Effect of Moisture Content on Subgrade Soils Resilient Modulus for Predicting Pavement Rutting
Abstract
:1. Introduction
2. Objectives
- Perform repeated load triaxial tests on remolded samples of subgrade soil collected from beneath existing pavements. Determine MR of these subgrade soils at different moisture contents above and below the optimum moisture content.
- Conduct CBR tests on specimens remolded at different moisture contents and densities.
- Develop a correlation between CBR and the resilient modulus from repeated load triaxial tests. Establish statistical models between soil index properties and the resilient modulus model parameters for remolded soils.
- Back-calculate MR(FWD) from FWD tests performed on existing pavements where the subgrade soil samples were obtained. Relate the laboratory-measured MR(Lab) to the back-calculated MR(FWD) and obtain the coefficient of conversion (C-factor).
- Evaluate the effect of subgrade resilient modulus obtained for a range of moisture contents and densities on pavement rutting using the MEPDG software v2.6.1 for different pavement base types.
3. Methodology
4. Results
4.1. Index Test Results
4.2. CBR Test Results
4.3. Resilient Modulus Results
4.4. MR Model Parameters and the Effects of Moisture Content
4.5. Correlation of Resilient Modulus with CBR Values
4.6. Correlation of Laboratory-Measured Resilient Modulus and MR Obtained from Falling Weight Deflectometer
4.7. Correlation of Resilient Modulus Model Parameters with Soil Index Properties
5. Effect of Subgrade Resilient Modulus on Pavement Rutting
6. Conclusions
- The peak value of both CBR and MR(Lab) was found on the dry side of and at a γd less than the maximum.
- MR(Lab) decreases as the moisture content increases. Specimens compacted at −2% showed higher MR(Lab) than specimens compacted at . Specimens compacted at +2% showed lower MR(Lab) than specimens compacted at .
- The resilient modulus for the specimens compacted on the wet side of is less sensitive to the confining pressure at higher cyclic stress.
- A good correlation was made between MR(Lab) and CBR. MR(Lab) increases with increasing CBR for the different soils.
- Percent passing the No. 4 sieve, liquidity index, optimum moisture content, and maximum dry density showed a statistically significant effect on the coefficients of the generalized constitutive resilient modulus model.
- The locally developed constitutive models of coefficients predicted MR more accurately than the universal LTPP models in lower bias and standard error.
- Laboratory-measured MR(Lab) predicted higher pavement rutting compared to FWD.
- If a graded aggregate base is used, the soil moisture condition significantly influences the subgrade MR and the resulting subgrade rutting. However, if a higher stiffness base layer is used (i.e., cement-stabilized base or asphalt-treated aggregate base), the moisture effect is less significant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaghloul, S.; Ayed, A.; Halim, A.A.; Vitillo, N.; Sauber, R. Investigations of Environmental and Traffic Impacts on Mechanistic-Empirical Pavement Design Guide Predictions. Transp. Res. Rec. 2006, 1967, 148–159. [Google Scholar] [CrossRef]
- Jadoun, F.M.; Kim, Y.R. Calibrating Mechanistic-Empirical Pavement Design Guide for North Carolina. Transp. Res. Rec. 2012, 2305, 131–140. [Google Scholar] [CrossRef]
- Zapata, C.E.; Andrei, D.; Witczak, M.W.; Houston, W.N. Incorporation of Environmental Effects in Pavement Design. Transp. Res. Rec. 2007, 8, 667–693. [Google Scholar] [CrossRef]
- Johanneck, L.; Khazanovich, L. Comprehensive Evaluation of Effect of Climate in Mechanistic–Empirical Pavement Design GuidePredictions. Transp. Res. Rec. J. Transp. Res. Board 2010, 2170, 45–55. [Google Scholar] [CrossRef]
- Saxena, P.; Tompkins, D.; Khazanovich, L.; Balbo, T. Evaluation of Characterization and Performance Modeling of Cementitiously Stabilized Layers in the Mechanistic-Empirical Pavement Design Guide. Transp. Res. Rec. 2010, 2186, 111–119. [Google Scholar] [CrossRef]
- Hossain, Z.; Zaman, M.; Doiron, C.; Solanki, P. Evaluation of Mechanistic-Empirical Design Guide Input Parameters for Resilient Modulus of Subgrade Soils in Oklahoma. J. Test. Eval. 2011, 39, 803–814. [Google Scholar]
- Singh, D.; Zaman, M.; Commuri, S. Evaluation of Measured and Estimated Dynamic Moduli for Selected Asphalt Mixed. J. ASTM Int. 2011, 8, 1–19. [Google Scholar]
- Xu, Q.; Ruiz, M.; Moravec, M.; Rasmussen, R.O. Simulation of Unbound Material Resilient Modulus Effects on Mechanistic-Empirical Pavement Designs. Mater. Struct. 2013, 46, 1089–1100. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials (AASHTO). Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition; AASHTO: Washington, DC, USA, 2008. [Google Scholar]
- Orobio, A.; Zaniewski, J.P. Sampling-Based Sensitivity Analysis of the Mechanistic–Empirical Pavement Design Guide Applied to Material Inputs. Transp. Res. Rec. J. Transp. Res. Board 2011, 2226, 85–93. [Google Scholar] [CrossRef]
- Islam, K.M.; Gassman, S.L. Predicting Flexible Pavement Distress and IRI Considering Subgrade Resilient Modulus of Fine-Grained Soils Using MEPDG. Materials 2023, 16, 1126. [Google Scholar] [CrossRef]
- Ksaibati, K.; Armaghani, J.; Fisher, J. Effect of Moisture on Modulus Values of Base and Subgrade Materials. Transp. Res. Rec. J. Transp. Res. Board 2000, 1716, 20–29. [Google Scholar] [CrossRef]
- Flintsch, G.W.; Al-Qadi, I.L.; Park, Y.; Brandon, T.L.; Appea, A. Relation between Back-calculated and Laboratory Measured Resilient Modulus of Unbound Materials. Transp. Res. Rec. 2003, 1849, 1177–1182. [Google Scholar] [CrossRef]
- Nazzal, M.D.; Mohammad, L.N. Estimation of Modulus Resilient of Subgrade Soils using Falling Weight Deflectometer. Transp. Res. Rec. 2010, 2186, 1–10. [Google Scholar] [CrossRef]
- Islam, K.M.; Gassman, S.; Rahman, M.M. Field and laboratory characterization of subgrade resilient modulus for pavement mechanistic-empirical pavement design guide application. Transp. Res. Rec. 2020, 2674, 921–930. [Google Scholar] [CrossRef]
- Islam, K.M.; Gassman, S.L. Estimation of Subgrade Modulus Using Falling Weight Deflectometer. In Tran-SET 2021; American Society of Civil Engineers: Reston, VA, USA, 2021; pp. 247–258. [Google Scholar] [CrossRef]
- Islam, K.M.; Gassman, S.L. Influence of Subgrade Resilient Modulus Selection Methodology on AASHTOWare Pavement ME Design. Geo-Congress 2022, 192–204. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Bilyeu, J. Application of Dynamic Cone Penetrometer in Evaluation of Base and Subgrade Layers. Transp. Res. Rec. 2001, 1764, 1–10. [Google Scholar] [CrossRef]
- Heukelom, W.; Klomp, A.J.G. Dynamic Testing as a Means of Controlling Pavement during and after Construction. In Proceedings of the 1st International Conference on the Structural Design of Asphalt Pavement, Ann Arbor, MI, USA, 20–24 August 1962; University of Michigan: Ann Arbor, MI, USA, 1962. [Google Scholar]
- George, K.P. Prediction of Resilient Modulus from Soil Properties Publication FHWA-MS-04-172, F.H.W.A.; US Department of Transportation: Washington, DC, USA, 2004.
- Garg, N.; Larkin, A.; Brar, H. A Comparative Subgrade Evaluation using CBR, Vane Shear, Light Weight Deflectometer, and Resilient Modulus Tests. In Proceedings of the 8th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Champaign, IL, USA, 29 June–2 July 2009; Volume 5, pp. 57–64. [Google Scholar]
- Yau, A.; Von Quintus, H.L. Predicting Elastic Response Characteristics of Unbound Materials and Soils. Transp. Res. Rec. 2004, 1874, 47–56. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.R. Resilient Behavior of Compacted Subgrade Soils Under the Repeated Triaxial Test. Constr. Build. Mater. 2007, 21, 1470–1479. [Google Scholar] [CrossRef]
- Malla, R.B.; Joshi, S. Resilient Modulus Prediction Models Based on Analysis of LTPP Data for Subgrade Soils and Experimental Verifications. Int. J. Transp. Eng. 2007, 133, 491–504. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, B.; Drumm, E.; Xiang, S.; Qiao, D.; Udeh, S. Soil Resilient Modulus Regressed from Physical Properties and Influence of Seasonal Variation on Asphalt Pavement Performance. J. Transp. Eng. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Titi, H.H.; English, R.; Faheem, A. Resilient Modulus of Fine-Grained Soils for Mechanistic-Empirical Pavement Design. Transp. Res. Rec. 2015, 2510, 24–35. [Google Scholar] [CrossRef]
- Guan, Y.; Drumm, E.C.; Jackson, N.M. Weighting Factor for Seasonal Subgrade Resilient Modulus. Transp. Res. Rec. 1998, 1821, 47–55. [Google Scholar] [CrossRef]
- Heydinger, A.G. Evaluation of Seasonal Effects on Subgrade Soils. Transp. Res. Rec. 2003, 1619, 94–101. [Google Scholar] [CrossRef]
- Khoury, N.N.; Zaman, M.M. Correlation Between Resilient Modulus, Moisture Variation, and Soil Suction for Subgrade Soils. Transp. Res. Rec. 2004, 1874, 99–107. [Google Scholar] [CrossRef]
- Ceratti, J.A.; Gehling, W.Y.; Nunez, W. Seasonal Variation of a Subgrade Soil Resilient Modulus in Southern Brazil. Transp. Res. Rec. 2004, 1876, 165–173. [Google Scholar] [CrossRef]
- Puppala, A.J.; Saride, S.; Chomtid, S. Experimental and Modeling Studies of Permanent Strains of Subgrade Soils. J. Geotech. Geoenvironmental Eng. 2009, 135, 1379–1389. [Google Scholar] [CrossRef]
- Hicks, R.G.; Monismith, C.L. Factors Influencing the Resilient Properties of Granular Materials, Transportation Research Record 345, Transportation Research Board; National Research Council: Washington, DC, USA, 1971; pp. 15–31. [Google Scholar]
- Taheri, A.; Tatsuoka, F. Primary stress–strain relations inferred from multiple-step triaxial compression test results. Soils Found 2012, 52, 748–766. [Google Scholar] [CrossRef]
- De Freitas, J.B.; de Rezende, L.R.; de F.N. Gitirana, G., Jr. Prediction of the resilient modulus of two tropical subgrade soils considering unsaturated conditions. Eng. Geol. 2020, 270, 105580. [Google Scholar] [CrossRef]
- Perez-Garcia, N.; Fredlund, D.; Garnica-Anguas, P.; Mestas-Martinez, N. A model to predict changes in resilient modulus resulting from wetting and drying. Infraestruct. Vial 2015, 17, 23–30. [Google Scholar] [CrossRef]
- Khoury, N.; Brooks, R.; Khoury, C. Environmental influences on the engineering behavior of unsaturated undisturbed subgrade soils: Effect of soil suctions on resilient modulus. Int. J. Geotech. Eng. 2009, 3, 303–311. [Google Scholar] [CrossRef]
- AASHTO T 193; Standard Test Method of Test for the California Bearing Ratio Test. Standard Specifications for Transportation Materials and Methods of Sampling and Testing. AASHTO: Washington, DC, USA, 2003.
- AASHTO-T307-99; Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials Standard Method of Test for Soils and Aggregate Materials. AASHTO: Washington, DC, USA, 2017.
- NCHRP 1-28A; Laboratory Determination of Resilient Modulus for Flexible Pavement Design. National Cooperative Highway Research Program, Digest No. 285. AASHTO: Washington, DC, USA, 2004; pp. 1–52.
- Dynatest Consulting, Inc. Dynatest FWD/HWD Test Systems. 2009. Available online: http://www.dynatest.com/media/4180/3_dynatest_fwd_hwd.pdf (accessed on 3 April 2022).
- AASHTO ME Back-Calculation User Manual, User Manual for Pavement ME Deflection. Data Analysis and Back-Calculation Tool. 2017. Available online: https://me-design.com/MEDesign/data/BcT_UserManual.pdf (accessed on 7 February 2023).
- Maher, A.; Bennert, T.; Gucunski, N. Papp WJ Resilient Modulus Properties of New Jersey Subgrade Soils Publication FHWA-NJ-00-01, F.H.W.A.; US Department of Transportation: Washington, DC, USA, 2000.
- Ng, K.; Henrichs, Z.R.; Ksaibati, K.; Wulff, S.S. Measurement and Estimation of the Resilient Modulus of Subgrade Materials for Mechanistic-Empirical Pavement Design Guide in Wyoming. Compendium of Papers of the 95th TRB Annual Meeting (CD-ROM); Transportation Research Board: Washington, DC, USA, 2016. [Google Scholar]
- Gassman, S.L.; Rahman, M.M. Calibration of the AASHTO Pavement Design Guide to South Carolina Conditions-Phase I; FHWA-SC-16-02; US Department of Transportation: Washington, DC, USA, 2016.
- Rahman, M.M.; Gassman, S.L. Data Collection Experience for Preliminary Calibration of the AASHTO Pavement Design Guide for Flexible Pavements in South Carolina. Int. J. Pavement Res. Technol. 2018, 11, 445–457. [Google Scholar] [CrossRef]
- Rahman, M.M.; Gassman, S.L. Effect of Resilient Modulus of Undisturbed Subgrade Soils on Pavement Rutting. Int. J. Geotech. Eng. 2019, 13, 152–161. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Bergan, A.T.; Wong, P.K. Relation between Resilient Modulus and Stress Research Conditions for Cohesive Subgrade Soils. Transp. Res. Rec. 1977, 642, 73–81. [Google Scholar]
- Drumm, E.C.; Reeves, J.S.; Madgett, M.R.; Trolinger, W.D. Subgrade Resilient Modulus Correction for Saturation Effects. J. Geotech. Geo-Environ. Eng. 1977, 123, 663–670. [Google Scholar] [CrossRef]
- Butalia, T.S.; Huang, J.; Kim, D.G.; Croft, F. Effect of Moisture Content and Pore Water Pressure Build on Resilient Modulus of Cohesive Soils. In Resilient Modulus Testing for Pavement Components, ASTM STP 1437; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Tarefder, R.A.; Ahmed, M.U. Modeling of the FWD deflection basin to evaluate airport pavements. Int. J. Geomech. 2013, 14, 205–213. [Google Scholar] [CrossRef]
- Johnson, A.M. Design of Flexible Pavement Overlays by Dynamic Deflections. Ph.D. Dissertation, University of South Carolina, Columbia, SC, USA, 1992. [Google Scholar]
- Islam, K.M.; Rahman, M.M.; Gassman, S.L. Use of FWD Data to Subdivide Pavement Sections for MEPDG Calibration. In Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 426–435. [Google Scholar]
- Lee, S.W.; Mahoney, J.P.; Jackson, N.C. Verification of Backcalculation of Pavement Moduli. J. Transp. Res. Rec. 1988, 1196, 131–135. [Google Scholar]
- Hossain, M.; Romanoschi, S.; Gisi, A.J. Seasonal and Spatial Variations of Subgrade Response. Geotech. Spec. Publ. 2000, 98, 150–167. [Google Scholar]
County. | Pavement A | Pavement B | Pavement C | |
---|---|---|---|---|
Base Year AADTT | 368 | 720 | 490 | |
AC Layer and Thickness (mm) | PG 76-22 (96.5) | PG 76-22 (142.2) | PG 76-22 (86.3) | |
Effective Binder Content (%) | 11.6 | |||
Air Void (%) | 7 | |||
Base Layer and Thickness (mm) | Cement Stabilized (152.2) | Graded Aggregate (152.2) | Asphalt Aggregate (147.3) | |
Base Elastic Modulus, MPa | 6894 | 138 | 6894 | |
Subgrade Layer and Thickness (mm) | A-3 (semi-infinite) | A-2-4 (semi-infinite) | A-7-6 (semi-infinite) | |
Subgrade Resilient Modulus, MPa | MR (Lab, Dry) 1 | 114 | 112 | 107 |
MR (Lab, wopt) 1 | 96 | 77 | 84 | |
MR (Lab, Wet) 1 | 76 | 45 | 38 | |
MR (FWD) 2 | 310 | 361 | 190 | |
MR (Default) 3 | 110 | 124 | 90 |
Site | Bore- Hole No. | Passing No. 200 Sieve (%) | wL (%) | wP (%) | PI (%) | (kN/m3) | Soil Classification | |||
---|---|---|---|---|---|---|---|---|---|---|
USCS | AASHTO | |||||||||
Pavement A | A-1 | 1.5 | NP | NP | NP | 2.65 | 9.3 | 19.5 | SP | A-1-b |
A-4 | 0.8 | NP | NP | NP | 2.71 | 12.2 | 17 | SP | A-3 | |
Pavement B | B-3 | 24.7 | 26 | 17 | 9 | 2.66 | 10.1 | 19.8 | SC | A-2-4 |
B-6 | 20.6 | 18 | 17 | 1 | 2.39 | 10.7 | 19.4 | SM | A-2-4 | |
B-8 | 22.8 | 20 | 16 | 4 | 2.6 | 10.6 | 19.5 | SC-SM | A-2-4 | |
Pavement C | C-2 | 43.8 | 45 | 29 | 16 | 2.55 | 15.1 | 17.6 | SM | A-7-6 |
C-4 | 51.2 | 36 | 26 | 10 | 2.52 | 16.3 | 17.7 | ML | A-4 | |
C-5 | 44 | 42 | 28 | 14 | 2.51 | 13.8 | 18.5 | SC | A-7-6 |
Site | Soil | State | γd (kN/m3) | MC (%) | k1 | k2 | k3 | R2 | MR (MPa) |
---|---|---|---|---|---|---|---|---|---|
Pavement A | A-1 (SP/A-1-b) | Dry | 19.01 | 7.8 | 1134 | 0.5054 | −1.3099 | 0.97 | 121 |
wopt | 19.26 | 9.5 | 777 | 0.3886 | −0.3628 | 0.96 | 89 | ||
Wet | 18.74 | 11.2 | 449 | 0.3814 | 1.2511 | 0.79 | 62 | ||
A-4 (SP/A-3) | Dry | 17.04 | 10.3 | 830 | 0.4098 | 0.5921 | 0.99 | 107 | |
wopt | 17.12 | 11.9 | 763 | 0.5265 | 0.4989 | 0.99 | 103 | ||
Wet | 16.37 | 13.7 | 694 | 0.4645 | 0.4067 | 0.99 | 90 | ||
Pavement B | B-3 (SC/A-2-4) | Dry | 19.35 | 8.5 | 1219 | 0.5585 | −1.8260 | 0.92 | 125 |
wopt | 19.57 | 10.2 | 617 | 0.5820 | −1.7710 | 0.70 | 65 | ||
Wet | 18.60 | 12.0 | 303 | 0.2642 | 1.6491 | 0.63 | 42 | ||
B-6 (SM/A-2-4) | Dry | 18.49 | 7.0 | 955 | 0.6050 | −0.7623 | 0.96 | 114 | |
wopt | 19.04 | 8.9 | 667 | 0.7167 | −0.4379 | 0.97 | 87 | ||
Wet | 18.68 | 10.5 | 480 | 0.6250 | 0.5291 | 0.86 | 68 | ||
B-8 (SC-SM/A-2-4) | Dry | 19.45 | 8.0 | 879 | 0.8272 | −2.1703 | 0.96 | 97 | |
wopt | 19.56 | 9.3 | 617 | 0.6108 | −0.1492 | 0.82 | 79 | ||
Wet | 18.14 | 11.9 | 188 | 0.7616 | −0.1470 | 0.81 | 26 | ||
Pavement C | C-2 (SM/A-7-6) | Dry | 17.45 | 13.2 | 1047 | 0.4518 | −3.0797 | 0.95 | 89 |
wopt | 17.72 | 14.7 | 1147 | 0.4173 | −4.4504 | 0.94 | 81 | ||
Wet | 17.39 | 16.7 | 292 | 0.4084 | −4.7921 | 0.67 | 20 | ||
C-4 (ML/A-4) | Dry | 15.39 | 16.9 | 1183 | 0.3862 | −2.1402 | 0.87 | 109 | |
wopt | 16.24 | 18.1 | 1192 | 0.3151 | −3.1520 | 0.90 | 94 | ||
Wet | 16.21 | 19.8 | 1037 | 0.4409 | −5.1491 | 0.90 | 68 | ||
C-5 (SC/A-7-6) | Dry | 18.25 | 11.2 | 1288 | 0.3607 | −1.8520 | 0.85 | 122 | |
wopt | 18.46 | 13.2 | 1093 | 0.6480 | −5.4391 | 0.94 | 76 | ||
Wet | 18.08 | 14.3 | 389 | 0.6976 | −6.1519 | 0.87 | 25 |
Moisture Condition | Coarse-Grained Soils | Fine-Grained Soils | Combined Coarse and Fine-Grained Soils | |||
---|---|---|---|---|---|---|
C1 | C2 | C1 | C2 | C1 | C2 | |
−2% | 0.33 | 3.06 | 0.30 | 3.38 | 0.30 | 3.6 |
0.25 | 3.97 | 0.23 | 4.31 | |||
0.17 | 5.82 | 0.10 | 9.58 |
Models | F Value | |
---|---|---|
) | 0.43 | 3.58 * |
0.61 | 6.06 *** | |
0.71 | 21.01 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Gassman, S.L.; Islam, K.M. Effect of Moisture Content on Subgrade Soils Resilient Modulus for Predicting Pavement Rutting. Geosciences 2023, 13, 103. https://doi.org/10.3390/geosciences13040103
Rahman MM, Gassman SL, Islam KM. Effect of Moisture Content on Subgrade Soils Resilient Modulus for Predicting Pavement Rutting. Geosciences. 2023; 13(4):103. https://doi.org/10.3390/geosciences13040103
Chicago/Turabian StyleRahman, Md Mostaqur, Sarah L. Gassman, and Kazi Moinul Islam. 2023. "Effect of Moisture Content on Subgrade Soils Resilient Modulus for Predicting Pavement Rutting" Geosciences 13, no. 4: 103. https://doi.org/10.3390/geosciences13040103
APA StyleRahman, M. M., Gassman, S. L., & Islam, K. M. (2023). Effect of Moisture Content on Subgrade Soils Resilient Modulus for Predicting Pavement Rutting. Geosciences, 13(4), 103. https://doi.org/10.3390/geosciences13040103