Causes of Chronic Kidney Disease of Non-Traditional Origin in Central America: An Approach Based on Medical Geology
Abstract
:1. Introduction
1.1. Known Etiology of MeN
1.2. Geographical Characteristics
2. Characteristics of the Disease
3. Contact of Heavy Metals with Human Beings
3.1. Arsenic
3.2. Lead
3.3. Cadmium
3.4. Mercury
3.5. Vanadium
3.6. Silica
4. Chronic Effect of Nephrotoxic Metals at Low Doses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Courville, K.; Bustamante, N.; Hurtado, B.; Pecchio, M.; Rodríguez, C.; Núñez-Samudio, V.; Landires, I. Chronic Kidney Disease of Nontraditional Causes in Central Panama. BMC Nephrol. 2022, 23, 275. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Polo, V.; Garcia-Trabanino, R.; Rodriguez, G.; Madero, M. Mesoamerican Nephropathy (MeN): What We Know so Far. Int. J. Nephrol. Renov. Dis. 2020, 13, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Organización Panamericana de la Salud. Epidemia de Enfermedad Renal Crónica En Comunidades Agrícolas de Centroamérica. Definición de Caso, Bases Metodológicas y Enfoque Para Vigilancia de Salud Pública. 2017. Available online: http://iris.paho.org (accessed on 8 September 2020).
- Pan American Health Organization Resolution CD52/8. Chronic Kidney Disease in Farming Communities de Centroamérica. 2013. Available online: https://iris.paho.org/bitstream/handle/10665.2/4401/CD52_8esp.pdf?sequence=2&isAllowed=y (accessed on 1 July 2023).
- Correa-Rotter, R.; Wesseling, C.; Johnson, R.J. CKD of Unknown Origin in Central America: The Case for a Mesoamerican Nephropathy. Am. J. Kidney Dis. 2014, 63, 506–520. [Google Scholar] [CrossRef]
- Wesseling, C.; Crowe, J.; Hogstedt, C.; Jakobsson, K.; Lucas, R.; Wegman, D.H. Resolving the Enigma of the Mesoamerican Nephropathy: A Research Workshop Summary. Am. J. Kidney Dis. 2014, 63, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Hoy, W.E.; Ordunez, P. Epidemia de Enfermedad Renal Crónica en Comunidades Agrícolas de Centroamérica. Definición de Casos, Base Metodológica Y Enfoques Para la Vigilancia de Salud Pública; OPS: Washington, DC, USA, 2017. [Google Scholar]
- Wesseling, C.; van Wendel de Joode, B.; Crowe, J.; Rittner, R.; Sanati, N.A.; Hogstedt, C.; Jakobsson, K. Mesoamerican Nephropathy: Geographical Distribution and Time Trends of Chronic Kidney Disease Mortality between 1970 and 2012 in Costa Rica. Occup. Environ. Med. 2015, 72, 714–721. [Google Scholar] [CrossRef]
- García-Trabanino, R.; Cerdas, M.; Madero, M.; Jakobsson, K.; Barnoya, J.; Crowe, J.; Jarquín, E.; Guzmán-Quilo, C.; Correa-Rotter, R. Nefropatía mesoamericana: Revisión breve basada en el segundo taller del Consorcio para el estudio de la Epidemia de Nefropatía en Centroamérica y México (CENCAM). Nefrol. Latinoam. 2017, 14, 39–45. [Google Scholar] [CrossRef]
- Galbán, P.A. Pesticides and heat stress in the global epidemic of chronic kidney disease from nontraditional causes. Archives of Occupational Risk Prevention. Occup. Risk Prev. Arch. 2018, 21, 26. [Google Scholar] [CrossRef]
- Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; et al. Chronic Interstitial Nephritis in Agricultural Communities Is a Toxin-Induced Proximal Tubular Nephropathy. Kidney Int. 2020, 97, 350–369. [Google Scholar] [CrossRef]
- Krisher, L.K.; Butler-Dawson, J.; Dally, M.; Jaramillo, D.; Newman, L.S. Enfermedad renal crónica de causa desconocida: Investigaciones en Guatemala y oportunidades para su prevención. Cienc. Tecnol. Salud 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Cerón, A.; Ramay, B.M.; Méndez-Alburez, L.P.; Lou-Meda, R. Factors Associated with Chronic Kidney Disease of Non-Traditional Causes among Children in Guatemala. Rev. Panam. Salud Pública 2021, 45, e24. [Google Scholar] [CrossRef]
- Herath, C.; Jayasumana, C.; De Silva, P.M.C.S.; De Silva, P.H.C.; Siribaddana, S.; De Broe, M.E. Kidney Diseases in Agricultural Communities: A Case Against Heat-Stress Nephropathy. Kidney Int. Rep. 2018, 3, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Jayasumana, C.; Orantes, C.; Herrera, R.; Almaguer, M.; Lopez, L.; Silva, L.C.; Ordunez, P.; Siribaddana, S.; Gunatilake, S.; De Broe, M.E. Chronic Interstitial Nephritis in Agricultural Communities: A Worldwide Epidemic with Social, Occupational and Environmental Determinants. Nephrol. Dial. Transpl. 2016, 32, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, C.; Glaser, J.; Rodríguez-Guzmán, J.; Weiss, I.; Lucas, R.; Peraza, S.; da Silva, A.S.; Hansson, E.; Johnson, R.J.; Hogstedt, C.; et al. Chronic Kidney Disease of Non-Traditional Origin in Mesoamerica: A Disease Primarily Driven by Occupational Heat Stress. Rev. Panam. Salud Pública 2020, 44, e15. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of Heavy Metals on, and Handling by, the Kidney. Nephron. Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef]
- Chapman, E.; Haby, M.M.; Illanes, E.; Sanchez-Viamonte, J.; Elias, V.; Reveiz, L. Risk Factors for Chronic Kidney Disease of Non-Traditional Causes: A Systematic Review. Rev. Panam. Salud Pública 2019, 43, e35. [Google Scholar] [CrossRef]
- Orantes-Navarro, C.M.; Herrera-Valdés, R.; Almaguer-López, M.; Brizuela-Díaz, E.G.; Alvarado-Ascencio, N.P.; Morales, E.J.F.; Bayarre-Vea, H.D.; Calero-Brizuela, D.J.; Vela-Parada, X.F.; Zelaya-Quezada, S.M. Enfermedad renal crónica en niños y adolescentes en las comunidades agrícolas de El Salvador: Estudio NefroSalva Pediátrico (2009–2011). MEDICC Rev. 2016, 18, 8. [Google Scholar]
- Centeno, J.A.; Forcada, E.G.; Búa, P.P. La Geología Médica: Una disciplina emergente. Rev. Salud Ambiente. 2016, 16, 1–5. [Google Scholar]
- Ríos Reyes, C.A.; Ríos Gutiéttez, M.P.; Joya Neira, S. The Importance of Minerals in Medical Geology: Impacts of the Environment on Health. Arch. Med. Manizales 2020, 21, 182–208. [Google Scholar] [CrossRef]
- García, F.P.; Sandoval, O.A.A.; Prieto, J. Geological Factors and Health Problems. J. Chem. Health Risks 2013, 3, 23–32. [Google Scholar]
- Bundschuh, J.; Maity, J.P.; Mushtaq, S.; Vithanage, M.; Seneweera, S.; Schneider, J.; Bhattacharya, P.; Khan, N.I.; Hamawand, I.; Guilherme, L.R.G.; et al. Medical Geology in the Framework of the Sustainable Development Goals. Sci. Total Environ. 2017, 581, 87–104. [Google Scholar] [CrossRef] [PubMed]
- COMISCA. Enfermedad Renal Cronica de las Comunidades Agricolas de Centroamerica. 2013. Available online: https://www.sica.int/documentos/10b-enfermedad-renal-cronica-de-las-comunidades-agricolas-de-centroamerica_1_79230.html (accessed on 2 January 2023).
- Rotter, R.C.; Trabanino, R.G. Nefropatía mesoamericana: Una nueva enfermedad renal crónica de alta relevancia regional. Acta Médica Grupo Ángeles 2018, 16, 16–22. [Google Scholar]
- Ministerio de Salud; Dirección de Vigilancia de la Salud. Protocolo de Vigilancia de La Enfermedad Renal Crónica No Tradicional; Ministerio de Salud: San Jose, Costa Rica, 2019.
- Arici, M. Management of Chronic Kidney Disease: A Clinician’s Guide; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wijkström, J.; González-Quiroz, M.; Hernandez, M.; Trujillo, Z.; Hultenby, K.; Ring, A.; Söderberg, M.; Aragón, A.; Elinder, C.-G.; Wernerson, A. Renal Morphology, Clinical Findings, and Progression Rate in Mesoamerican Nephropathy. Am. J. Kidney Dis. 2017, 69, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Benoit, S.W.; Ciccia, E.A.; Devarajan, P. Cystatin C as a Biomarker of Chronic Kidney Disease: Latest Developments. Expert Rev. Mol. Diagn. 2020, 20, 1019–1026. [Google Scholar] [CrossRef]
- Hinga, B.D.R. Ring of Fire: An Encyclopedia of the Pacific Rim’s Earthquakes, Tsunamis, and Volcanoes; Bloomsbury Publishing: New York, NY, USA, 2015. [Google Scholar]
- González, M.B. Las erupciones volcánicas y sus consecuencias en la Cuenca del Pacífico. PORTES Rev. Mex. Estud. Sobre Cuenca Pacífico 2018, 12, 165–177. [Google Scholar]
- Abrahams, P.W. Geophagy and the Involuntary Ingestion of Soil. In Essentials of Medical Geology; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 433–454. [Google Scholar] [CrossRef]
- Montero-Campos, V.; Ulloa, O.; Siebecker, M.; Zimmerman, A.J.; Weindorf, D.C.; Quirós, M.; Estrada, J.; Ulate, S. Establishing a Scenario of Exposure to Environmental Toxins Associated with Nephropathies in Agricultural Areas of Costa Rica Based on Geological Medicine. 2022. Available online: https://www.researchsquare.com/article/rs-2146203/v1 (accessed on 8 November 2023).
- Ulate, S. Cuantificación de Metales Pesados en Aire y Suelo y su Posible Relación con la Prevalencia de Nefropatía Mesoamericana en el Cantón de Cañas, Guanacaste, Costa Rica; Instituto Tecnológico de Costa Rica: Cartago, Costa Rica, 2022. [Google Scholar]
- Ulloa, O. Desarrollo de Un Modelo Sobre La Incidencia de Variables Ambientales y Geográficas En Las Tasas de Prevalencia de La Nefropatía Mesoamericana En Costa Rica. Ph.D. Thesis, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica, 2018. [Google Scholar]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy Metal Pollution: Source, Impact, and Remedies. In Biomanagement of Metal-Contaminated Soils; Khan, M.S., Zaidi, A., Goel, R., Musarrat, J., Eds.; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2011; Volume 20, pp. 1–28. [Google Scholar] [CrossRef]
- Stoytcheva, M. Pesticide in the Modern World: Effects of Pesticide Exposures, 1st ed.; Intech: Rijeka, Croatia, 2011; pp. 64–69. [Google Scholar]
- Barbier, O. Insuficiencia Renal Por Metales Pesados. Efecto Nefrotóxico de Los Metales Pesados y Su Reabsorción/Eliminación Por El Riñón. 2010. Available online: https://www.redalyc.org/articulo.oa?id=57613001041 (accessed on 5 September 2023).
- Sabath, E.; Robles, O. Medio ambiente y riñón: Nefrotoxicidad por metales pesados. Nefrología 2012, 32, 279–286. [Google Scholar] [CrossRef]
- Duruibe, J.; Ogwuegbu, M.; Egwurugwu, J. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 5, 112–118. [Google Scholar]
- Montero, V.; Ulloa, O.; Siebecker, M.; Zimmerman, A.J.; Weindorf, D.C.; Quiroz, M.; Estrada, J. Establishing a Scenario of Exposure to Environmental Toxins Associated with Chronic Kid-Ney Disease in Agricultural Areas of Costa Rica Based on Medical Geology; Research Square: Durham, NC, USA, 2023. [Google Scholar]
- Venero, S. Saharan Dust Effects on Human Health: A Challenge for Cuba’s Researchers. MEDICC Rev. 2016, 18, 32. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Tong, D.; Wu, G.; Dan, M.; Teng, B. A Systematic Review of Global Desert Dust and Associated Human Health Effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef]
- Menéndez, I.; Derbyshire, E.; Carrillo, T.; Caballero, E.; Engelbrecht, J.P.; Romero, L.E.; Mayer, P.L.; Rodríguez de Castro, F.; Mangas, J. Saharan Dust and the Impact on Adult and Elderly Allergic Patients: The Effect of Threshold Values in the Northern Sector of Gran Canaria, Spain. Int. J. Environ. Health Res. 2017, 27, 144–160. [Google Scholar] [CrossRef]
- Suarez, M.E. Boletín Meteorológico Mensual; Instituto Meteorológico Nacional de Costa Rica: Aranjuez, Costa Rica, 2022. [Google Scholar]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy Metal Contamination of Soils: Sources, Indicators and Assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Selinus, O. (Ed.) Essentials of Medical Geology: Revised Edition; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Repetto, M.; Repetto, G. Toxicología Fundamental, 4th ed.; Editorial Díaz de Santos: Madrid, Spain, 2009. [Google Scholar]
- Nava-Ruíz, C.; Méndez-Armenta, M. Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Arch. Neurocienc. 2011, 16, 140–147. [Google Scholar]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy Metal Poisoning: The Effects of Cadmium on the Kidney. BioMetals 2010, 23, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, N.M. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog; Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Martinez, V.D.; Lam, W.L. Health Effects Associated with Pre- and Perinatal Exposure to Arsenic. Front. Genet. 2021, 12, 664717. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, H.; Shao, Y.; Wang, P.; Wei, Y.; Zhang, W.; Jiang, J.; Chen, Y.; Zhang, Z. Nephroprotective Effect of Astaxanthin against Trivalent Inorganic Arsenic-Induced Renal Injury in Wistar Rats. Nutr. Res. Pract. 2014, 8, 46. [Google Scholar] [CrossRef]
- Jayasumana, M.; Paranagama, P.; Amarasinghe, M.; Wijewardane, K.; Dahanayake, K.; Fonseka, S.; Rajakaruna, K.; Mahamithawa, A.; Samarasinghe, U.; Senanayake, V. Possible Link of Chronic Arsenic Toxicity with Chronic Kidney Disease of Unknown Etiology in Sri Lanka. 2013. Available online: https://www.iiste.org/ (accessed on 6 July 2020).
- Xu, M.; Niu, Q.; Hu, Y.; Feng, G.; Wang, H.; Li, S. Retracted: Proanthocyanidins Antagonize Arsenic-Induced Oxidative Damage and Promote Arsenic Methylation through Activation of the Nrf2 Signaling Pathway. Oxidative Med. Cell. Longev. 2021, 2021, 8549035. [Google Scholar] [CrossRef]
- Orr, S.; Bridges, C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef]
- Yen, Y.-P.; Tsai, K.-S.; Chen, Y.-W.; Huang, C.-F.; Yang, R.-S.; Liu, S.-H. Arsenic Induces Apoptosis in Myoblasts through a Reactive Oxygen Species-Induced Endoplasmic Reticulum Stress and Mitochondrial Dysfunction Pathway. Arch. Toxicol. 2012, 86, 923–933. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Experientia Supplementum; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar] [CrossRef]
- Duan, X.; Xu, G.; Li, J.; Yan, N.; Li, X.; Liu, X.; Li, B. Arsenic Induces Continuous Inflammation and Regulates Th1/Th2/Th17/Treg Balance in Liver and Kidney In Vivo. Mediat. Inflamm. 2022, 2022, 8414047. [Google Scholar] [CrossRef]
- Patočka, J.; Černý, K. Inorganic Lead Toxicology. Acta Medica 2003, 46, 65–72. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Shafiekhani, M.; Ommati, M.M.; Azarpira, N.; Heidari, R.; Salarian, A.A. Glycine Supplementation Mitigates Lead-Induced Renal Injury in Mice. J. Exp. Pharmacol. 2019, 11, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Thévenod, F. Nephrotoxicity and the Proximal Tubule. Nephron Physiol. 2003, 93, 87–93. [Google Scholar] [CrossRef]
- Järup, L.; Åkesson, A. Current Status of Cadmium as an Environmental Health Problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. ATSDR. Toxicological Profile for Mercury. 1999. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=115&tid=24 (accessed on 28 May 2020).
- Nordberg, G.; Nordberg, G. Metales: Propiedades químicas y toxicidad productos químicos. Enciclopedia Salud Segur. Trab. 2017, 2, 63. [Google Scholar]
- Park, J.-D.; Zheng, W. Human Exposure and Health Effects of Inorganic and Elemental Mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef]
- Kocak, N.; Sahin, M.; Gubbuk, I.H. Synthesized of Sporopollenin-Immobilized Schiff Bases and Their Vanadium(IV) Sorption Studies. J. Inorg. Organomet. Polym. Mater. 2012, 22, 852–859. [Google Scholar] [CrossRef]
- Fortoul, T.I.; Rojas-Lemus, M.; Rodriguez-Lara, V.; Gonzalez-Villalva, A.; Ustarroz-Cano, M.; Cano-Gutierrez, G.; Gonzalez-Rendon, S.E.; Montaño, L.F.; Altamirano-Lozano, M. Overview of Environmental and Occupational Vanadium Exposure and Associated Health Outcomes: An Article Based on a Presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15–18 2012. J. Immunotoxicol. 2014, 11, 13–18. [Google Scholar] [CrossRef]
- Verma, V.; Polidori, A.; Schauer, J.J.; Shafer, M.M.; Cassee, F.R.; Sioutas, C. Physicochemical and Toxicological Profiles of Particulate Matter in Los Angeles during the October 2007 Southern California Wildfires. Environ. Sci. Technol. 2009, 43, 954–960. [Google Scholar] [CrossRef]
- Wilk, A.; Wiszniewska, B.; Szypulska-Koziarska, D.; Kaczmarek, P.; Romanowski, M.; Różański, J.; Słojewski, M.; Ciechanowski, K.; Marchelek-Myśliwiec, M.; Kalisińska, E. The Concentration of Vanadium in Pathologically Altered Human Kidneys. Biol. Trace Elem. Res. 2017, 180, 1–5. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Abdelgwad, M.; Fouad, M.M. Predictive Value of Novel Biomarkers for Chronic Kidney Disease among Workers Occupationally Exposed to Silica. Toxicol. Ind. Health 2021, 37, 173–181. [Google Scholar] [CrossRef]
- Vupputuri, S.; Parks, C.G.; Nylander-French, L.A.; Owen-Smith, A.; Hogan, S.L.; Sandler, D.P. Occupational Silica Exposure and Chronic Kidney Disease. Ren. Fail. 2012, 34, 40–46. [Google Scholar] [CrossRef]
- Pérez, J.J.B.; Rincón, C.R.; Rodríguez, L.C. Inhalación de sílice y sus efectos en la salud. Pneuma 2012, 8, 16–23. [Google Scholar]
- Organización Iberoamericana de Seguridad Social. Informe de La Situación de Estrategia Iberoamerican de Seguridad y Salud En El Trabajo. 2015–2020, 2015. Available online: https://oiss.org/estrategia-iberoamericana/publicaciones (accessed on 2 January 2023).
- Laws, R.L.; Brooks, D.R.; Amador, J.J.; Weiner, D.E.; Kaufman, J.S.; Ramírez-Rubio, O.; Riefkohl, A.; Scammell, M.K.; López-Pilarte, D.; Sánchez, J.M.; et al. Changes in Kidney Function among Nicaraguan Sugarcane Workers. Int. J. Occup. Environ. Health 2015, 21, 241–250. [Google Scholar] [CrossRef]
- Wesseling, C.; Crowe, J.; Peraza, S.; Aragón, A.; Partanen, T. Trabajadores de la Caña de Azúcar; OISS: Houston, TX, USA, 2014. [Google Scholar]
Stage or Phase | Characteristics |
---|---|
Early phase | (G-1, G-2 and G-3a) as per KDIGO |
Biomarker serum cystatin C * | |
Variable low or absent proteinuria | |
Normal or slightly elevated blood pressure | |
Normal glucose levels | |
Presence of arthralgia or joint pain associated to physical activity | |
Presence of asthenia or general weakness associated to physical activity with episodes of aseptic dysuria | |
Presence of fibrosis and variable degrees of glomerulosclerosis (only in some cases) | |
Late phase | (G-3b, G-4 and G-5) as per KDIGO |
Normal or elevated blood pressure and normal glucose levels | |
Urate crystals observable on the microscope | |
Progressive decrease of kidney size | |
Tubular atrophy | |
Presence of fibrosis and variable degrees of glomerulosclerosis | |
Presence of low molecular weight proteins (N-GAL, King-1) | |
Tubular and interstitial damage site | |
Microproteinuria (N-GAL, King-1) | |
Affected glomerular function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés-Rodríguez, B.; Montero-Campos, V.; Siebecker, M.G. Causes of Chronic Kidney Disease of Non-Traditional Origin in Central America: An Approach Based on Medical Geology. Geosciences 2023, 13, 360. https://doi.org/10.3390/geosciences13120360
Valdés-Rodríguez B, Montero-Campos V, Siebecker MG. Causes of Chronic Kidney Disease of Non-Traditional Origin in Central America: An Approach Based on Medical Geology. Geosciences. 2023; 13(12):360. https://doi.org/10.3390/geosciences13120360
Chicago/Turabian StyleValdés-Rodríguez, Benedicto, Virginia Montero-Campos, and Matthew G. Siebecker. 2023. "Causes of Chronic Kidney Disease of Non-Traditional Origin in Central America: An Approach Based on Medical Geology" Geosciences 13, no. 12: 360. https://doi.org/10.3390/geosciences13120360
APA StyleValdés-Rodríguez, B., Montero-Campos, V., & Siebecker, M. G. (2023). Causes of Chronic Kidney Disease of Non-Traditional Origin in Central America: An Approach Based on Medical Geology. Geosciences, 13(12), 360. https://doi.org/10.3390/geosciences13120360