Next Article in Journal
Composition of Rare Earth Elements in Fluvial Sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for Tectonic Setting and Provenance
Previous Article in Journal
Systematic Quantification and Assessment of Digital Image Correlation Performance for Landslide Monitoring
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Technical Note

On the Occurrence of the Gar Obaichthys africanus Grande in the Cretaceous of Portugal: Palaeoecological and Palaeobiogeographical Implications

by
Ricardo Pimentel
1,2,*,
Fernando Barroso-Barcenilla
1,2,3,
Mélani Berrocal-Casero
1,2,3,
Pedro Miguel Callapez
1,2,
Senay Ozkaya de Juanas
1,2 and
Vanda F. dos Santos
2,4
1
Departamento de Ciências da Terra (Centro de Investigação da Terra e do Espaço-CITEUC), Universidade de Coimbra, 3030-790 Coimbra, Portugal
2
Departamento de Geología, Geografía y Medio Ambiente (Grupo de Investigación PaleoIbérica), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
3
Departamento de Geodinámica, Estratigrafía y Paleontología (Grupo de Investigación Procesos Bióticos Mesozoicos), Universidad Complutense de Madrid, 28040 Madrid, Spain
4
Departamento de Geologia (Instituto Dom Luís), Universidade de Lisboa, 1749-016 Lisboa, Portugal
*
Author to whom correspondence should be addressed.
Geosciences 2023, 13(12), 372; https://doi.org/10.3390/geosciences13120372
Submission received: 9 October 2023 / Revised: 4 December 2023 / Accepted: 5 December 2023 / Published: 7 December 2023
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)

Abstract

:
Several disarticulated fish scales and a vertebral centrum were collected from the uppermost middle to lowermost upper Cenomanian beds of the vertebrate fossil site of Casais dos Carecos (Baixo Mondego region, Coimbra, West Portugal), corresponding to shallow carbonate and mixed facies (“Unit B”) of the Tentúgal Formation. The taphonomic preservation of these remains is adequate for their detailed taxonomical study. The scales are diagnosable for the species Obaichthys africanus Grande, as each one has a strong spine protruding from the middle of the posterior border in a rostrocaudal direction, a dorsoventral peg and socket, and a small anterodorsal process for articulation of adjacent scales. The sculpture with ganoid ridges and grooves distinguishes the studied remains from those of O. decoratus Wenz and Brito, which display rounded tubercles. The isolated Lepisosteoidea centrum is tentatively attributed to O. africanus as well, as it was found together with the scales, and no other compatible remains were found in the site. The fish material reported here constitutes the first record of O. africanus in the Baixo Mondego region and northern ranges of the Albian–Turonian West Portuguese Carbonate Platform, as well as in the uppermost middle to basal upper Cenomanian of Portugal.

1. Introduction

Lepisosteoidea scales have been scarcely recorded in the Cenomanian of Portugal since the late 19th century, and they were tentatively classified at that time as “ganoid fish” [1] and “Paleoniscidae indet” [2]. All these early findings were collected from the section of Pendão (Belas, Sintra, northwest of Lisbon) and housed at the Geological Commission of the Kingdom (later renamed the Geological Museum of the National Laboratory of Energy and Geology), in Lisbon. These scale remains were found during extensive fieldwork carried out by Paul Léon Choffat (1849–1919), which resulted in the first full definition of the Cretaceous stratigraphic setting of Portuguese South Estremadura and its main faunas e.g., [3,4,5,6]. They were collected from shallow carbonate platform beds assigned to the “Exogyra pseudafricana level” of the local “Bellasian” stage [1,7]. Based on micropalaeontological data [5,8,9], this oyster-rich level, with North African affinities, was positioned in the lower Cenomanian [10,11]. These Lepisosteoidea scales from Portugal were subsequently mentioned by Ernst Stromer (1871–1952), who related them with remains collected in the Cenomanian of Egypt [12] (p. 42), as well as in the description of Stromerichthys aethiopicus Weiler [13] (p. 30), thus reinforcing the Tethyan affinities of the Portuguese materials.
Additional scales, identified as aff. Stromerichthys sp. [13], S. aethiopicus Weiler [13], Paralepidosteus cacemensis Jonet [14], and “Lepidotusminimus Jonet [14], were recorded by the Portuguese Geological Survey during cartographic works carried out in the areas of Lisbon, Sintra, and Cascais. After their study [14,15,16,17], these remains considerably increased the number of lepisosteiform findings in the lower Cenomanian of Portugal.
In recent years, the scales mentioned above and previously classified as “Paleoniscidae indet” and S. aethiopicus were reidentified [18] as Obaichthys africanus Grande [19]. The same authors [18] also cautiously re-assessed the scales previously classified as P. cacemensis and L. minimus [14] as probably corresponding to Dentilepisosteus kemkemensis Grande [19].
Despite these common early Cenomanian records, until this work, Lepisosteoidea scales remained unknown from higher levels of the carbonate platform, namely at the uppermost middle to lowermost upper parts of the Cenomanian, both with a significant stratigraphic record available in the onshore ranges of the West Portuguese Margin (WPM) [20,21,22].
In the present work, new well-preserved Obaichthyidae remains are reported from Cenomanian carbonate platform beds exposed near Casais dos Carecos (Coimbra), in the Baixo Mondego region of West Portugal, about 200 km northward of Lisbon. These are not only the first scales to be collected in the middle Cenomanian beds of the country, but also the first ones to be identified in the northern ranges of the WPM. The purpose of this study is to present a detailed morphological description and taxonomic identification of these new remains. The here-provided data expand the known stratigraphic and palaeobiogeographical ranges of Lepisosteoidea fishes and improve our knowledge regarding the rich vertebrate faunas and palaeoenvironmental evolution of the Tethyan WPM during the Cenomanian, e.g., [20,21,22,23,24,25].

2. Geological and Stratigraphic Settings

The Lepisosteoidea material studied here was sampled in the vertebrate fossil site of Beiraterra quarry (40°15′10.9″ N, 8°34′13.3″ W), near the village of Casais dos Carecos, in the Coimbra municipality of the Baixo Mondego region (Figure 1A,B). It was found in local basal levels of the Cenomanian–Turonian West Portuguese Carbonate Platform (WPCP, a part of the post-rift series of the West Portuguese Margin), where transgressive beds of the Tentúgal Formation (Fm) overlay the lower to middle Cenomanian alluvial to tidal flat coarse sandstones of the Figueira da Foz Fm [26,27] (Figure 1C).
The lower part of the Tentúgal Fm consists of a basal member (“Unit B”) sensu [7,20,28,29,30,31] of uppermost middle to basal upper Cenomanian fine-grained sandstones, interbedded with sandy limestones, mudstones, and marls with low-diversity bivalve assemblages dominated by the oyster Gyrostrea ouremensis, together with Septifer lineatus and Anisocardia orientalis (Figure 1C). Besides Obaichthys africanus, the local vertebrate assemblage yields diverse remains of lamniform sharks, enchodontids, obaichthyids, rare turtle plates, and the recently described Pythonomorpha lizard Carentonosaurus soaresi and Crocodilomorpha Portugalosuchus azenhae.
The shallow-water sequence of “Unit B” is overlaid by a transgressive surface with a set of nodular marly carbonates, with a rich and diverse carbonate shelf fauna (“Unit C”) (Figure 1C). These beds yield an early late Cenomanian ammonite assemblage with Neolobites vibrayeanus and Calycoceras naviculare [7,20,21,28,32,33]. The succession continues upwards with a bed of whitish massive limestones, packstone to grainstone (“Unit D”), with abundant fragments of scleractinian corals, mollusks, and the echinoid Anorthopygus michelini (Figure 1C). Outside the quarry area (Figure 2), the Tentúgal Fm finishes with a few meters of greyish marls with nodular limestone layers (“Units E and F”), where a middle upper Cenomanian assemblage of Tethyan ammonites with Vascoceras gamai can be recognized [20,21,33].

3. Materials and Methods

The studied scales and vertebral centrum were found disarticulated and collected in situ, between 2019 and 2023, from a few collapsed quarry face blocks that correspond to the top of “Unit B” (specimens DCT-CC-15, DCT-CC-16, DCT-CC-17, DCT-CC-18, DCT-CC-19, DCT-CC-32) or obtained from the screen washing of a 100 kg bulk sample of sediments collected between January and February of 2023 (specimen DCT-CC-34). The scales were cleaned using mechanical tools, examined using a Leica© MZ 16A binocular stereomicroscope, and photographed with a Canon© EOS 550D camera with a Sigma© 50 mm F2.8 DG macro lens and an Olympus© E-M5II camera.
Suprageneric classification followed López-Arbarello [34]. All specimens are housed (with additional unnumbered fish remains from the same locality) in the palaeontological collections of the Department of Earth Sciences, University of Coimbra (DCT-CC), Portugal.

4. Material Description

The six complete, or almost complete, isolated scales (DCT-CC-15, DCT-CC-16, DCT-CC-17, DCT-CC-18, DCT-CC-32, and DCT-CC-34, Figure 3), and the opisthocoelous vertebral centrum (DCT-CC-19, Figure 4) show an adequate taphonomic preservation state for morphological description and taxonomic study, with no signs of distortion or intensive abrasion, and many diagnostic characteristics are still present. The six examined scales are well preserved, with a shiny ganoine layer on their exterior surface and a bony basal plate on their interior face.
The scales DCT-CC-15 (Figure 3A), DCT-CC-17 (Figure 3B,C), and DCT-CC-16 (Figure 3D) are rectangular, deeper than wide. These specimens display anteroposterior ridges on the ganoine layer. The median ridge is more pronounced and forms a spine projecting caudally. The median ridge (that forms a spine) and the other secondary ridges are subparallel (Figure 3A,B). DCT-CC-16 and DCT-CC-17 have a peg-and-socket dorsoventral articulation, comprising a dorsal spine-like peg (Figure 3B,D) which fits to a narrowed socket on the medial surface of the scale (Figure 3C). The anterior area does not present any processes and was just overlapped by an adjacent scale, or it has a small longitudinal anterodorsal process, for articulation (Figure 3D). The specimen DCT-CC-18 is incomplete, but it exhibits well-defined anteroposterior, almost equally subparallel, ridges (Figure 3E). The scales DCT-CC-32 (Figure 3F) and DCT-CC-34 (Figure 3G) have sub-rhombic outlines and only present the median ridge, while the secondary ridges are not clearly observed.
The opisthocoelous vertebral centrum DCT-CC-19 (Figure 4) was collected together with the three larger scales (DCT-CC-15, DCT-CC-16 and DCT-CC-17). Only the base of the laterally oriented parapophyses is conserved (Figure 4A,B). The neural canal and the hemal shallow groove are well preserved (Figure 4E,F). In the dorsal view, it presents a pair of longitudinal parasagittal ridges that delimit the neural canal (Figure 4E). In the ventral view, the hemal groove is wider than the neural canal (Figure 4F). Both the dorsal and ventral sides have two lateral fossae, of which the ventral ones are larger (Figure 4F).

5. Discussion

5.1. Taxonomic Remarks

Unlike in Lepisosteidae [35], the Obaichthyidae [19] scales are characteristically of a palaeoniscoid type [36] (pp. 757–758), with three layers: ganoine, dentine, and a bony basal plate [19,37,38]. Moreover, among Lepisosteoidea [39], the Obaichthyidae flank scales have a single or several larger prominent spines at their posterior margin [19].
The features of the studied scales fully correspond to those of the genus Obaichthys [40], as most of them are much deeper than wide [19], and they have a strong spine protruding from the middle of the posterior border in a rostrocaudal direction [19,34], a dorsoventral peg and socket, and a small anterodorsal process for the articulation of adjacent scales [41].
In further detail, they show the typical sculpture of the scales of Obaichthys africanus Grande [19], with ganoid ridges and grooves, which clearly distinguishes them from those of the West Gondwanan species Obaichthys decoratus Wenz and Brito [40], which presents rounded tubercles arranged around a central longitudinal thickening [19,37]. Besides the morphological differences, the known records of this last species are Albian in age, e.g., [40,41].
Studies carried out on the microstructure of the scales revealed that the ridges of the O. africanus scales are formed by an accretion of pluristratified ganoine over individualized concentrated dentine units that sustain the ridges [38]. In the grooves, the dentine units are very thin or even absent. The scales of O. africanus display dentine units comparatively more developed than those of O. decoratus [37]. However, no studies have been carried out on the microstructure of O. africanus scales from Casais dos Carecos.
Comparing the scales from Casais dos Carecos to those assigned to other genera, the remains presently described differ from those of Dentilepisosteus [19] because the latter have a rhomboid outline. Scales attributed to Dentilepisosteus kemkemensis Grande [19], are rather different, as they show elongated patches of ganoine separated by a groove which goes down to the bony tissue, e.g., [18]. Dentilepisosteus laevis Wenz and Brito [40] has scales displaying posterior marginal spines where the further posteroventral spine is more protuberant, e.g., [19,34,42]. Stromerichthys [13] seems to be a genus erected on a mixture of remains belonging to different taxa [18]. Among the diverse original material, the morphology of the scales of the genotype Stromerichthys aethiopicus Weiler [13] fully corresponds to that of O. africanus.
In addition to the scales studied here, other remains assignable to O. africanus have been reported as Poisson ganoïdes [1] (p. 55); as Paleoniscidae indet. [2] (pp. 12–13, pl.1, figures 1–5); as Stromerichthys aethiopicus Weiler [13] (pp. 26–31, pl.2, figures 16, 29–34, pl.3, figures 7, 17, 20, 23), [14] (pp. 205, 219, pl.2, figures 1–4), [16] (pp. 33–37, pl. 1, figures 1–16), [43] (pl.11, figures 6–7, 9), and [44] (pp. 397–398, figure 5B,C); as Stromerichthys sp. [14] (pp. 205, 219–220, pl.2, figures 5–9), [16] (pp. 33–37, pl.1, figures 17–18), [45] (pp. 80–81, pl.4, figure 10), [46] (p. 931, figure 2C), and [47] (p. 233, figure 3C,D); and as O. africanus [18] (pp. 10–13, figure 6), [19] (pp. 687–689, figure 480A–H), [38] (pp. 123, 127, figures 1C–E, 4A–H), [48] (pp. 49, figure 5L), [49] (pp. 9–10, figure 8M), [50] (table 8, figure 61I–J), [51] (pp. 3, 5, figure 2A–D), and [52] (p. 43, figure 18A–C), among others.
The opisthocoelous vertebral centrum is distinctive of Lepisosteoidea [53], showing its characteristic features, e.g., [34], and it could correspond to various taxa, e.g., [19]. The left parapophysis is partially preserved, and its morphology does not seem to be a peg-like as in other gars, but is instead expanded with laminar bone as described in the diagnosis of the genus Obaichthys [19] (p. 661, figure 478B). Additionally, the centrum is tentatively assigned to O. africanus as it has been found together with the more diagnostic scales and no remains referable to a different Lepisosteoidea species have been collected in this fossil site.

5.2. Scales and Vertebral Centrum Position

Considering the morphology of palaeoniscoid-type scales [54] and the position of the articular processes, the O. africanus remains DCT-CC-15, DCT-CC-17 and DCT-CC-34 have been located on the right flank, and DCT-CC-16 and DCT-CC-32 on the left flank. In further detail, scales with a well-developed and high peg, such as DCT-CC-16 and DCT-CC-17 (Figure 3B–D), were probably located in a central position regarding the lateral line scales. DCT-CC-32 and DCT-CC-34 (Figure 3F,G) have an undeveloped dorsal process and a dimension ratio not much higher than wide, which, compared with scales reported from other Obaichthyidae, could correspond to a more peripheral position (ventral for DCT-CC-34) regarding lateral line scales, e.g., [19,42].
Studies on vertebrae from O. decoratus and D. laevis [19] (pp. 683, 713) verified that the parapophyses on the anterior centra are projected laterally, but the parapophyses on the posterior abdominal centra are more ventrally projected. Additionally, the research of the same author on extant Lepisosteidae reveals that the centra become laterally compressed in the posterior elements of the vertebral series. Hypothetically, O. africanus vertebrae could present the same characteristics. Regarding the centrum found with these scales, only the bases of the parapophyses are conserved, but their positions point to a lateral projection (e.g., Figure 4A). It is not laterally compressed (Figure 4A,B) as in posteriormost abdominal, caudal, preural and ural vertebrae from extant Lepisosteidae [19] (figures 79–81). The general morphology and described features of this centrum are compatible with a more anterior than posterior abdominal position along the spine.

5.3. Palaeoecology and Palaeogeography

The O. africanus scales from Casais dos Carecos display a good preservation state, suggesting that they are sub-autochthonous. Thus, it is also likely that this obaichthyid was an euryhaline or salt-tolerant fish that could occasionally swim through coastal marine waters, despite being previously described from freshwater to brackish facies, e.g., [18]. This behaviour would not be unprecedented since extant species of Lepisosteidae, such as Lepisosteus osseus (Linnaeus) [55], Atractosteus spatula (Lacépède) [56], and A. tristoechus (Bloch and Schneider) [57], are mainly found in freshwater environments, but they have the ability to swim in nearby marine ones, e.g., [19,58]. The same behavior has been already suggested for O. decoratus [19].
The occurrence of O. africanus in carbonate and mixed facies with a rather diverse assemblage of shallow marine taxa, mostly invertebrate species, also suggests a palaeogeographic setting where inner shelf to tidal flat coastal environments established the transition between the WPCP and extensive alluvial systems located eastwards, e.g., [20,21,24].
It is likely that O. africanus had a quite wide range in marginal marine areas located around the Iberian basins and carbonate platforms (Figure 5). Fossil remains today assigned to this species [18] have been recorded in the Cenomanian of Portugal [1,2,14,15,16,17,59]. In Spain, O. africanus scales have been identified in Cenomanian coastal deposits of the Cantabrian Ranges, in La Cabaña [60], and the Iberian Ranges, in Algora [47,51,52]. Outside Iberia, O. africanus has been recorded in the Cenomanian of France [45,46]; Morocco, e.g., [18,43,50,61]; Algeria [48,49]; and Egypt [13] (Figure 5).
Some scales attributed to Stromerichthys have been reported from the Albian of the Congo Basin [62] (pl.4, figures 15–16), but they could belong to different Obaichthyidae which present affinities with correlative Brazilian forms [18].
Figure 5. Palaeobiogeographical distribution of Obaichthys africanus Grande [19] in the Cenomanian of the Mediterranean Tethys. Yellow asterisk indicates the location of the remains from the Baixo Mondego region (West Portuguese Carbonate Platform (WPCP)) presented in this work, and red asterisks indicate other records of the species. Palaeogeographical map modified from [63,64,65].
Figure 5. Palaeobiogeographical distribution of Obaichthys africanus Grande [19] in the Cenomanian of the Mediterranean Tethys. Yellow asterisk indicates the location of the remains from the Baixo Mondego region (West Portuguese Carbonate Platform (WPCP)) presented in this work, and red asterisks indicate other records of the species. Palaeogeographical map modified from [63,64,65].
Geosciences 13 00372 g005
Other members of Obaichthyidae seem to be represented essentially in the Lower Cretaceous of northeastern Brazil, and the Lower Cretaceous to Cenomanian of northern Africa, e.g., [42]. As a whole, the presence of the genera Obaichthys and Dentilepisosteus in the Cenomanian of Iberia, e.g., [14,52], this work, discloses Gondwanan influences on the existing Lepisosteoidea fauna at the time.

6. Conclusions

The rectangular to subrhombical shape of the Casais dos Carecos fish scales and their ornamentation, accompanied by a middle ridge forming a caudally directed spine, with other subparallel secondary ridges, are typical features of Obaichthys africanus Grande. The vertebral centrum is cautiously attributed to O. africanus, as its parapophyses seem of the Obaichthys type, with laminar bone, and as it was found associated with the scales and no other Lepisosteoidea species remains were found in Casais dos Carecos.
Based on these new remains, O. africanus is recognized for the first time in Cenomanian beds from the northern ranges of the West Portuguese Carbonate Platform, where it stands out as an interesting addition to the local vertebrate diversity of the Upper Cretaceous units from the Baixo Mondego region. Moreover, these are the first Obaichthys remains collected in the middle to basal upper Cenomanian beds of Portugal.
The presently known palaeobiogeographic distribution of this species encompasses an area in the Mediterranean Tethys, between the central western Iberian Archipelago and the carbonate platforms of southwestern France and northern Africa.

Author Contributions

Conceptualization, R.P., F.B.-B., M.B.-C., P.M.C. and S.O.d.J.; data curation, R.P., F.B.-B., M.B.-C., P.M.C., S.O.d.J. and V.F.d.S.; funding acquisition, F.B.-B., M.B.-C., P.M.C. and S.O.d.J.; investigation, R.P., F.B.-B., M.B.-C., P.M.C. and S.O.d.J.; methodology, R.P., F.B.-B., M.B.-C., P.M.C. and S.O.d.J.; resources, R.P., F.B.-B., M.B.-C., P.M.C. and S.O.d.J.; software, R.P., F.B.-B., M.B.-C., P.M.C. and S.O.d.J.; supervision, R.P., F.B.-B. and P.M.C.; writing—original draft, R.P., F.B.-B., M.B.-C., P.M.C., S.O.d.J. and V.F.d.S.; writing—review and editing, R.P., F.B.-B., M.B.-C., P.M.C., S.O.d.J. and V.F.d.S. All authors have read and agreed to the published version of the manuscript.

Funding

Contracts Margarita Salas UCM CT31/21 (M.B.-C.) of the Complutense University of Madrid (Spain) and UI/BD/150971/2021 (S.O.d.J.) through CITEUC of the Foundation for Science and Technology (FCT, Portugal), and Research Project SBPLY/21/180501/000242 of the Junta de Castilla-La Mancha and the University of Alcalá (Spain).

Acknowledgments

To the Emeritus Professor Manuel Segura of the University of Alcalá (UAH, Spain), for his help with the preparation of this manuscript and valuable comments on the Iberian Cretaceous. To Lionel Cavin and Romain Vullo, and to the anonymous reviewer for their useful comments and the corrections that improved several aspects of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Choffat, P.L. Recueil de Monographies Stratigraphiques sur le Système Crétacique da Portugal. Première étude, Contrées de Cintra, de Bellas et de Lisbonne; Section des Travaux Géologiques du Portugal: Lisbonne, Portugal, 1885; pp. 1–68. [Google Scholar]
  2. Sauvage, H.E. Vertébrés Fossiles du Portugal. Contributions à l’étude des Poissons et des Reptiles du Jurassique et du Crétacé; Direction des Travaux Géologiques du Portugal: Lisbonne, Portugal, 1897; pp. 1–46. [Google Scholar]
  3. Rey, J. Recherches géologiques sur le Crétacé inférieur de l’Estremadura (Portugal). Mem. Serv. Geol. Port. 1972, 21, 1–477. [Google Scholar]
  4. Rey, J. Le Crétacé inférieur de la marge atlantique portugaise: Biostratigraphie, organisation séquentielle, évolution paléogéographique. Ciências Da Terra 1979, 5, 97–121. [Google Scholar]
  5. Berthou, P.Y. Le Cénomanien de l’Estrémadure portugaise. Mem. Serv. Geol. Port. N. S. 1973, 23, 1–169. [Google Scholar]
  6. Callapez, P.M.; Soares, A.F. Fósseis de Portugal: Amonóides do Cretácico Superior (Cenomaniano-Turoniano); Museu Mineralógico e Geológico da Universidade de Coimbra: Coimbra, Portugal, 2001; pp. 1–106. [Google Scholar]
  7. Choffat, P.L. Recueil de Monographies Stratigraphiques sur le Système Crétacique du Portugal—Deuxième étude—Le Crétacé Supérieur au Nord du Tage; Direction des Services Géologiques du Portugal: Lisbonne, Portugal, 1900; pp. 1–287. [Google Scholar]
  8. Berthou, P.Y. Répartition stratigraphique actualisée des principaux foraminifères benthiques du Crétacé moyen et supérieur du Bassin Occidental Portugais. Benthos 1984, 83, 45–54. [Google Scholar]
  9. Berthou, P.Y. Résumé synthétique de la stratigraphie et de la paléogéographie du Crétacé moyen et supérieur du bassin occidental portugais. Geonovas 1984, 7, 99–120. [Google Scholar]
  10. Berthou, P.Y. Albian-Turonian stage boundaries and subdivisions in the Western Portuguese Basin, with special emphasis on the Cenomanian-Turonian boundary in the Ammonite Facies and Rudist Facies. Bulletin Geol. Soc. Den. 1984, 33, 41–45. [Google Scholar] [CrossRef]
  11. Rey, J.; Dinis, J.L.; Callapez, P.M.; Cunha, P.P. Da Rotura Continental à Margem Passiva. Composição e Evolução do Cretácico de Portugal. Cadernos de Geologia de Portugal; INETI: Lisboa, Portugal, 2006; pp. 1–75. [Google Scholar]
  12. Stromer, E. Die Topographie und Geologie der Strecke Gharaq-Baharije nebst Ausführungen über die geologische Geschichte Ägyptens. Abh. Math. Phys. Kl. K. Bayer. Akad. Wiss. 1914, 26, 1–78. [Google Scholar]
  13. Weiler, W. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltierreste der Baharîje-Stufe (unterstes Cenoman). Neue Untersuchungen an den Fishresten. Abh. Bayer. Akad. Der Wiss. Math.-Naturwissenschaftliche Abt. Neue Folge 1935, 32, 1–57. [Google Scholar]
  14. Jonet, S. Contribution à l’étude des vertébrés du Crétacé portugais et spécialement du Cénomanien de l’Estrémadure. Com. Serv. Geol. Port. 1981, 67, 191–300. [Google Scholar]
  15. Jonet, S. Contribution à la connaissance de la faune ichthyologique crétacée. I-Éléments de la faune cénomanienne. Boletim Soc. Geol. Port. 1963, 15, 113–115. [Google Scholar]
  16. Jonet, S. Présence du poisson ganoïde Stromerichthys aethiopicus Weiler dans le Cénomanien portugais. Boletim Soc. Port. Ciências Nat. 1970, 13, 33–38. [Google Scholar]
  17. Jonet, S. Considérations préliminaires sur des vertébrés cénomaniens des environs de Lisbonne. Boletim Soc. Geol. Port. 1971, 17, 177–180. [Google Scholar]
  18. Cavin, L.; Boudad, L.; Tong, H.; Läng, E.; Tabouelle, J.; Vullo, R. Taxonomic composition and trophic structure of the continental bony fish assemblage from the early Late Cretaceous of southeastern Morocco. PLoS ONE 2015, 10, e0125786. [Google Scholar] [CrossRef] [PubMed]
  19. Grande, L. An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei. Copeia Am. Soc. Ichthyol. Herpetol. Spec. Publ. 2010, 6, 1–871. [Google Scholar]
  20. Callapez, P.M. Estratigrafia e Paleobiologia do Cenomaniano-Turoniano. O significado do eixo da Nazaré-Leiria-Pombal. Unpublished Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 1998. [Google Scholar]
  21. Callapez, P.M. Palaeobiogeographic evolution and marine faunas of the Mid-Cretaceous Western Portuguese Carbonate Platform. Thalassas 2008, 24, 29–52. [Google Scholar]
  22. Callapez, P.M.; Dinis, J.L.; Soares, A.F.; Marques, J.F. O Cretácico Superior da Orla Meso-Cenozóica Ocidental de Portugal (Cenomaniano a Campaniano Inferior). In Ciências Geológicas—Ensino Investigação e sua História; Cotelo Neiva, J.M., Ribeiro, A., Mendes Victor, L., Noronha, F., Ramalho, M.M., Eds.; Associação Portuguesa de Geólogos & Sociedade Geológica de Portugal: Braga, Portugal, 2010; Volume I—Geologia Clássica, Capter III—Paleontologia e Estratigrafia; pp. 331–340. [Google Scholar]
  23. Berthou, P.Y.; Ferreira Soares, A.; Lauvervat, J. Portugal, in Mid Cretaceous Events Iberian field Conference 77, guide, I. Cuadernos Geol. Iber. 1979, 5, 31–124. [Google Scholar]
  24. Callapez, P.M. The Cenomanian-Turonian central West Portuguese carbonate platform. In Cretaceous and Cenozoic Events in West Iberia Margins Field Trip Guidebook 2; Dinis, J., Proença Cunha, P., Eds.; FCTUC: Coimbra, Portugal, 2004; pp. 39–51. [Google Scholar]
  25. Callapez, P.M.; Barroso-Barcenilla, F.; Segura, M.; Soares, A.F.; Dinis, P.M.; Marques, J.F. The West Iberian Continental Margin. In The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 3: The Alpine Cycle, pp. 341–354. [Google Scholar]
  26. Barbosa, B.; Soares, A.F.; Rocha, R.B.; Manuppella, G.; Henriques, M. Carta Geológica de Portugal, Escala 1:50000. Notícia Explicativa da Folha 19A—Cantanhede; Serviços Geológicos de Portugal: Lisboa, Portugal, 1988; pp. 1–46. [Google Scholar]
  27. Dinis, J. Definição da Formação da Figueira da Foz—Aptiano a Cenomaniano do sector central da margem oeste ibérica. Comun. Inst. Geol. Min. 2001, 88, 127–160. [Google Scholar]
  28. Choffat, P.L. Recueil d’études Paléontologiques sur la Faune Crétacique du Portugal, vol. II—Les Ammonées du Bellasien, des Couches à Neolobites Vibrayeanus, du Turonien et du Sénonien; Section des Travaux Géologiques du Portugal: Lisbonne, Portugal, 1898; pp. 1–45. [Google Scholar]
  29. Soares, A.F. Estudo das formações pós-jurássicas das regiões de entre Sargento-Mor e Montemor-o-Velho (margem direita do Rio Mondego). Memórias E Notícias 1966, 62, 1–343. [Google Scholar]
  30. Soares, A.F. Contribuição para o estudo do Cretácico em Portugal (o Cretácico superior da Costa de Arnes). Memórias E Notícias 1972, 74, 1–56. [Google Scholar]
  31. Soares, A.F. A “Formação Carbonatada” na região do Baixo-Mondego. Com. Serv. Geol. Portugal 1980, 66, 99–109. [Google Scholar]
  32. Lauverjat, J. Le Crétacé Supérieur dans le Nord du Bassin Occidental Portugais. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1982. [Google Scholar]
  33. Barroso-Barcenilla, F.; Callapez, P.; Soares, A.F.; Segura, M. Cephalopod assemblages and depositional sequences from the upper Cenomanian and lower Turonian of the Iberian Peninsula (Spain and Portugal). J. Iber. Geol. 2011, 37, 9–28. [Google Scholar]
  34. López-Arbarello, A. Phylogenetic Interrelationships of Ginglymodian fishes (Actinopterygii: Neopterygii). PLoS ONE 2012, 7, e39370. [Google Scholar] [CrossRef] [PubMed]
  35. Cuvier, G. Recherches sur les Ossements Fossiles, où l’on Rétablit les Caractères de Plusieurs Animaux dont les Révolutions du Globe ont Détruit les Espèces; Tome 3; G. Dufour et E. d’Ocagne: Paris, France, 1825; pp. 1–412. [Google Scholar]
  36. Goodrich, E.S. On the scales of fish, living and extinct, and their importance in classification. Proc. Zool. Soc. Lond. 1907, 77, 751–774. [Google Scholar] [CrossRef]
  37. Brito, P.; Meunier, F.; Gayet, M. The morphology and histology of the scales of the Cretaceous gar Obaichthys (Actinopterygii, Lepisosteidae): Phylogenetic implications. Compt. Rend. l’Académie Sci. Earth Planet. Sci. Ser. IIA 2000, 331, 823–829. [Google Scholar] [CrossRef]
  38. Meunier, F.J.; Eustache, R.P.; Dutheil, D.; Cavin, L. Histology of ganoid scales from the early Late Cretaceous of the Kem Kem beds, SE Morocco: Systematic and evolutionary implications. Cybium 2016, 40, 121–132. [Google Scholar]
  39. Hay, O.P. Second bibliography and catalogue of the fossil Vertebrata of North America. Publ. Carnegie Instit. Wash. 1929, 390, 1–916. [Google Scholar]
  40. Wenz, S.; Brito, P. Découverte de Lepisosteidae (Pisces, Actinopterygii) dans le Crétacé Inférieur de la Chapada do Araripe (NE du Brésil): Systématique et phylogénie. Compt. Rend. l’Académie Sci. Paris Série II 1992, 314, 1519–1525. [Google Scholar]
  41. López-Arbarello, A.; Sferco, E. Neopterygian phylogeny: The merger assay. R. Soc. Open Sci. 2018, 5, 72337. [Google Scholar] [CrossRef]
  42. Brito, P.; Lindoso, R.; Carvalho, I.; Machado, P. Discovery of Obaichthyidae gars (Holostei, Ginglymodi, Lepisosteiformes) in the Aptian Codo Formation of the Parnaíba Basin: Remarks on paleobiogeographical and temporal range. Cret. Res. 2016, 59, 10–17. [Google Scholar] [CrossRef]
  43. Tabaste, N. Étude de restes de poissons du Crétacé saharien. Mémoire IFAN Mélanges Ichthyol. Tusin 1963, 68, 438–484. [Google Scholar]
  44. Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; et al. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview. J. Afr. Earth Sci. 2010, 57, 391–412. [Google Scholar] [CrossRef]
  45. Vullo, R. Les vertébrés du Crétacé Supérieur des Charentes (Sud-Ouest de la France): Biodiversité, taphonomie, paléoécologie et paléobiogéographie. Mémoires Géosci. Rennes 2007, 125, 1–302. [Google Scholar]
  46. Vullo, R.; Néraudeau, D. Cenomanian vertebrate assemblages from southwestern France: A new insight into the European mid-Cretaceous continental fauna. Cret. Res. 2008, 29, 935–940. [Google Scholar] [CrossRef]
  47. Torices, A.; Barroso-Barcenilla, F.; Cambra-Moo, O.; Pérez-García, A.; Segura, M. Palaeontological and palaeobiogeographical implications of the new Cenomanian vertebrate site of Algora, Guadalajara, Spain. Cret. Res. 2012, 37, 231–239. [Google Scholar] [CrossRef]
  48. Benyoucef, M.; Läng, E.; Cavin, L.; Mebarki, K.; Adaci, M.; Bensalah, M. Overabundance of piscivorous dinosaurs (Theropoda: Spinosauridae) in the mid-Cretaceous of North Africa: The Algerian dilemma. Cret. Res. 2015, 55, 44–55. [Google Scholar] [CrossRef]
  49. Benyoucef, M.; Pérez-García, A.; Bendella, M.; Ortega, F.; Vullo, R.; Bouchemla, I.; Ferré, B. The “mid”-Cretaceous (Lower Cenomanian) Continental Vertebrates of Gara Samani, Algeria. Sedimentological Framework and Palaeodiversity. Front. Earth Sci. 2022, 10, 927059. [Google Scholar] [CrossRef]
  50. Ibrahim, N.; Sereno, P.; Varricchio, D.; Martill, D.; Dutheil, D.; Unwin, D.; Baidder, L.; Larsson, H.; Zouhri, S.; Kaoukaya, A. Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys 2020, 928, 1–216. [Google Scholar] [CrossRef]
  51. Pérez-García, A.; Bardet, N.; Fregenal-Martínez, M.A.; Martín-Jiménez, M.; Mocho, P.; Narváez, I.; Torices, A.; Vullo, R.; Ortega, F. Cenomanian vertebrates from Algora (central Spain): New data on the establishment of the European Upper Cretaceous continental faunas. Cret. Res. 2020, 115, 104566. [Google Scholar] [CrossRef]
  52. Berrocal-Casero, M. Ecosistemas del Cretácico de Guadalajara: De la Costa al mar; Servicio de Publicaciones de la Diputación Provincial de Guadalajara: Guadalajara, España, 2022; pp. 1–115. [Google Scholar]
  53. Bonaparte, C.L. Prodromus systematis ichthyologiae. Nuovi Ann. Delle Sci. Nat. Bologna 1835, 2, 181–196, 272–277. [Google Scholar]
  54. Esin, D. The scale cover of Amblypterina costata (Eichwald) and the palaeoniscid taxonomy based on isolated scales. Paleontol. J. 1990, 2, 90–98. [Google Scholar]
  55. Linnaeus, C. Systema Naturæ: Per Regna tria Naturaæ, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis; Tomus 1; Editio Decima Reformata; Impensis Direct Laurentii Salvii: Holmi, Sweden, 1758; pp. 1–824. [Google Scholar]
  56. de Lacépède, B. Histoire Naturelle des Poisons; Tome 5; Plassan: Paris, France, 1803; pp. 1–392. [Google Scholar]
  57. Bloch, M.E.; Schneider, J.G. Systema Ichthyologiae Iconibus CX Illustratum; Sumtibus Auctoris Impressum et Bibliopolio Sanderiano Commissum: Berolini, Germany, 1801; pp. 1–584. [Google Scholar]
  58. Brito, P.; Yabumoto, Y. An updated review of the fish faunas from the Crato and Santana formations in Brazil, a close relationship to the Tethys fauna. Bull. Kitakyushu Mus. Nat. Hist. Hum. Soc. Série A 2011, 9, 107–136. [Google Scholar]
  59. Veiga Ferreira, O. Fauna ictiológica do Cretácico de Portugal. Com. Serv. Geol. Port. 1961, 45, 251–278. [Google Scholar]
  60. Vullo, R.; Bernárdez, E.; Buscalioni, A. Vertebrates from the middle?-late Cenomanian La Cabaña Formation (Asturias, northern Spain): Palaeoenvironmental and palaeobiogeographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 276, 120–129. [Google Scholar] [CrossRef]
  61. Dutheil, D.B. An overview of the freshwater fish fauna from the Kem Kem beds (Late Cretaceous: Cenomanian) of southeastern Morocco. In A Mesozoic Fishes 2—Systematics and Fossil Record; Arratia, G., Tintori, A., Eds.; Verlag Dr. Friedrich Pfeil: Munich, Germany, 1999; pp. 553–563. [Google Scholar]
  62. Casier, E. Matériaux pour la Faune Ichthyologique Eocrétacique du Congo. Annales du Musée Royal de l’Afrique Centrale-Tervuren, Belgique, série 8. Sci. Géol. 1961, 39, 1–96. [Google Scholar]
  63. Philip, J.; Floquet, M. Late Cenomanian. In Atlas Peri-Tethys, Map 14; Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S., Sandulescu, M., Eds.; CVGM/CGMV: Paris, France, 2000. [Google Scholar]
  64. Stampfli, G.; Borel, G.; Cavazza, W.; Mosar, J.; Ziegler, P.A. The Paleotectonic Atlas of the Peritethyan Domain; European Geophysical Society: Munich, Germany, 2001; CD ROM ISBN 3-9804862-6-5. [Google Scholar]
  65. Gelabert, B.; Sàbat, F.; Rodríguez-Perea, A. A new proposal for the Late Cenozoic geodynamic evolution of the western Mediterranean. Terra Nova 2002, 14, 93–100. [Google Scholar] [CrossRef]
Figure 1. Geographical and geological context of the Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal). (A) General location of the site in the Iberian context. (B) Simplified geological map with the Cretaceous and Quaternary units of the Baixo Mondego region and the location of the Beiraterra quarry. Cretaceous—1: Figueira da Foz Formation (upper Aptian to middle Cenomanian alluvial to marginal marine coarse sandstones); 2: Tentúgal Formation (uppermost middle Cenomanian to lower Turonian platform carbonates); 3: Furadouro Formation (lower to upper Turonian marginal marine to alluvial micaceous sandstones); 4: Oiã Formation (Coniacian and Santonian alluvial coarse sandstones); Pleistocene—5: Fluvial terraces; Holocene—6: Alluvial surface deposits. (C) Stratigraphic section of the uppermost middle to upper Cenomanian transgressive carbonate platform succession at the site. Red asterisks indicate the location of the site, and blue asterisk indicates the levels with Obaichthys africanus Grande [19].
Figure 1. Geographical and geological context of the Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal). (A) General location of the site in the Iberian context. (B) Simplified geological map with the Cretaceous and Quaternary units of the Baixo Mondego region and the location of the Beiraterra quarry. Cretaceous—1: Figueira da Foz Formation (upper Aptian to middle Cenomanian alluvial to marginal marine coarse sandstones); 2: Tentúgal Formation (uppermost middle Cenomanian to lower Turonian platform carbonates); 3: Furadouro Formation (lower to upper Turonian marginal marine to alluvial micaceous sandstones); 4: Oiã Formation (Coniacian and Santonian alluvial coarse sandstones); Pleistocene—5: Fluvial terraces; Holocene—6: Alluvial surface deposits. (C) Stratigraphic section of the uppermost middle to upper Cenomanian transgressive carbonate platform succession at the site. Red asterisks indicate the location of the site, and blue asterisk indicates the levels with Obaichthys africanus Grande [19].
Geosciences 13 00372 g001
Figure 2. Panoramic views of Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal), showing the middle and upper Cenomanian succession. (A) Panoramic view of the west front of the quarry. (B) Detailed view of the north front of the quarry. (C) Block from “Unit B” of Tentúgal Formation with a pavement of Gyrostrea ouremensis. (D) Panoramic view of the east front of the quarry.
Figure 2. Panoramic views of Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal), showing the middle and upper Cenomanian succession. (A) Panoramic view of the west front of the quarry. (B) Detailed view of the north front of the quarry. (C) Block from “Unit B” of Tentúgal Formation with a pavement of Gyrostrea ouremensis. (D) Panoramic view of the east front of the quarry.
Geosciences 13 00372 g002
Figure 3. Obaichthys africanus Grande [19]; scales from Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal). (A) DCT-CC-15, external view. (B,C) DCT-CC-17, external (B) and inner (C) views. (D) DCT-CC-16, external view. (E) DCT-CC-18, external view. (F) DCT-CC-32, external view. (G) DCT-CC-34, external view. Abbreviations: ad pr, anterior dorsal process; dp, dorsal peg; mps, strong middle posterior spine; mr, median ridge; r, ridges; sk, socket. Scale bar = 1 cm.
Figure 3. Obaichthys africanus Grande [19]; scales from Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal). (A) DCT-CC-15, external view. (B,C) DCT-CC-17, external (B) and inner (C) views. (D) DCT-CC-16, external view. (E) DCT-CC-18, external view. (F) DCT-CC-32, external view. (G) DCT-CC-34, external view. Abbreviations: ad pr, anterior dorsal process; dp, dorsal peg; mps, strong middle posterior spine; mr, median ridge; r, ridges; sk, socket. Scale bar = 1 cm.
Geosciences 13 00372 g003
Figure 4. Obaichthys africanus Grande [19]; vertebral centrum DCT-CC-19 from Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal). (AF) Anterior (A), posterior (B), right lateral (C), left lateral (D), dorsal (E), and ventral (F) views. Abbreviations: fs, lateral fossa; hg, hemal groove; nc, neural canal; pps, parapophyses; pst pr, longitudinal parasagittal ridges. Scale bar = 0.5 cm.
Figure 4. Obaichthys africanus Grande [19]; vertebral centrum DCT-CC-19 from Beiraterra quarry vertebrate fossil site, Casais dos Carecos, Coimbra (Baixo Mondego region of West Portugal). (AF) Anterior (A), posterior (B), right lateral (C), left lateral (D), dorsal (E), and ventral (F) views. Abbreviations: fs, lateral fossa; hg, hemal groove; nc, neural canal; pps, parapophyses; pst pr, longitudinal parasagittal ridges. Scale bar = 0.5 cm.
Geosciences 13 00372 g004
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pimentel, R.; Barroso-Barcenilla, F.; Berrocal-Casero, M.; Callapez, P.M.; Ozkaya de Juanas, S.; dos Santos, V.F. On the Occurrence of the Gar Obaichthys africanus Grande in the Cretaceous of Portugal: Palaeoecological and Palaeobiogeographical Implications. Geosciences 2023, 13, 372. https://doi.org/10.3390/geosciences13120372

AMA Style

Pimentel R, Barroso-Barcenilla F, Berrocal-Casero M, Callapez PM, Ozkaya de Juanas S, dos Santos VF. On the Occurrence of the Gar Obaichthys africanus Grande in the Cretaceous of Portugal: Palaeoecological and Palaeobiogeographical Implications. Geosciences. 2023; 13(12):372. https://doi.org/10.3390/geosciences13120372

Chicago/Turabian Style

Pimentel, Ricardo, Fernando Barroso-Barcenilla, Mélani Berrocal-Casero, Pedro Miguel Callapez, Senay Ozkaya de Juanas, and Vanda F. dos Santos. 2023. "On the Occurrence of the Gar Obaichthys africanus Grande in the Cretaceous of Portugal: Palaeoecological and Palaeobiogeographical Implications" Geosciences 13, no. 12: 372. https://doi.org/10.3390/geosciences13120372

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop