Insights into Segmentation Methods Applied to Remote Sensing SAR Images for Wet Snow Detection
Abstract
:1. Introduction
2. Data and Method
2.1. Location and Time Period
2.2. Satellite Data
2.3. BERA Bulletins
2.4. Methods
2.4.1. Selected Segmentation Methods
- (a)
- Chan-Vese method
- (b)
- Random Walker method
- (c)
- Random Forest method
- (d)
- Fixed thresholding
- (e)
- Otsu’s adaptive thresholding
- (f)
- RGB color adaptative thresholding
2.4.2. Scores
- Correlation: This measures any possible statistical link between our two variables (total snow and wet snow). Correlations were computed using the following formula:
- Contingency table: This was used to count the different possible combinations of pixels of the optical snow image and those of the “predicted” one (output of SAR segmentation). Hereafter, the following denotations apply: a the number of cases “observed” by optical data and predicted by the SAR segmentation method, b refers to the cases not observed and predicted, c refers to the cases observed and not predicted, d to the cases not observed and not predicted, and n is the total number of pixels. These quantities are summarized in Table 1 and were used to obtain a variety of other scores listed below.
- a-
- Hamming Distance: This is a mathematical distance that corresponds to the proportion of pixels out of agreement between two binary images. It varies between 0 and 1, 0 being a perfect match between the binary images.The Hamming distance is calculated as follows:
- b-
- False Alarm Rate (FAR): This score measures the proportion of false snow detection cases with respect to the number of snow pixels detected. It is defined by:
- c-
- True Detection Rate (Hit Rate): This score measures the proportion of snow detection cases that are true with respect to the number of snow pixels observed. It is defined by:
- d-
- Heidke Skill Score (HSS): This score measures the benefit of SAR image segmentation compared to a random snow pixel distribution. It varies between and 1, with a negative value corresponding to a degraded detection compared to a random distribution, a null value corresponding to no benefit from the segmentation of the SAR images and a value of 1 being equivalent to perfect correspondence between the two images.HSS is defined as follows:
- Structural Similarity Index (SSI): This score takes into account the variations, and the differences of structure in two images. It was built by [40], who pointed out that the Mean Square Error, commonly used to differentiate two images, does not take into account the similarities of structure between images. SSI takes the form
- Probabilistic Score for Satellite Products (PSSP): The authors of [41] introduced this new score, which is particularly useful for assessing snowpack characteristics in mountainous areas, where factors such as altitude, slopes, and terrain orientation are critical. The PSSP score facilitates the integration of satellite products with varying spatial resolutions and types. By calculating snow probability curves from Sentinel-1 and Sentinel-2 images at observation dates close to each other, the PSSP score provides a comprehensive view of the snowpack’s essential features at the mountain massif scale. RMS errors or correlations are computed to measure the distance between the obtained probability snow product curves.
3. Results
3.1. Focus on a Situation
3.2. Further Evaluations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, R.; Lin, J.; Jiao, L.; Li, Y. SAR Image Segmentation Using Region Smoothing and Label Correction. Remote Sens. 2020, 12, 803. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, Y.; Zhang, Q. SAR image segmentation based on mixture context and wavelet hidden-class-label Markov random field. Comput. Math. Appl. 2009, 57, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Huang, W.; Zhang, T. A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions. Sci. Rep. 2016, 6, 38596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chino, D.Y.T.; Avalhais, L.P.S.; Rodrigues, J.F.; Traina, A.J.M. BoWFire: Detection of fire in still images by integrating pixel color and texture analysis. In Proceedings of the 28th SIBGRAPI Conference On Graphics, Patterns and Images, Salvador, Brazil, 26–29 August 2015. [Google Scholar]
- Linblad, T.; Kinser., J. Image Processing Using Pulse-Coupled Neural Networks. Applications in Python, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Johnson, J.; Padgett, M.; Friday, W. Multiscale image factorization. In Proceedings of the International Conference On Neural Networks (ICNN97), Houston, TX, USA, 12 June 1997; pp. 1465–1468. [Google Scholar]
- Liu, J.; Wen, X.; Meng, Q.; Xu, H.; Yuan, L. Synthetic aperture radar image segmentation with reaction diffusion level set evolution equation in an active contour model. Remote Sens. 2018, 10, 906. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Miao, J.; Duan, L.; Qiao, Y.; Jia, R. A new approach to image segmentation based on simplified region growing PCNN. Appl. Math. Comp. 2008, 205, 807–814. [Google Scholar] [CrossRef]
- Waldemark, K.; Lindblad, T.; Becanovic, V.; Guillen, J.; Klingner, P. Patterns from the sky. Satellite image analysis using pulse coupled neural networks for pre-processing, segmentation and edge detection. Pattern Recognit. Lett. 2000, 21, 227–237. [Google Scholar] [CrossRef]
- Wang, D.; Terman, D. Image segmentation based on oscillatory correlation. Neural Comput. 1997, 9, 805–836. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.; He, C.; Zhang, Y.; Fang, Z. A novel method for image segmentation using reaction-diffusion model. Multidimens. Syst. Signal Process. 2017, 28, 657–677. [Google Scholar] [CrossRef]
- Yuan, Y.; He, C. Adaptive active contours without edges. Math. Comput. Model. 2012, 55, 1705–1721. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. SMC 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kapur, J.; Sahoo, P.; Wong, A. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Walt, S.; Schönberger, J.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.; Yager, N.; Gouillart, E.; Al, T. Scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Gauthier, Y.; Bernier, M. Capability of multitemporal ERS-1 SAR data for wet-snow mapping. Remote Sens. Environ. 1997, 60, 174–186. [Google Scholar] [CrossRef]
- Magagi, R.; Bernier, M. Optimal conditions for wet snow detection using RADARSAT SAR data. Remote Sens. Environ. 2003, 84, 221–233. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Marin, C.; Bertoldi, G.; Premier, V.; Callegari, M.; Brida, C.; Hürkamp, K.; Tschiersch, J.; Zebisch, M.; Notarnicola, C. Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions. Cryosphere 2020, 14, 935–956. [Google Scholar] [CrossRef] [Green Version]
- Lievens, H.; Demuzere, M.; Marshall, H.; Reichle, R.; Brucker, L.; Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.; Jonas, T. Al Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.; Dietz, S.; Oppelt, A.; Kuenzer, N. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Besic, N.; Vasile, G.; Dedieu, J.; Chanussot, J.; Stankovic, S. Stochastic approach in wet snow detection using multitemporal SAR data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Haefner, H.; Seidel, K. Applications of snow cover mapping in high mountain regions. Phys. Chem. Earth 1997, 22, 275–278. [Google Scholar] [CrossRef]
- Solberg, R.; Amlien, J.; Koren, H.; Eikvil, L.; Malnes, E.; Storvold, R. Multi-sensor and time-series approaches for monitoring of snow parameters. In Proceedings of the Geoscience and Remote Sensing Symposium, 2004, IGARSS’04, Proceedings, 2004 IEEE International, Anchorage, AK, USA, 20–24 September 2004; Volume 3, pp. 1661–1666. [Google Scholar]
- Karbou, F.; Veyssière, G.; Coleou, C.; Dufour, A.; Gouttevin, I.; Durand, P.; Gascoin, S.; Grizonnet, M. Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations. Remote Sens. 2021, 13, 381. [Google Scholar] [CrossRef]
- Rott, H.; Davis, R. Multifrequency and Polarimetric SAR Observations on Alpine Glaciers. Ann. Glaciol. 1993, 17, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Gauthier, Y.; Bernier, M.; Fortin, J. Potential and Limitations of RADARSAT SAR Data for Wet Snow Monitoring. IEEE Trans. Geosci. Remote Sens. 2000, 38, 316–320. [Google Scholar] [CrossRef]
- Stoffel, M.; Corona, C. Future winters glimpsed in the Alps. Nat. Geosci. 2018, 11, 458–460. [Google Scholar] [CrossRef]
- Goetz, D. Bilan Nivo-Météorologique de l’hiver 2017–2018. Revue De L’ANENA. Technical Report. 2018. Available online: https://www.anena.org/5042-la-revue-n-a.htm (accessed on 1 January 2012).
- Kropatsch, W.; Strobl, D. The generation of SAR layover and shadow maps from digital elevation models. IEEE Trans. Geosci. Remote Sens. 1990, 28, 98–107. [Google Scholar] [CrossRef]
- Gelautz, M.; Frick, H.; Raggam, J.; Burgstaller, J.; Leberl, F. SAR image simulation and analysis of alpine terrain. ISPRS J. Photogramm. Remote Sens. 1998, 53, 17–38. [Google Scholar] [CrossRef]
- Yu, J.J.; Quegan, S. Multi-channel filtering of SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. High-Resolution Operational Snow Cover Maps from Sentinel-2 and Landsat-8 Data. Earth Syst. Sci. Data 2019, 11, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.; Vese, L. Active Contours without Edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Grady, L. Random Walks for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1768–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Karas, A.; Karbou, F.; Giffard-Roisin, S.; Durand, P.; Eckert, N. Automatic Color Detection-Based Methods Applied to Sentinel-1 SAR Images for Snow Avalanche Debris Monitoring. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Karbou, F.; Gouttevin, I.; Durand, P. Spatial and temporal variability of wet snow in the French mountains using a color-space based segmentation technique on Sentinel-1 SAR images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5586–5588. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbou, F.; James, G.; Fructus, M.; Marti, F. On the Evaluation of the SAR-Based Copernicus Snow Products in the French Alps. Geosciences 2022, 12, 420. [Google Scholar] [CrossRef]
- Karbou, F.; James, G.; Durand, P.; Atto, A. Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series. In Change Detection And Image Time Series Analysis 1: Unsupervised Methods; John Wiley ISTE Ltd.: Hoboken, NJ, USA, 2021; Chapter 5. [Google Scholar] [CrossRef]
- Baghdadi, N.; Bazzi, H.; El Hajj, M.; Zribi, M. Detection of Frozen Soil Using Sentinel-1 SAR Data. Remote Sens. 2018, 10, 1182. [Google Scholar] [CrossRef] [Green Version]
Wet Snow by SAR | Total Snow by Optical Image | ||
---|---|---|---|
Yes | No | Total | |
Yes | a | b | a + b |
No | c | d | c + d |
Total | a + c | b + d | a + b + c + d = n |
Scores | 2dB | 2dBF | M | MF | CV | RW | RF1 | RF2 | Otsu | OtsuF |
---|---|---|---|---|---|---|---|---|---|---|
Correlation | 0.63 | 0.80 | 0.70 | 0.82 | 0.77 | 0.81 | 0.79 | 0.83 | 0.64 | 0.72 |
Hamming distance | 0.18 | 0.10 | 0.15 | 0.09 | 0.11 | 0.09 | 0.10 | 0.08 | 0.18 | 0.14 |
Difference in area (%) | −7.88 | −19.09 | −21.38 | −8.22 | −11.62 | −13.4 | −20.37 | −4.90 | −31.24 | −32.02 |
Struct. Similarity (%) | 50.19 | 84.76 | 62.47 | 85.46 | 78.26 | 85.83 | 84.47 | 85.57 | 59.44 | 81.60 |
True Detections (%) | 74.35 | 78.19 | 71.28 | 85.24 | 80.7 | 82.13 | 77.20 | 87.49 | 62.80 | 66.85 |
False Alarms (%) | 12.5 | 1.91 | 5.16 | 4.60 | 5.41 | 3.14 | 1.71 | 5.35 | 4.19 | 1.66 |
Heidke skill scores | 0.63 | 0.79 | 0.68 | 0.82 | 0.77 | 0.81 | 0.78 | 0.83 | 0.61 | 0.69 |
Scores | 2dB | 2dBF | M | MF | CV | RW | RF1 | RF2 | Otsu | OtsuF |
---|---|---|---|---|---|---|---|---|---|---|
Correlation | 0.50 | 0.77 | 0.60 | 0.71 | 0.56 | 0.77 | 0.78 | 0.72 | 0.51 | 0.72 |
Hamming distance | 0.20 | 0.08 | 0.13 | 0.11 | 0.22 | 0.08 | 0.08 | 0.11 | 0.21 | 0.10 |
Difference in area (%) | 62.90 | −10.14 | 11.72 | 33.95 | 151.53 | 1.41 | −14.73 | 31.56 | 94.43 | −29.01 |
Struct. Similarity (%) | 55.49 | 90.16 | 66.84 | 86.88 | 66.29 | 90.63 | 90.18 | 85.10 | 58.93 | 89.29 |
True Detections (%) | 74.25 | 78.18 | 70.79 | 87.91 | 86.33 | 83.10 | 76.31 | 89.11 | 69.95 | 65.83 |
False Alarms (%) | 17.89 | 3.17 | 8.11 | 10.53 | 21.97 | 4.80 | 2.47 | 11.30 | 14.69 | 6.89 |
Heidke skill scores | 0.47 | 0.77 | 0.59 | 0.69 | 0.52 | 0.77 | 0.77 | 0.70 | 0.48 | 0.70 |
Runtime (s) | 2.69 | 9.80 | 44.76 | 67.63 | 1893.4 | 2266.8 | 72.71 | 118.27 | 43.85 | 40.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guiot, A.; Karbou, F.; James, G.; Durand, P. Insights into Segmentation Methods Applied to Remote Sensing SAR Images for Wet Snow Detection. Geosciences 2023, 13, 193. https://doi.org/10.3390/geosciences13070193
Guiot A, Karbou F, James G, Durand P. Insights into Segmentation Methods Applied to Remote Sensing SAR Images for Wet Snow Detection. Geosciences. 2023; 13(7):193. https://doi.org/10.3390/geosciences13070193
Chicago/Turabian StyleGuiot, Ambroise, Fatima Karbou, Guillaume James, and Philippe Durand. 2023. "Insights into Segmentation Methods Applied to Remote Sensing SAR Images for Wet Snow Detection" Geosciences 13, no. 7: 193. https://doi.org/10.3390/geosciences13070193
APA StyleGuiot, A., Karbou, F., James, G., & Durand, P. (2023). Insights into Segmentation Methods Applied to Remote Sensing SAR Images for Wet Snow Detection. Geosciences, 13(7), 193. https://doi.org/10.3390/geosciences13070193