---|---|
Fundo El Triunfo Fm | 7 | 14FT32c | −10.8 | −6.9 | −3.6 | −24.7 |
8 | 14FT35c | −9.7 | −6.9 | −3.6 | −23.7 | |
9 | 14FT53c | −10.1 | −6.1 | −2.8 | −24.0 | |
12 | 14FT08c | −11.8 | −5.6 | −2.3 | −25.7 | |
15 | 14FT12c | −12.4 | −6.4 | −3.1 | −26.3 | |
16 | 14FT14c | −11.2 | −5.8 | −2.5 | −25.1 | |
17 | 14FT15c | −11.1 | −5.5 | −2.2 | −25.0 | |
32 | 15BB45c | −12.5 | −5.8 | −2.5 | −26.5 | |
55 | 15BB47c | −12.4 | −4.7 | −1.4 | −26.3 | |
Lower Sambimera Fm | 678 | 15BB58c | −10.2 | −8.5 | −5.3 | −24.1 |
850 | 14SM41c | −10.2 | −9.0 | −5.7 | −24.1 | |
851 | 14SM43c | −10.4 | −8.8 | −5.6 | −24.3 | |
855 | 14SM47c | −10.2 | −9.4 | −6.1 | −24.2 | |
900 | 15BB75c | −8.4 | −7.8 | −4.5 | −22.4 | |
1073 | 16BG09c | −11.4 | −8.4 | −5.1 | −25.4 | |
1075 | 16BG08c | −11.2 | −8.4 | −5.1 | −25.1 | |
1085 | 16BG10c | −10.9 | −7.7 | −4.4 | −24.8 | |
1089 | 16BG11c | −11.2 | −7.5 | −4.2 | −25.1 | |
1255 | 14SM22c | −10.5 | −8.5 | −5.2 | −24.4 | |
1275 | 16BG14c | −10.9 | −8.1 | −4.8 | −24.8 | |
1370 | 15BB71c | −12.2 | −7.1 | −3.8 | −26.2 | |
1578 | 16BG21c | −10.9 | −7.9 | −4.6 | −24.8 | |
1666 | 16BG24c | −10.8 | −7.0 | −3.7 | −24.8 | |
Upper Sambimera Fm | 1868 | 15BB01c | −11.9 | −7.7 | −4.4 | −25.8 |
1880 | 15BB06c | −9.0 | −9.3 | −6.0 | −23.0 | |
1897 | 15BB08c | −12.0 | −7.4 | −4.2 | −25.9 | |
1922 | 15BB10c | −13.0 | −7.2 | −3.9 | −27.0 | |
1947 | 15BB17c | −13.1 | −6.7 | −3.4 | −27.0 | |
2007 | 15BB16c | −11.6 | −7.8 | −4.5 | −25.6 | |
2027 | 15BB15c | −11.6 | −7.2 | −3.9 | −25.6 | |
2044 | 15BB14c | −12.3 | −8.1 | −4.8 | −26.2 | |
2050 | 15BB24c | −11.0 | −10.2 | −7.0 | −25.0 | |
2064 | 15BB28c | −11.7 | −7.3 | −4.1 | −25.7 | |
2082 | 15BB27c | −11.3 | −7.8 | −4.5 | −25.2 | |
2101 | 15BB31c | −13.9 | −6.7 | −3.4 | −27.8 | |
2140 | 15BB32c | −11.3 | −7.1 | −3.8 | −25.2 | |
2164 | 15BB37c | −10.6 | −7.2 | −3.9 | −24.6 | |
2169 | 16BG30c | −12.1 | −7.3 | −4.0 | −26.0 | |
2175 | 16BG31c | −11.0 | −8.9 | −5.6 | −25.0 | |
2235 | 16BG37C | −10.8 | −7.9 | −4.6 | −24.7 | |
2250 | 14SM20c | −11.5 | −8.2 | −4.9 | −25.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, F.; Garzione, C.N.; George, S.W.M.; Williams, L.; Richter, F.; Bandeian, A. Late Cretaceous through Cenozoic Paleoenvironmental History of the Bagua Basin, Peru: Paleoelevation Comparisons with the Central Andean Plateau. Geosciences 2022, 12, 242. https://doi.org/10.3390/geosciences12060242
Moreno F, Garzione CN, George SWM, Williams L, Richter F, Bandeian A. Late Cretaceous through Cenozoic Paleoenvironmental History of the Bagua Basin, Peru: Paleoelevation Comparisons with the Central Andean Plateau. Geosciences. 2022; 12(6):242. https://doi.org/10.3390/geosciences12060242
Chicago/Turabian StyleMoreno, Federico, Carmala N. Garzione, Sarah W. M. George, Lauren Williams, Fabiana Richter, and Alice Bandeian. 2022. "Late Cretaceous through Cenozoic Paleoenvironmental History of the Bagua Basin, Peru: Paleoelevation Comparisons with the Central Andean Plateau" Geosciences 12, no. 6: 242. https://doi.org/10.3390/geosciences12060242
APA StyleMoreno, F., Garzione, C. N., George, S. W. M., Williams, L., Richter, F., & Bandeian, A. (2022). Late Cretaceous through Cenozoic Paleoenvironmental History of the Bagua Basin, Peru: Paleoelevation Comparisons with the Central Andean Plateau. Geosciences, 12(6), 242. https://doi.org/10.3390/geosciences12060242