Not Every Circle Is a Crater: Kettle Hole Size Distributions and Their Implications in Planetary Surface Age Dating
Abstract
:1. Introduction
2. Study Areas and Methods
3. Results
4. Discussion
4.1. Small Diameter Kettles and Craters
4.2. Uncertainty
4.3. Differentiating Kettle Holes from Craters
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greeley, R.; Spudis, P.D. Volcanism on mars. Rev. Geophys. 1981, 19, 13–41. [Google Scholar]
- Bernhardt, H.; Hiesinger, H.; Ivanov, M.A.; Ruesch, O.; Erkeling, G.; Reiss, D. Photogeologic mapping and the geologic history of the Hellas basin floor, Mars. Icarus 2016, 264, 407–442. [Google Scholar] [CrossRef]
- Stack, K.M.; Williams, N.R.; Calef, F.; Sun, V.Z.; Williford, K.H.; Farley, K.A.; Eide, S.; Flannery, D.; Hughes, C.; Jacob, S.R.; et al. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. Space Sci. Rev. 2020, 216, 127. [Google Scholar] [CrossRef] [PubMed]
- Lugmair, G.W.; Marti, K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 1978, 39, 349–357. [Google Scholar] [CrossRef]
- Turner, G. Argon-40/argon-39 dating of lunar rock samples. Science 1970, 167, 466–468. [Google Scholar] [CrossRef]
- Farley, K.A.; Hurowitz, J.A.; Grant, J.A.; Miller, H.B.; Arvidson, R.; Beegle, L.; Calef, F.; Conrad, P.G.; Dietrich, W.E.; Eigenbrode, J.; et al. In situ radiometric and exposure age dating of the martian surface. Science 2014, 343, 1247166. [Google Scholar] [CrossRef]
- Martin, P.E.; Farley, K.A.; Malespin, C.A.; Mahaffy, P.R.; Edgett, K.S.; Gupta, S.; Dietrich, W.E.; Malin, M.C.; Stack, K.M.; Vasconcelos, P.M. Billion-year exposure ages in Gale crater (Mars) indicate Mount Sharp formed before the Amazonian period. Earth Planet. Sci. Lett. 2021, 554, 116667. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Malin, M.; McEwen, A.; Carr, M.; Soderblom, L.; Thomas, P.; Danielson, E.; James, P.; Veverka, J. Evidence for recent volcanism on Mars from crater counts. Nature 1999, 397, 586–589. [Google Scholar]
- Tanaka, K.L.; Skinner Jr, J.A.; Dohm, J.M.; Irwin, I.I.I.R.P.; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic map of Mars: U.S. Geological Survey Scientific Investigations Map 3292. 2014. Available online: http://pubs.usgs.gov/sim/3292/ (accessed on 5 December 2022).
- Barlow, N.G. Crater size-frequency distributions and a revised Martian relative chronology. Icarus 1988, 75, 285–305. [Google Scholar] [CrossRef]
- Michael, G.G.; Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.A. Crater production function for Mars. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 2001; Volume 32. [Google Scholar]
- Ivanov, B.A. Mars/Moon Cratering Rate Ratio Estimates BT—Chronology and Evolution of Mars; Kallenbach, R., Geiss, J., Hartmann, W.K., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 87–104. [Google Scholar]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering records in the inner solar system in relation to the lunar reference system. In Chronology and Evolution of Mars; Springer: Berlin/Heidelberg, Germany, 2001; pp. 55–86. [Google Scholar]
- Robbins, S.J.; Hynek, B.M. A new global database of Mars impact craters ≥ 1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. Planets 2012, 117, E06001. [Google Scholar] [CrossRef]
- Melosh, H.J.; Ivanov, B.A. Impact Crater Collapse. Annu. Rev. Earth Planet. Sci. 1999, 27, 385–415. [Google Scholar] [CrossRef]
- Mouginis-Mark, P. Martian fluidized crater morphology: Variations with crater size, latitude, altitude, and target material. J. Geophys. Res. Solid Earth 1979, 84, 8011–8022. [Google Scholar] [CrossRef] [Green Version]
- Barlow, N.G. A review of Martian impact crater ejecta structures and their implications for target properties. Large Meteor. Impacts III 2005, 384, 433–442. [Google Scholar]
- Boyce, J.M.; Garbeil, H. Geometric relationships of pristine Martian complex impact craters, and their implications to Mars geologic history. Geophys. Res. Lett. 2007, 34, L16201. [Google Scholar] [CrossRef]
- Head, J.W.; Crumpler, L.S.; Aubele, J.C.; Guest, J.E.; Saunders, R.S. Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. J. Geophys. Res. Planets 1992, 97, 13153–13197. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Evans, D.J.A. Glaciers & Glaciation; Routledge: London, UK, 2014; ISBN 0203785010. [Google Scholar]
- Maizels, J.K. Experiments on the origin of kettle-holes. J. Glaciol. 1977, 18, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Fay, H. Formation of kettle holes following a glacial outburst flood (jökulhlaup), Skeiðarársandur. In The Extremes of the Extremes: Extraordinary Floods; International Assn of Hydrological Sciences: Wallingford, UK, 2002; Volume 205. [Google Scholar]
- Maizels, J. Boulder ring structures produced during jökulhlaup flows: Origin and hydraulic significance. Geogr. Ann. Ser. A Phys. Geogr. 1992, 74, 21–33. [Google Scholar] [CrossRef]
- Huber, R.; Darga, R.; Lauterbach, H. Der späteiszeitliche Tüttensee-Komplex als Ergebnis der Abschmelzgeschichte am Ostrand des Chiemsee-Gletschers und sein Bezug zum „Chiemgau Impakt “(Landkreis Traunstein, Oberbayern). E&G Quat. Sci. J. 2020, 69, 93–120. [Google Scholar]
- Price, R.J. Moraines, sandar, kames and eskers near Breidamerkurjökull, Iceland. Trans. Inst. Br. Geogr. 1969, 46, 17–43. [Google Scholar] [CrossRef]
- Hamilton, T.D. Glacial Geology of the Toolik Lake and Upper Kuparuk River Regions; University of Alaska, Institute of Arctic Biology: Fairbanks, AK, USA, 2003. [Google Scholar]
- Campbell, D.R.; Duthie, H.C.; Warner, B.G. Post-glacial development of a kettle-hole peatland in southern Ontario. Ecoscience 1997, 4, 404–418. [Google Scholar] [CrossRef]
- Fishbaugh, K.E.; Head, J.W., III. North polar region of Mars: Topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. J. Geophys. Res. Planets 2000, 105, 22455–22486. [Google Scholar] [CrossRef]
- Chapman, M.G.; Gudmundsson, M.T.; Russell, A.J.; Hare, T.M. Possible Juventae Chasma subice volcanic eruptions and Maja Valles ice outburst floods on Mars: Implications of Mars Global Surveyor crater densities, geomorphology, and topography. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Woodworth-Lynas, C.; Guigné, J. Ice Keel Scour Marks on Mars: Evidence for Floating and Grounding Ice Floes in Kasei Valles. Oceanography 2003, 16, 90–97. [Google Scholar] [CrossRef]
- Warner, N.; Gupta, S.; Lin, S.-Y.; Kim, J.-R.; Muller, J.-P.; Morley, J. Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef]
- Gaidos, E.; Marion, G. Geological and geochemical legacy of a cold early Mars. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Diniega, S.; Bramson, A.M.; Buratti, B.; Buhler, P.; Burr, D.M.; Chojnacki, M.; Conway, S.J.; Dundas, C.M.; Hansen, C.J.; McEwen, A.S. Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology 2021, 380, 107627. [Google Scholar] [CrossRef]
- Wordsworth, R.D. The Climate of Early Mars. Annu. Rev. Earth Planet. Sci. 2016, 44, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.P.; Howard, A.D.; Craddock, R.A.; Moore, J.M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Baker, V.R.; Strom, R.G.; Gulick, V.C.; Kargel, J.S.; Komatsu, G.; Kale, V.S. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 1991, 352, 589–594. [Google Scholar] [CrossRef]
- Head, J.W.; Marchant, D.R.; Agnew, M.C.; Fassett, C.I.; Kreslavsky, M.A. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett. 2006, 241, 663–671. [Google Scholar] [CrossRef]
- Souness, C.; Hubbard, B.; Milliken, R.E.; Quincey, D. An inventory and population-scale analysis of martian glacier-like forms. Icarus 2012, 217, 243–255. [Google Scholar] [CrossRef]
- Putzig, N.E.; Smith, I.B.; Perry, M.R.; Foss, F.J.; Campbell, B.A.; Phillips, R.J.; Seu, R. Three-dimensional radar imaging of structures and craters in the Martian polar caps. Icarus 2018, 308, 138–147. [Google Scholar] [CrossRef]
- Smith, I.B.; Schlegel, N.-J.; Larour, E.; Isola, I.; Buhler, P.B.; Putzig, N.E.; Greve, R. Carbon Dioxide Ice Glaciers at the South Pole of Mars. J. Geophys. Res. Planets 2022, 127, e2022JE007193. [Google Scholar] [CrossRef]
- Yin, A.; Moon, S.; Day, M. Landform evolution of Oudemans crater and its bounding plateau plains on Mars: Geomorphological constraints on the Tharsis ice-cap hypothesis. Icarus 2021, 360, 114332. [Google Scholar] [CrossRef]
- Boatwright, B.D.; Head, J.W. A Noachian Proglacial Paleolake on Mars: Fluvial Activity and Lake Formation within a Closed-source Drainage Basin Crater and Implications for Early Mars Climate. Planet. Sci. J. 2021, 2, 52. [Google Scholar] [CrossRef]
- Hepburn, A.J.; Ng, F.S.L.; Livingstone, S.J.; Holt, T.O.; Hubbard, B. Polyphase Mid-Latitude Glaciation on Mars: Chronology of the Formation of Superposed Glacier-Like Forms from Crater-Count Dating. J. Geophys. Res. Planets 2020, 125, e2019JE006102. [Google Scholar] [CrossRef] [Green Version]
- Forget, F.; Haberle, R.M.; Montmessin, F.; Levrard, B.; Head, J.W. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science 2006, 311, 368–371. [Google Scholar] [CrossRef]
- Kite, E.S.; Hindmarsh, R.C.A. Did ice streams shape the largest channels on Mars? Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. Recent ice ages on Mars. Nature 2003, 426, 797–802. [Google Scholar] [CrossRef]
- Boissonneau, A.N. Glacial history of northeastern Ontario II. The Timiskaming–Algoma area. Can. J. Earth Sci. 1968, 5, 97–109. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Hopkins, D.M. Glacial History of the Seward Peninsula; AAPG: Tulsa, OK, USA, 1986. [Google Scholar]
- King, C.A.M.; Buckley, J.T. Geomorphological investigations in west-central Baffin Island, NWT, Canada. Arct. Alp. Res. 1969, 1, 105–119. [Google Scholar] [CrossRef]
- Group, C.A.T.W. Standard techniques for presentation and analysis of crater size-frequency data. Icarus 1979, 37, 467–474. [Google Scholar]
- Robbins, S.J.; Riggs, J.D.; Weaver, B.P.; Bierhaus, E.B.; Chapman, C.R.; Kirchoff, M.R.; Singer, K.N.; Gaddis, L.R. Revised recommended methods for analyzing crater size-frequency distributions. Meteorit. Planet. Sci. 2018, 53, 891–931. [Google Scholar] [CrossRef]
- Robbins, S.J.; Singer, K.N. Pluto and Charon Impact Crater Populations: Reconciling Different Results. Planet. Sci. J. 2021, 2, 192. [Google Scholar] [CrossRef]
- Landis, M.E.; Byrne, S.; Daubar, I.J.; Herkenhoff, K.E.; Dundas, C.M. A revised surface age for the North Polar Layered Deposits of Mars. Geophys. Res. Lett. 2016, 43, 3060–3068. [Google Scholar] [CrossRef] [Green Version]
- Strom, R.G.; Malhotra, R.; Xiao, Z.-Y.; Ito, T.; Yoshida, F.; Ostrach, L.R. The inner solar system cratering record and the evolution of impactor populations. Res. Astron. Astrophys. 2015, 15, 407. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C.; Edgett, K.S.; Posiolova, L.V.; McColley, S.M.; Dobrea, E.Z.N. Present-day impact cratering rate and contemporary gully activity on Mars. Science 2006, 314, 1573–1577. [Google Scholar] [CrossRef]
- Daubar, I.J.; McEwen, A.S.; Byrne, S.; Kennedy, M.R.; Ivanov, B. The current martian cratering rate. Icarus 2013, 225, 506–516. [Google Scholar] [CrossRef]
- Strom, R.G.; Malhotra, R.; Ito, T.; Yoshida, F.; Kring, D.A. The origin of planetary impactors in the inner solar system. Science 2005, 309, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Dickson, J.L.; Kerber, L.A.; Fassett, C.I.; Ehlmann, B.L. A Global, Blended CTX Mosaic of Mars with Vectorized Seam Mapping: A New Mosaicking Pipeline Using Principles of Non-Destructive Image Editing. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; Volume 49, pp. 1–2. [Google Scholar]
- Day, M.D.; Catling, D.C. Potential aeolian deposition of intra-crater layering: A case study of Henry crater, Mars. GSA Bull. 2019, 132, 608–616. [Google Scholar] [CrossRef]
- Zimbelman, J.R. Henry Crater, Mars: Thick, Layered Deposit Preserved on a Crater Floor in the Martian Highlands. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 1990; Volume 21. [Google Scholar]
- Hartmann, W.K.; Daubar, I.J. Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteorit. Planet. Sci. 2017, 52, 493–510. [Google Scholar] [CrossRef]
- Hartmann, W.K. Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus 2005, 174, 294–320. [Google Scholar] [CrossRef]
- Hartmann, W.K. Does crater “saturation equilibrium” occur in the solar system? Icarus 1984, 60, 56–74. [Google Scholar] [CrossRef]
- Michael, G.G. Planetary surface dating from crater size–frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting. Icarus 2013, 226, 885–890. [Google Scholar] [CrossRef]
- Bierhaus, E.B.; McEwen, A.S.; Robbins, S.J.; Singer, K.N.; Dones, L.; Kirchoff, M.R.; Williams, J. Secondary craters and ejecta across the solar system: Populations and effects on impact-crater–based chronologies. Meteorit. Planet. Sci. 2018, 53, 638–671. [Google Scholar] [CrossRef] [Green Version]
- Calef III, F.J.; Herrick, R.R.; Sharpton, V.L. Geomorphic analysis of small rayed craters on Mars: Examining primary versus secondary impacts. J. Geophys. Res. Planets 2009, 114, E10007. [Google Scholar] [CrossRef]
- Hartmann, W.K. Martian cratering III: Theory of crater obliteration. Icarus 1971, 15, 410–428. [Google Scholar] [CrossRef]
- Hartmann, W.K. Martian cratering VI: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteorit. Planet. Sci. 1999, 34, 167–177. [Google Scholar] [CrossRef]
- Platz, T.; Michael, G.; Tanaka, K.L.; Skinner, J.A.; Fortezzo, C.M. Crater-based dating of geological units on Mars: Methods and application for the new global geological map. Icarus 2013, 225, 806–827. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan Bun Tseung, J.-M.; Skinner, J.A.; Baloga, S.M. Mesoscale raised rim depressions (MRRDs) on Earth: A review of the characteristics, processes, and spatial distributions of analogs for Mars. Planet. Space Sci. 2009, 57, 579–596. [Google Scholar] [CrossRef]
- Soare, R.; Osinski, G.; Roehm, C. Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet. Sci. Lett. 2008, 272, 382–393. [Google Scholar] [CrossRef]
- Lee, C. Automated crater detection on Mars using deep learning. Planet. Space Sci. 2019, 170, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.; Way, M.J.; Costard, F.; Bouley, S.; Séjourné, A.; Aleinov, I. Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl. Acad. Sci. USA 2022, 119, e2112930118. [Google Scholar] [CrossRef]
- Smith, A.R.; Gillespie, D.R.; Montgomery, M.R. Efect of obliteration on crater-count chronologies for Martian surfaces. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.R.; Jones, K.L. Cratering and obliteration history of Mars. Annu. Rev. Earth Planet. Sci. 1977, 5, 515–538. [Google Scholar] [CrossRef]
- Williams, J.-P.; Pathare, A.V.; Aharonson, O. The production of small primary craters on Mars and the Moon. Icarus 2014, 235, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Dundas, C.M.; Keszthelyi, L.P.; Bray, V.J.; McEwen, A.S. Role of material properties in the cratering record of young platy-ridged lava on Mars. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M. The secondary crater population of Mars. Earth Planet. Sci. Lett. 2014, 400, 66–76. [Google Scholar] [CrossRef]
- McEwen, A.S.; Preblich, B.S.; Turtle, E.P.; Artemieva, N.A.; Golombek, M.P.; Hurst, M.; Kirk, R.L.; Burr, D.M.; Christensen, P.R. The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 2005, 176, 351–381. [Google Scholar] [CrossRef]
- McEwen, A.S.; Bierhaus, E.B. The importance of secondary cratering to age constraints on planetary surfaces. Annu. Rev. Earth Planet. Sci. 2006, 34, 535–567. [Google Scholar] [CrossRef] [Green Version]
- Powell, T.M.; Rubanenko, L.; Williams, J.-P.; Paige, D.A. Chapter 6—The role of secondary craters on Martian crater chronology. In Mars Geological Enigmas; Soare, R.J., Conway, S.J., Williams, J.-P., Oehler, D.Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 123–145. ISBN 978-0-12-820245-6. [Google Scholar]
- Warner, N.H.; Gupta, S.; Calef, F.; Grindrod, P.; Boll, N.; Goddard, K. Minimum effective area for high resolution crater counting of martian terrains. Icarus 2015, 245, 198–240. [Google Scholar] [CrossRef]
- Robbins, S.J.; Antonenko, I.; Kirchoff, M.R.; Chapman, C.R.; Fassett, C.I.; Herrick, R.R.; Singer, K.; Zanetti, M.; Lehan, C.; Huang, D. The variability of crater identification among expert and community crater analysts. Icarus 2014, 234, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.H.; Tanaka, K.L. Geologic Map of the Western Equatorial Region of Mars; US Geological Survey: Reston, VA, USA, 1986. [Google Scholar]
- Barlow, N.G. Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics. Meteorit. Planet. Sci. 2006, 41, 1425–1436. [Google Scholar] [CrossRef]
- Cintala, M.J.; Head, J.W.; Mutch, T.A. Martian crater depth/diameter relationships-Comparison with the moon and Mercury. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1976; Volume 7, pp. 3575–3587. [Google Scholar]
- Michael, G.G. Coordinate registration by automated crater recognition. Planet. Space Sci. 2003, 51, 563–568. [Google Scholar] [CrossRef]
Area A (Ontario) | Area B (Alaska) | Area C (Nunavut) | |
---|---|---|---|
Total area studied (km2) | 2656 | 840 | 4428 |
Number of kettle holes measured | 814 | 599 | 908 |
Number of kettle holes >500 m in diameter | 358 | 125 | 767 |
Kettle hole long axis (diameter); µ ± 1σ (m) | 675 ± 707 | 364 ± 347 | 1039 ± 533 |
Kettle hole short axis; µ ± 1σ (m) | 469 ± 448 | 241 ± 252 | 901 ± 467 |
Aspect ratio; µ ± 1σ (m) | 1.46 ± 0.41 | 1.62 ± 0.50 | 1.18 ± 0.19 |
Power law slope of the differential dist. for d > 500 m | −2.87 | −2.35 | −2.55 |
Power law slope of the differential dist. for d > 1 km | −3.19 | −3.12 | −4.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Day, M.; Bretzfelder, J.M.; Le, D. Not Every Circle Is a Crater: Kettle Hole Size Distributions and Their Implications in Planetary Surface Age Dating. Geosciences 2023, 13, 18. https://doi.org/10.3390/geosciences13010018
Day M, Bretzfelder JM, Le D. Not Every Circle Is a Crater: Kettle Hole Size Distributions and Their Implications in Planetary Surface Age Dating. Geosciences. 2023; 13(1):18. https://doi.org/10.3390/geosciences13010018
Chicago/Turabian StyleDay, Mackenzie, Jordan M. Bretzfelder, and Duyen Le. 2023. "Not Every Circle Is a Crater: Kettle Hole Size Distributions and Their Implications in Planetary Surface Age Dating" Geosciences 13, no. 1: 18. https://doi.org/10.3390/geosciences13010018
APA StyleDay, M., Bretzfelder, J. M., & Le, D. (2023). Not Every Circle Is a Crater: Kettle Hole Size Distributions and Their Implications in Planetary Surface Age Dating. Geosciences, 13(1), 18. https://doi.org/10.3390/geosciences13010018