Application Software Developed for the Determination of Expansion Volume in Clay Soil Generated by the Detonation of an Explosive Charge
Abstract
:1. Introduction
2. Case Study
3. Development of the Application for Calculation of 2D and 3D Views
3.1. System Architecture
3.2. Functional Specification
- borehole location,
- coordinates input for separate layers of the borehole (RTK GNSS measurement method),
- coordinates calculation of characteristic points of the borehole for each layer depth-wise,
- volume calculation of the complete borehole and resulting expansion after activation of the explosive charge.
3.3. Technical Specification
3.4. User Guide
4. Use of the Application for Specific Examples in Geotechnical Practice
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gohl, W.B.; Jefferies, M.G.; Howie, J.A.; Diggle, D. Explosive Compaction: Design, Implementation and Effectiveness. Geotechnique 2000, 50, 657–665. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Dasgupta, G.; Song, D.; Qiao, L.; Wang, L.; Dong, J. Analysis of the Blasting Compaction on Gravel Soil. J. Chem. 2015, 2015, 642810. [Google Scholar] [CrossRef]
- Shakeran, M.; Eslami, A.; Ahmadpour, M. Geotechnical Aspects of Explosive Compaction. Shock. Vib. 2016, 2016, 6719271. [Google Scholar] [CrossRef] [Green Version]
- Težak, D. Influence of the Blasting Features on the Expansion in Clay Soil; University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering: Zagreb, Croatia, 2018. [Google Scholar]
- Tezak, D.; Kranjcic, N.; Mesec, J. Integration of Global Navigation Satellite System (GNSS) and Borehole Camera for Purpose of Modeling the Blasting in Clay Soil. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Albena, Bulgaria, 2–8 July2018; pp. 513–520. [Google Scholar]
- Težak, D.; Stanković, S.; Kovač, I. Dependence Models of Borehole Expansion on Explosive Charge in Spherical Cavity Blasting. Geosciences 2019, 9, 383. [Google Scholar] [CrossRef] [Green Version]
- Težak, D.; Soldo, B.; Đurin, B.; Kranjčić, N. Impact of Seasonal Changes of Precipitation and Air Temperature on Clay Excavation. Sustainability 2019, 11, 6368. [Google Scholar] [CrossRef] [Green Version]
- Frgić, L.; Hudec, M.; Krsnik, J.; Krajcer, M.; Mesec, J. Underground Grounding by Anchoring in Soil. In Proceedings of the I Yugoslavian Symposium on Tunnels, Brijuni, Crioatia, 24 November 1988; pp. 293–298. [Google Scholar]
- Hudec, M.; Krsnik, J.; Abramović, V.; Frgić, L.; Krajcer, M.; Gotić, I.; Meštrić, M.; Mesec, J.; Fingerhut, L. Supporting with Anchors in Soft Rock and Soil. In Proceedings of the International Congress on Progress and Innovation in Tunnelling, Toronto, ON, Canada, 21–25 September 1989; pp. 111–117. [Google Scholar]
- Mesec, J.; Težak, D.; Grubešić, M. The Use of Explosives for Improvement of Clay Soils. Inženjerstvo Okoliša 2015, 2, 95–101. [Google Scholar]
- Sućeska, M. Eksplozije i Eksplozivi: Njihova Mirnodopska Primjena; Brodarski institut: Zagreb, Croatia, 2001; ISBN 9536017113. [Google Scholar]
- Dobrilović, M. Raspoloživa Energija Tlačnog Udarnog Vala Udarne Cjevčice i Njezina Primjena u Iniciranju Elektroničkog Detonatora; University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering: Zagreb, Croatia, 2008. [Google Scholar]
- Dobrilović, M.; Bohanek, V.; Žganec, S. Influence of Explosive Charge Temperature on the Velocity of Detonation. Cent. Eur. J. Energetic Mater. 2014, 11, 191–197. [Google Scholar]
- Žganec, S.; Bohanek, V.; Dobrilović, M. Influence of a Primer on the Velocity of Detonation of ANFO and Heavy ANFO Blends. Cent. Eur. J. Energetic Mater. 2016, 13, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Bakr, R.M. The Impact of the Unsupported Excavation on the Boundary of the Active Zone in Medium, Stiff and Very Stiff Clay. J. Civ. Environ. Eng. 2019, 9, 1–9. [Google Scholar]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M.; Vanapalli, S.K. Swell–Shrink Behavior of Rubberised Expansive Clays During Alternate Wetting and Drying. Minerals 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Kovač, I.; Težak, D.; Mesec, J.; Markovinović, I. Comparative Analysis of Basic and Extended Power Models of Boreholes Expansion Dependence on Explosive Charge in Blasting in Clay Soil. Geosciences 2020, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Težak, D.; Kranjčić, N.; Đurin, B.; Juras, M. Integration of the GNSS Method and Borehole Camera to Model the Resulting Spherical Cavity Generated by the Main Charge Blast in Clay. Bull. Miner. Res. Explor. 2020, 163, 115–130. [Google Scholar] [CrossRef]
- Wu, H.; Pollard, D.D. Imaging 3-D Fracture Networks around Boreholes. Am. Assoc. Pet. Geol. Bull. 2002, 86, 593–604. [Google Scholar] [CrossRef]
- Schepers, R.; Rafat, G.; Gelbke, C.; Lehmann, B. Application of Borehole Logging, Core Imaging and Tomography to Geotechnical Exploration. Int. J. Rock Mech. Min. Sci. 2001, 38, 867–876. [Google Scholar] [CrossRef]
- McCarthy, J.D.; Graniero, P.A. A GIS-Based Borehole Data Management and 3D Visualization System. Comput. Geosci. 2006, 32, 1699–1708. [Google Scholar] [CrossRef]
- Ester, Z. Miniranje I: Eksplozivne Tvari, Svojstva i Metode Ispitivanja, 1st ed.; Rudarsko-Geološko-Naftni Fakultet: Zagreb, Croatia, 2005. [Google Scholar]
- Official Gazette (2004) Decision on Establishing Official Geodetic Data and Planar Projection of the Republic of Croatia, Official Journal of the Republic of Croatia, 110/2004, 114/2004 Zagreb Pribičević, B. Geodezija u Građevinarstvu; V.B.Z: Zagreb, Croatia, 2003; ISBN 9532012931. [Google Scholar]
- Pribicević, B. Geodezija u Građevinarstvu; V.B.Z: Zagreb, Croatia, 2003; ISBN 9532012931. [Google Scholar]
- Marjanović, M. CROPOS Hrvatski Pozicijski Sustav. Ekscentar 2010, 12, 28–34. [Google Scholar]
- Heavy Duty Geo Vision Borehole Camera. Available online: http://www.geovision.org/ (accessed on 15 November 2022).
- EDS-C. Available online: https://dimetix.com/En/c-Series/ (accessed on 15 November 2022).
- AutoCad Civil 3D. A.K.N. Available online: https://knowledge.autodesk.com/Support/Civil-3d?Search_type=browse&category=Getting%20started&cg=Getting%20Started&p=CIV3D&p_disp=Civil%203D&sort=score (accessed on 15 November 2022).
- Boras, D. Innovations of the University of Zagreb; University of Zagreb: Zagreb, Croatia, 2021. [Google Scholar]
- Java Platform Standard Edition 7 Documentation. Available online: http://docs.oracle.com/javase/7/docs/ (accessed on 15 November 2022).
- Hibernate ORM, D.-5.2. Available online: http://hibernate.org/orm/documentation/5.2/ (accessed on 15 November 2022).
- Prime User Interface. Available online: https://www.primefaces.org/ (accessed on 15 November 2022).
- Jaspersoft Community. Available online: https://community.jaspersoft.com/documentation?version=36816 (accessed on 15 November 2022).
- Apache TomEE. Available online: http://tomee.apache.org/documentation.html (accessed on 15 November 2022).
- Oracle Java Documentation, J.A. and A.S. (JAAS) R.G. Available online: https://docs.oracle.com/javase/8/docs/technotes/Guides/Security/Jaas/jaasrefguide.html (accessed on 15 November 2022).
- Autodesk. Available online: https://help.autodesk.com/View/OARX/2018/ENU/?Guid=GUID-235B22E0-A567-4CF6-92D3-38A2306D73F3 (accessed on 15 November 2022).
- Autodesk, D.R. Available online: https://help.autodesk.com/Cloudhelp/2018/ENU/AutoCAD-DXF/Files/Index.htm (accessed on 15 November 2022).
- MVN Repository, J. 3D U. Available online: https://mvnrepository.com/artifact/org.scijava/J3dutils (accessed on 15 November 2022).
- MVN Repository, G.R. Available online: https://mvnrepository.com/artifact/Net.Java.Dev.Gluegen/Gluegen-Rt (accessed on 15 November 2022).
- MVN Repository, J. Available online: https://mvnrepository.com/artifact/org.jogamp.jogl/jogl-all (accessed on 15 November 2022).
- MVN Repository, Y. 1.0.2. Available online: https://mvnrepository.com/artifact/ycad/ycad/1.0.2 (accessed on 15 November 2022).
- Leskovar, K.; Težak, D.; Mesec, J.; Biondić, R. Influence of Meteorological Parameters on Explosive Charge and Stemming Length Predictions in Clay Soil during Blasting Using Artificial Neural Networks. Appl. Sci. 2021, 11, 7317. [Google Scholar] [CrossRef]
Pakaex | Permonex V 19 | |
---|---|---|
density [g/cm3] | 0.87 | 0.95 |
VOD [m/s] | 2950 | 4500 |
gas volume [L/kg] | 984 | 900 |
energy [kJ/kg] | 3.7 | 4.2 |
Borehole | Borehole Coordinates | Explosive Charge | Stemming Length (Sand) | Spherical Expansions | Distinction, V | |||
---|---|---|---|---|---|---|---|---|
E [m] | N [m] | H [m] | [kg] | [m] | AutoCad Civil 3D [dm3] | Application Borehole [dm3] | [dm3] | |
MB37 | 489,059.52 | 5,122,615.00 | 197.34 | Pakaex 0.2 | 0.5 | 122.00 | 114.00 | 8.00 |
MB22 | 489,108.63 | 5,122,604.32 | 197.44 | Permonex V19 0.2 | 0.5 | 85.00 | 77.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Težak, D.; Dobrilović, I.; Dobrilović, M.; Jurenić, D. Application Software Developed for the Determination of Expansion Volume in Clay Soil Generated by the Detonation of an Explosive Charge. Geosciences 2023, 13, 11. https://doi.org/10.3390/geosciences13010011
Težak D, Dobrilović I, Dobrilović M, Jurenić D. Application Software Developed for the Determination of Expansion Volume in Clay Soil Generated by the Detonation of an Explosive Charge. Geosciences. 2023; 13(1):11. https://doi.org/10.3390/geosciences13010011
Chicago/Turabian StyleTežak, Denis, Ivana Dobrilović, Mario Dobrilović, and Davorin Jurenić. 2023. "Application Software Developed for the Determination of Expansion Volume in Clay Soil Generated by the Detonation of an Explosive Charge" Geosciences 13, no. 1: 11. https://doi.org/10.3390/geosciences13010011
APA StyleTežak, D., Dobrilović, I., Dobrilović, M., & Jurenić, D. (2023). Application Software Developed for the Determination of Expansion Volume in Clay Soil Generated by the Detonation of an Explosive Charge. Geosciences, 13(1), 11. https://doi.org/10.3390/geosciences13010011