Contribution of Geosciences to Cultural Heritage Conservation Assessment: The Case Study of the Loggiato dei Cappuccini in Comacchio (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Visual Inspection
2.2. Surface Conductivity and Water Content Analyses
2.3. Porosimetric Analyses
2.4. Chemical and Petrographic Analyses
2.5. Stratigraphic Analyses
3. Results
3.1. Surface Conductivity
3.2. Water Content and Dosage of Soluble Salts
- -
- -
- Section 2 is the external part colored in light yellow and green in Figure 5, which is wet (water content 5.88%), but with almost normal values for the content of soluble salts (60.35 μS cm−1). For a clearer interpretation of the data obtained on the measurement of the water content and dosage of soluble salts (Table 2), it should be noted that generally dry brick masonry presents water contents of about 0.5–0.8%, values between 0.8–3% are typical of a humid context, values higher than 3% are considered typical of a very humid context, and values higher than 5% are due to a wet background. As for soluble salt contents, values lower than 50 μS cm−1 indicate a very low presence of soluble salts, normal values are comprised between 50 and 70 μS cm−1, and anomalous values are between 70 and 150 μS cm−1. Higher values (>150 μS cm−1) are treated as very anomalous.
3.3. Plaster Porosity
3.4. Chemical and Petrographic Features of Plasters
3.5. Stratigraphic Features of the Painted Layer
- -
- LAYER A: overall white plaster, composed of binder and carbonate aggregate. The thickness was indefinable. The boundary with the overlying layer was blurred and the adhesion was good.
- -
- LAYER B: pictorial layer of overall blue color. The thickness varied from 80 to 220 μm. No powdery blue pigments were clearly observed, from which the use of liquid organic pigments (probably phthalocyanine) was deduced. Rare red ocher grains were observed.
- -
- LAYER A: overall white plaster, composed of binder and carbonate aggregate. The thickness was indefinable. The limit with the overlying layer was instead clear and the adhesion was altered.
- -
- LAYER B: pictorial layer of overall blue color, with evident superficial discoloration and patches of leopard in the mass. The thickness varied from 20 to 240 μm. No powdery blue pigments were observed, from which the use of liquid organic pigments (probably phthalocyanine) was deduced.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Namur Declaration. Guidelines for the European Cultural Heritage Strategy for the 21st Century. In Proceedings of the 6th Session of the Council of Europe Conference of Ministers Responsible for Cultural Heritage, Namur, Belgium, 23–24 April 2015; Council of Europe: Strasbourg, France, 2015. Available online: https://rm.coe.int/16806a89ae (accessed on 10 January 2023).
- Wahlström, M. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland, 2015; Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 10 January 2023).
- A/RES/71/256; New Urban Agenda—Habitat III. United Nations: New York, NY, USA, 2017. Available online: https://habitat3.org/the-new-urban-agenda/ (accessed on 10 January 2023).
- Spennemann, D.H.R. Cultural heritage conservation during emergency management: Luxury or necessity? Int. J. Publ. Adm. 1999, 22, 745–804. [Google Scholar] [CrossRef]
- Cultural Heritage Counts for Europe. Full Report of the EU Project “Cultural Heritage Counts for Europe: Towards a European Index for Cultural Heritage”. 2015. Available online: https://www.europanostra.org/our-work/policy/cultural-heritage-counts-europe/ (accessed on 10 January 2023).
- UNESCO. Culture 2030 Indicators: Thematic Indicators for Culture in the 2030 Agenda; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2019; Available online: http://uis.unesco.org/sites/default/files/documents/publication_culture_2020_indicators_en.pdf (accessed on 11 January 2023).
- Resolution A/RES/70/1; Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations General Assembly; United Nations: Paris, France, 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 12 January 2023).
- Hosagrahar, J.; Soule, J.; Girard, L.F.; Potts, A. Cultural heritage, the UN sustainable development goals, and the new urban agenda. BDC Boll. Del Cent. Calza Bini 2016, 16, 37–54. [Google Scholar] [CrossRef]
- Romão, X.; Bertolin, C. Risk protection for cultural heritage and historic centres: Current knowledge and further research needs. Int. J. Disaster Risk Reduc. 2022, 67, 102652. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Geoheritage and Cultural Heritage—A Review of Recurrent and Interlinked Themes. Geosciences 2022, 12, 98. [Google Scholar] [CrossRef]
- Catana, M.M.; Brilha, J.B. The Role of UNESCO Global Geoparks in Promoting Geosciences Education for Sustainability. Geoheritage 2020, 12, 1. [Google Scholar] [CrossRef]
- Melelli, L. “Perugia Upside-Down”: A Multimedia Exhibition in Umbria (Central Italy) for Improving Geoheritage and Geotourism in Urban Areas. Resources 2019, 8, 148. [Google Scholar] [CrossRef]
- Vegas, J.; Díez-Herrero, A. An Assessment Method for Urban Geoheritage as a Model for Environmental Awareness and Geotourism (Segovia, Spain). Geoheritage 2021, 13, 27. [Google Scholar] [CrossRef]
- Marjanović, M.; Tomić, N.; Radivojević, A.R.; Marković, S.B. Assessing the Geotourism Potential of the Niš City Area (Southeast Serbia). Geoheritage 2021, 13, 70. [Google Scholar] [CrossRef]
- Santo, A.; Agostini, B.; Checcucci, A.; Pecchioni, E.; Perito, B. An interdisciplinary study of biodeterioration of the external marbles of Santa Maria del Fiore Cathedral, Florence (IT). In Proceedings of the International Conference Florence Heritech: The Future of Heritage Science and Technologies, Florence, Italy, 14–16 October 2020. [Google Scholar]
- Tiano, P. Biodegradation of Cultural Heritage: Decay Mechanisms and Control Methods. In Proceedings of the 9th ARIADNE Workshop “Historic Material and their Diagnostic” ARCCHIP, Prague, Czech Republic, 22–28 April 2002; Available online: http://www.arcchip.cz/w09/w09_tiano.pdf (accessed on 15 January 2023).
- Mascaro, M.E.; Pellegrino, G.; Palermo, A.M. Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy. Sustainability 2022, 14, 34. [Google Scholar] [CrossRef]
- Gelichi, S. L’Isola del Vescovo; Edizioni All’insegna del Giglio s.a.s.: Firenze, Italy, 2009. [Google Scholar]
- Cenni, N.; Fiaschi, S.; Fabris, M. Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sens. 2021, 13, 1488. [Google Scholar] [CrossRef]
- Stefani, M. The Po Delta Region: Depositional Evolution, Climate Change and Human Intervention Through the Last 5000 Years. In Landscapes and Landforms of Italy. World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Maicu, F.; De Pascalis, F.; Ferrarin, C.; Umgiesser, G. Hydrodynamics of the Po River-Delta-Sea system. J. Geophys. Res. Oceans 2018, 123, 6349–6372. [Google Scholar] [CrossRef]
- Stefani, M.; Vincenzi, S. The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar. Geol. 2005, 222, 19–48. [Google Scholar] [CrossRef]
- Alberti, A. Segnali di una Ritrovata Cultura della Manutenzione Urbana e Architettonica a Comacchio, FE; Longo, A., Ed.; Quaderni di soprintendenza (Qds): Ravenna, Italy, 2001; Volume 5. [Google Scholar]
- Zamboni, A. La fabbrica dei pesci dietro il loggiato dei Cappuccini e la sede amministrativa delle Valli Comunali di Comacchio. In Anecdota, Quaderni della Biblioteca L.A. Muratori Comacchio; Gabriele Corbo Editore: Ferrara, Italy, 2001; Volme 1/2, p. 1. [Google Scholar]
- UNI EN 1015-17:2008; Metodi di Prova per Malte per opere Murarie-Parte 17: Determinazione del Contenuto di Cloruro Solubile in Acqua Delle Malte Fresche. Ente Italiano Normazione: Milano, Italy, 2008.
- UNI EN 12274-2:2018; Trattamenti Superficiali con Malte a freddo-Metodi di Prova-Parte 2: Determinazione del Contenuto di Legante Residuo, Compresa la Preparazione di Campioni. Ente Italiano Normazione: Milano, Italy, 2018.
- UNI EN 16581:2015; Conservazione dei Beni Culturali-Protezione Superficiale per Materiali Inorganici Porosi-Metodi di Prova di Laboratorio per la Valutazione Delle Prestazioni dei Prodotti Idrorepellenti. Ente Italiano Normazione: Milano, Italy, 2015.
- UNI EN ISO 13788:2013; Prestazione Igrotermica dei Componenti e Degli Elementi per Edilizia-Temperatura Superficiale Interna per Evitare L’umidita’ Superficiale Critica e la Condensazione Interstiziale-Metodi di calcolo. Ente Italiano Normazione: Milano, Italy, 2013.
- UNI 11088:2003; Beni Culturali-Malte Storiche e da Restauro-Caratterizzazione Chimica di una Malta-Determinazione del Contenuto di Aggregato Siliceo e di Alcune Specie Solubili. Ente Italiano Normazione: Milano, Italy, 2003.
- UNI 11089:2003; Beni Culturali-Malte Storiche e da Restauro-Stima Della Composizione di Alcune Tipologie di Malte. Ente Italiano Normazione: Milano, Italy, 2003.
- UNI EN 12390-7:2021; Prove sul Calcestruzzo Indurito-Parte 7: Massa Volumica del Calcestruzzo Indurito. Ente Italiano Normazione: Milano, Italy, 2021.
- UNI 11530:2014; Reazione Alcali-Aggregato in Calcestruzzo-Determinazione Della Potenziale Reattività Agli Alcali Degli Aggregati Per Calcestruzzo-Esame Petrografico di Dettaglio Dell’Aggregato per la Determinazione dei Costituenti Potenzialmente Reattivi Agli Alcali. Ente Italiano Normazione: Milano, Italy, 2014.
- UNI 11305:2009; Beni Culturali-Malte storiche-Linee Guida per la Caratterizzazione Mineralogico-Petrografica, Fisica e Chimica delle Malte. Ente Italiano Normazione: Milano, Italy, 2009.
- UNI 11176:2006; Beni Culturali-Descrizione Petrografica di una Malta. Ente Italiano Normazione: Milano, Italy, 2006.
- Marrocchino, E.; Telloli, C.; Cesarano, M.; Montuori, M. Geochemical and Petrographic Characterization of Bricks and Mortars of the Parish Church SANTA Maria in Padovetere (Comacchio, Ferrara, Italy). Minerals 2021, 11, 530. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Novara, P.; Vaccaro, C. Petro-archaeometric characterization of historical mortars in the city of Ravenna (Italy). In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020; pp. 32–37. [Google Scholar]
- Marrocchino, E.; Telloli, C.; Vaccaro, C. Geochemical and Mineralogical Characterization of Construction Materials from Historical Buildings of Ferrara (Italy). Geosciences 2021, 11, 31. [Google Scholar] [CrossRef]
- Franzoni, E.; Berk, B.; Bassi, M.; Marrone, C. An integrated approach to the monitoring of rising damp in historic brick masonry. Constr. Build Mater. 2023, 370, 130631. [Google Scholar] [CrossRef]
- Kamh, G.M.E. Environmental impact on construction limestone at humid regions with an emphasis on salt weathering, Al-hambra islamic archaeological site, Granada City, Spain: Case study. Environ. Geol. 2007, 52, 1539–1547. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A. Mortars and plasters-How to characterize mortar and plaster degradation. Archaeol. Anthropol. Sci. 2021, 13, 165. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferone, C.; Cioffi, R. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars. Materials 2013, 6, 2989–3006. [Google Scholar] [CrossRef] [PubMed]
- Djamai, Z.I.; Salvatore, F.; Larbi, A.S.; Cai, G.; El Mankibi, M. Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars. Cem. Concr. Res. 2019, 119, 51–63. [Google Scholar] [CrossRef]
- Baraldi, P.; Bonazzi, A.; Giordani, N.; Paccagnella, F.; Zannini, P. Analytical characterization of roman plasters of the ‘Domus Farini’ in Modena. Archaeometry 2006, 48, 481–499. [Google Scholar] [CrossRef]
- Stoops, G. Micromorphology. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 457–466. [Google Scholar]
- Pavía, S.; Caro, S. An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Constr. Build. Mater. 2008, 22, 1807–1811. [Google Scholar] [CrossRef]
- Rampazzi, L.; Andreotti, A.; Bressan, M.; Colombini, M.P.; Corti, C.; Cuzman, O.; d’Alessandro, N.; Liberatore, L.; Palombi, L.; Raimondi, V.; et al. An interdisciplinary approach to a knowledge-based restoration: The dark alteration on Matera Cathedral (Italy). Appl. Surf. Sci. 2018, 458, 529–539. [Google Scholar] [CrossRef]
- Artioli, G.; Quartieri, S. The Contribution of Geoscience to Cultural Heritage Studies. Elements 2016, 12, 13–18. [Google Scholar] [CrossRef]
- Robert, C.; Adrian, A. Phthalocyanine blue pigments. Phys. Sci. Rev. 2021, 6, 391–404. [Google Scholar] [CrossRef]
- Ortega-Morales, B.O.; Gaylarde, C.C. Bioconservation of Historic Stone Buildings—An Updated Review. Appl. Sci. 2021, 11, 5695. [Google Scholar] [CrossRef]
- Brachaczek, W. Microstructure of renovation plasters and their resistance to salt. Constr. Build. Mater. 2018, 182, 418–426. [Google Scholar] [CrossRef]
- Nascimento, A.S.; Pereira dos Santos, C.; Martins Cavalvante de Melo, F.; Gentil Almeida Oliveira, V.; Pessoa Betânio Oliveira, R.M.; Soares Macedo, Z.; Alves de Oliveira, H. Production of plaster mortar with incorporation of granite cutting wastes. J. Clean. Prod. 2020, 265, 121808. [Google Scholar] [CrossRef]
- Zhi Yeon Ting, M.; Soon Wong, K.; Ekhlasur Rahman, M.; Joo Meheron, S. Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod. 2021, 278, 123383. [Google Scholar] [CrossRef]
- Gentilini, C.; Franzoni, E.; Bandini, S.; Nobile, L. Effect of salt crystallisation on the shear behaviour of masonry walls: An experimental study. Constr. Build. Mater. 2012, 37, 181–189. [Google Scholar] [CrossRef]
- Zurakowska, M.; Hughes, J.J. Visual assessment of sandstone building façades: Condition factors related to cleaning. Q. J. Eng. Geol. Hydrogeol. 2012, 46, 459–467. [Google Scholar] [CrossRef]
- Sitzia, F.; Lisci, C.; Mirão, J. Building pathology and environment: Weathering and decay of stone construction materials subjected to a Csa mediterranean climate laboratory simulation. Constr. Build. Mater. 2013, 300, 124311. [Google Scholar] [CrossRef]
- Charola, A.; Bläuer, C. Salts in Masonry: An Overview of the Problem. Restor. Build. Monum. 2015, 21, 119–135. [Google Scholar] [CrossRef]
- Zhang, T.; Zagranyarski, Y.; Skabeev, A.; Müllen, K.; Li, C. Perylene pigments as alternatives to phthalocyanine and indanthrone blue. Dyes Pigm. 2021, 196, 109780. [Google Scholar] [CrossRef]
- Ion, R.M.; Nuta, A.; Sorescu, A.A.; Ianco, L. Photochemical degradation processes of painting materials from cultural heritage. In Photochemistry and Photophysics; Saha, S., Mondal, S., Eds.; Fundamentals to Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Prieto-Taboada, N.; Fdez-Ortiz de Vallejuelo, S.; Santos, A.; Veneranda, M.; Kepa, C.; Maite, M.; Morillas, H.; Gorka, A.; Martellone, A.; Nigrsi, B.; et al. Understanding the degradation of the blue colour in the wall paintings of Ariadne’s house (Pompeii, Italy) by non-destructive techniques. J. Raman. Spectrosc. 2021, 52, 85–94. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Hamed, S.A.E.K.M.; Afifi, H.; Mohamady, S. A comparative study on the color change of pigments due to the consolidation of conventional spectroscopic techniques and laser-induced breakdown spectroscopy. Appl. Phys. A 2019, 125, 559. [Google Scholar] [CrossRef]
- Nevin, A. Pigment Alteration. In The Encyclopedia of Archaeological Sciences; López Varela, S.L., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H.; Antonarakou, A.; Zouros, N. From geoheritage to geoeducation, geoethics and geotourism: A critical evaluation of the Greek region. Geosciences 2021, 11, 381. [Google Scholar] [CrossRef]
- Bobrowsky, P.; Cronin, V.S.; Di Capua, G.; Kieffer, S.W.; Peppoloni, S. The Emerging Field of Geoethics. In Scientific Integrity and Ethics with Applications to the Geosciences; Gundersen, L.C., Ed.; Special Publication American Geophysical Union; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 175–212. [Google Scholar]
- Peppoloni, S.; Di Capua, G. Geoethics and geological culture: Awareness, responsibility and challenges. Ann. Geophys. 2012, 55, 335–341. [Google Scholar] [CrossRef]
- Foresta Martin, F.; Peppoloni, S. Geoethics in science communication: The relationship between media and geoscientists. Ann. Geophys. 2017, 60, 1–6. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. The role of geodiversity and geoheritage in tourism and local development. Geol. Soc. Lond. Spec. Publ. 2023, 530, SP530-2022. [Google Scholar] [CrossRef]
- Drinia, H.; Voudouris, P.; Antonarakou, A. Editorial of Special Issue—“Geoheritage and Geotourism Resources: Education, Recreation, Sustainability”. Geosciences 2022, 12, 251. [Google Scholar] [CrossRef]
- Antonelli, F.; De Bonis, A.; Miriello, D.; Raneri, S.; Silvestri, A. Geosciences for cultural heritage: An overview. J. Cult. Herit. 2020, 43, 338–341. [Google Scholar] [CrossRef]
- Bertolin, C. Preservation of Cultural Heritage and Resources Threatened by Climate Change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef]
Sample ID | Location of the Sample Collected | Material Investigated | Type of Decay | Sample Preparation Method | Techniques |
---|---|---|---|---|---|
LC-1 | Wall | Plaster | Lack of material, moisture | Powdering for TG-DTA; thin section preparation for microscopic analyses | Conductivity; water content and dosage of soluble salts; mercury intrusion porosimetry; apparent density and total porosity; TG-DTA; OTLPM |
LC-2 | Wall | Plaster | Lack of material, moisture | ||
LC-4 | Vault | Pictorial layer | Degradation of the colors | Original sample | Stratigraphic analysis by stereomicroscope |
LC-5 | Vault | Pictorial layer | Degradation of the colors | ||
LC-6 | Basement of the column | Marble | Black crusts, alveolization, physical disintegration, flaking | Thin section preparation for microscopic analyses | OTLPM |
Water Content | Soluble Salts | |||
---|---|---|---|---|
Mean Value (%) | Maximum Value (%) | Mean Value (μS cm−1) | Maximum Value (μS cm−1) | |
Section 1 | 3.29 | 5.59 | 91.40 | 139.6 |
Section 2 | 5.88 | 13.78 | 60.35 | 92.2 |
Cumulative Volume (mm3 g−1) | Mercury Intrusion Porosimetry (%) | Specific Surface (mm2 g−1) | Average Ratio (μm) | MVA (g cm−3) | Total Porosity (%) | |
---|---|---|---|---|---|---|
LC-1 | 97.48 | 9.7 | 5.43 | 0.854 | 1.46 | 40 |
LC-2 | 93.35 | 9.3 | 5.52 | 0.895 | N.d. | 27.7 |
Hydraulic Binder (%) | Dolomitic Aggregates (%) | Organic Substances (%) | |
---|---|---|---|
LC-1 | 11 | 62 | 2.4 |
LC-2 | 11 | 81 | 1.6 |
Sample Name | Texture Type | Short Definition | Grain Size Class | Type of Alteration | Grade of Weathering Identified | Microcracking |
---|---|---|---|---|---|---|
LC-1 | granular | premixed cement lightened mortar | coarse | chemical | strong | perceptible |
LC-2 | granular | premixed cement macroporous mortar | coarse | chemical | strong | perceptible |
LC-6 | microcrystalline | biocalcilutite | fine | chemical | moderate | perceptible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrocchino, E.; Paletta, M.G.; Ferroni, L.; Manfrini, R.; Telloli, C. Contribution of Geosciences to Cultural Heritage Conservation Assessment: The Case Study of the Loggiato dei Cappuccini in Comacchio (Italy). Geosciences 2023, 13, 157. https://doi.org/10.3390/geosciences13060157
Marrocchino E, Paletta MG, Ferroni L, Manfrini R, Telloli C. Contribution of Geosciences to Cultural Heritage Conservation Assessment: The Case Study of the Loggiato dei Cappuccini in Comacchio (Italy). Geosciences. 2023; 13(6):157. https://doi.org/10.3390/geosciences13060157
Chicago/Turabian StyleMarrocchino, Elena, Maria Grazia Paletta, Lorenzo Ferroni, Rino Manfrini, and Chiara Telloli. 2023. "Contribution of Geosciences to Cultural Heritage Conservation Assessment: The Case Study of the Loggiato dei Cappuccini in Comacchio (Italy)" Geosciences 13, no. 6: 157. https://doi.org/10.3390/geosciences13060157
APA StyleMarrocchino, E., Paletta, M. G., Ferroni, L., Manfrini, R., & Telloli, C. (2023). Contribution of Geosciences to Cultural Heritage Conservation Assessment: The Case Study of the Loggiato dei Cappuccini in Comacchio (Italy). Geosciences, 13(6), 157. https://doi.org/10.3390/geosciences13060157