Antipodal Seismic Observation and Sensitivity Kernel for the Liquid Region on the Earth’s Inner Core
Abstract
:1. Introduction
2. Antipodal Seismic Observation
3. Sensitivity Kernels by Adjoint Method
4. Location of Fluid Region at the Surface of the Inner Core
5. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biggin, A.J.; Piispa, E.J.; Pesonen, L.J.; Holme, R.; Paterson, G.A.; Veikkolainen, T.; Tauxe, L. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 2015, 526, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Fearn, D.R.; Loper, D.E.; Roberts, P.H. Structure of the Earth’s inner core. Nature 1981, 292, 232–233. [Google Scholar] [CrossRef]
- Huguet, L.; Alboussière, T.; Bergman, M.I.; Deguen, R.; Labrosse, S.; Lesœur, G. Structure of a mushy layer under hypergravity with implications for Earth’s inner core. Geophys. J. Int. 2016, 204, 1729–1755. [Google Scholar] [CrossRef]
- Shih, S.A.; Chao, B.F. Inner core and its libration under gravitational equilibrium: Implications to lower-mantle density anomaly. J. Geophys. Res. Solid. Earth 2021, 126, e2020JB020541. [Google Scholar] [CrossRef]
- Gubbins, D.; Sreenivasan, B.; Mound, J.; Rost, S. Melting of the Earth’s inner core. Nature 2011, 473, 361–363. [Google Scholar] [CrossRef]
- Alboussière, T.; Deguen, R.; Melzani, M. Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 2010, 466, 744–747. [Google Scholar] [CrossRef]
- Butler, R.; Tsuboi, S. Antipodal seismic reflections upon shear wave velocity structures within Earth’s inner core. Phys. Earth Planet. Inter. 2021, 321, 106802. [Google Scholar] [CrossRef]
- Rial, J.A.; Cormier, V.F. Seismic waves at the epicenter’s antipode. J. Geophys. Res. Solid. Earth 1980, 85, 2661–2668. [Google Scholar] [CrossRef]
- Butler, R. Amplitudes at the antipode. Bull. Seism. Soc. Am. 1986, 76, 1355–1365. [Google Scholar] [CrossRef]
- Niu, F.; Chen, Q.-F. Seismic evidence for distinct anisotropy in the innermost inner core. Nat. Geosci. 2008, 1, 692–696. [Google Scholar] [CrossRef]
- Butler, R.; Tsuboi, S. Antipodal seismic observations of temporal and global variation at Earth’s inner-outer core boundary. Geophys. Res. Lett. 2010, 37, L11301. [Google Scholar] [CrossRef]
- Cormier, V.F. Detection of inner core solidification from observations of antipodal PKIIKP. Geophys. Res. Lett. 2015, 42, 7459–7466. [Google Scholar] [CrossRef]
- Attanayake, J.; Thomas, C.; Cormier, V.F.; Miller, M.S.; Koper, K.D. Irregular transition layer beneath the Earth’s inner core boundary from observations of antipodal PKIKP and PKIIKP waves. Geochem. Geophys. Geosystems 2018, 19, 3607–3622. [Google Scholar] [CrossRef]
- Tsuboi, S.; Butler, R. Inner core differential rotation inferred from antipodal seismic observations. Phys. Earth Planet. Inter. 2020, 301, 106451. [Google Scholar] [CrossRef]
- Butler, R.; Tsuboi, S. Antipodal observations of global differential times of diffracted P and PKPAB within the D″ layer above Earth’s core–mantle boundary. Geophys. J. Int. 2020, 222, 327–337. [Google Scholar] [CrossRef]
- Komatitsch, D.; Vilotte, J.-P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seism. Soc. Am. 1998, 88, 368–392. [Google Scholar] [CrossRef]
- Komatitsch, D.; Ritsema, J.; Tromp, J. The spectral-element method, Beowulf computing, and global seismology. Science 2002, 298, 1737–1742. [Google Scholar] [CrossRef]
- Tsuboi, S.; Komatitsch, D.; Ji, C.; Tromp, J. Broadband modeling of the 2002 Denali fault earthquake on the Earth Simulator. Phys. Earth Planet. Inter. 2003, 139, 305–313. [Google Scholar] [CrossRef]
- Komatitsch, D.; Tsuboi, S.; Tromp, J. The spectral-element in seismology. In Seismic Earth: Array Analysis of Broadband Seismograms; Levander, A., Nolet, G., Eds.; AGU Geophysical Monograph 157; AGU: Washington, DC, USA, 2005; pp. 205–227. [Google Scholar]
- Schimmel, M.; Paulssen, H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int. 1997, 130, 497–505. [Google Scholar] [CrossRef]
- Kustowski, B.; Ekström, G.; Dziewoński, A.M. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. Solid. Earth 2008, 113, B06306. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Bassin, C.; Laske, G.; Masters, G. The current limits of resolution for surface wave tomography in North America. Eos Trans. AGU 2000, 81, F897. [Google Scholar]
- Tromp, J.; Tape, C.; Liu, Q. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 2004, 160, 195–216. [Google Scholar] [CrossRef]
- Tromp, J.; Komatitsch, D.; Liu, Q. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 2008, 3, 1–32. [Google Scholar]
- Liu, Q.; Tromp, J. Finite-frequency kernels based on adjoint methods. Bull. Seism. Soc. Am. 2006, 96, 2383–2397. [Google Scholar] [CrossRef]
- Liu, Q.; Tromp, J. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods. Geophys. J. Int. 2008, 174, 265–286. [Google Scholar] [CrossRef]
- Tape, C.; Liu, Q.; Tromp, J. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves. Geophys. J. Int. 2007, 168, 1105–1129. [Google Scholar] [CrossRef]
- Tape, C.; Liu, Q.; Maggi, A.; Tromp, J. Adjoint tomography of the southern California crust. Science 2009, 325, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Peter, D.; Komatitsch, D.; Luo, Y.; Martin, R.; Le Goff, N.; Casarotti, E.; Le Loher, P.; Magnoni, F.; Liu, Q.; Blitz, C.; et al. Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys. J. Int. 2011, 186, 721–739. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewoński, A. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200, 1–9. [Google Scholar] [CrossRef]
- Stroujkova, A.; Cormier, V.F. Regional variations in the uppermost 100 km of the Earth’s inner core. J. Geophys. Res. 2004, 109, B10307. [Google Scholar] [CrossRef]
- Leyton, F.; Koper, K.D.; Zhu, L.; Dombrovskaya, M. On the lack of seismic discontinuities within the inner core. Geophys. J. Int. 2005, 162, 779–786. [Google Scholar] [CrossRef]
- Yu, W.C.; Wen, L. Seismic velocity and attenuation structures in the top 400 km of the Earth’s inner core along equatorial paths. J. Geophys. Res. Solid. Earth 2006, 111, B07308. [Google Scholar] [CrossRef]
- Cormier, V.F.; Attanayake, J.; He, K. Inner core freezing and melting: Constraints from seismic body waves. Phys. Earth Planet. Inter. 2011, 188, 163–172. [Google Scholar] [CrossRef]
- Cormier, V.F.; Attanayake, J. Earth’s solid inner core: Seismic implications of freezing and melting. J. Earth Sci. 2013, 24, 683–698. [Google Scholar] [CrossRef]
- Tanaka, S.; Hamaguchi, H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)–PKP(DF) times. J. Geophys. Res. 1997, 102, 2925–2938. [Google Scholar] [CrossRef]
- Ishii, M.; Dziewoński, A.M. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl. Acad. Sci. USA 2002, 99, 14026–14030. [Google Scholar] [CrossRef]
- Waszek, L.; Deuss, A. Distinct layering in the hemispherical seismic velocity structure of Earth’s upper inner core. J. Geophys. Res. Solid. Earth 2011, 116, B12313. [Google Scholar] [CrossRef]
- Frost, D.A.; Lasbleis, M.; Chandler, B.; Romanowicz, B. Dynamic history of the inner core constrained by seismic anisotropy. Nat. Geosci. 2021, 14, 531–535. [Google Scholar] [CrossRef]
- Davies, C.J.; Mound, J.E. Mantle-induced temperature anomalies do not reach the inner core boundary. Geophys. J. Int. 2019, 219, S21–S32. [Google Scholar] [CrossRef]
- Sahoo, S.; Sreenivasan, B. Response of Earth’s magnetic field to large lower mantle heterogeneity. Earth Planet. Sci. Lett. 2020, 549, 116507. [Google Scholar] [CrossRef]
- Sumita, I.; Olson, P. A laboratory model for convection in Earth’s core driven by a thermally heterogeneous mantle. Science 1999, 286, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Sumita, I.; Olson, P. Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: Implications for the Earth’s core. J. Geophys. Res. 2002, 107, 2169. [Google Scholar] [CrossRef]
- Finlay, C.C.; Kloss, C.; Olsen, N.; Hammer, M.D.; Tøffner-Clausen, L.; Grayver, A.; Kuvshinov, A. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space 2020, 72, 156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuboi, S.; Butler, R. Antipodal Seismic Observation and Sensitivity Kernel for the Liquid Region on the Earth’s Inner Core. Geosciences 2024, 14, 333. https://doi.org/10.3390/geosciences14120333
Tsuboi S, Butler R. Antipodal Seismic Observation and Sensitivity Kernel for the Liquid Region on the Earth’s Inner Core. Geosciences. 2024; 14(12):333. https://doi.org/10.3390/geosciences14120333
Chicago/Turabian StyleTsuboi, Seiji, and Rhett Butler. 2024. "Antipodal Seismic Observation and Sensitivity Kernel for the Liquid Region on the Earth’s Inner Core" Geosciences 14, no. 12: 333. https://doi.org/10.3390/geosciences14120333
APA StyleTsuboi, S., & Butler, R. (2024). Antipodal Seismic Observation and Sensitivity Kernel for the Liquid Region on the Earth’s Inner Core. Geosciences, 14(12), 333. https://doi.org/10.3390/geosciences14120333