The Knowledge and Application of Sedimentary Conditions of Shallow Marine and Tidal Waters of Ionian Islands, Greece: Implications for Therapeutic Use
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Sedimentary Environments
4.1. Kefalonia Island
4.2. Corfu Island
5. Biostratigraphic Analysis
5.1. Kefalonia Island
5.2. Corfu Island
5.3. Age Determination for Kefalonia and Corfu Islands
6. Geochemical and Sedimentological Analysis
6.1. Calcium Carbonate (CaCO3)
6.1.1. Kefalonia Island
6.1.2. Corfu Island
6.2. Total Organic Carbon Content (TOC)
6.2.1. Kefalonia Island
6.2.2. Corfu Island
6.3. Comprehensive Analysis of Elements, Mineralogical Composition, and Physical Properties
6.3.1. XRF Analysis
6.3.2. XRPD Analysis
6.3.3. pH Determination
6.3.4. Plasticity Determination
6.3.5. Specific Surface Area Determination
6.3.6. Thermal Analysis
6.4. Grain Size Analysis
6.4.1. Kefalonia Island
6.4.2. Corfu Island
6.5. Cumulative Frequency Curves
6.6. Statistical Parameters
6.6.1. Graphic Mean Size (Mz)
6.6.2. Standard Deviation (σ1)
6.6.3. Graphic Skewness (SK1)
6.6.4. Graphic Kurtosis (KG)
7. Discussion
7.1. TOC and CaCO3 Correlations
7.2. Extensive XRF Analysis and Material Utilization Recommendations
7.3. Interrelationship of Textural Parameters
7.3.1. Bivariate Plot between Mean Size and Sorting
7.3.2. Bivariate Plot between Skewness and Standard Deviation
7.3.3. Bivariate Plot between Skewness and Kurtosis
7.4. Bivariate Grain-Size Parameters
7.5. Linear Discriminate Analysis (LDF)
7.6. Parameters and Applications in the Environments of Deposition at Kefalonia and Corfu Islands
7.7. Physical–Chemical Characteristics and Applications in Therapectical Mud
- “Silt”: With a prevalent silt component, represented on average by 73.86% of the total sample, followed by clay values with an average of 21.94% and those of sand (4.20%), which is the minor component of the sample.
- “Mud”: With a prevalent silt component, represented on average by 53.52% of the total sample, followed by the values of clay with an average of 42.57% and those of sand (3.91%), which constitutes the minor component of the sample.
- “Sandy Silt”: With a prevalent silty component, represented on average by 65.42% of the total sample, followed by the values of clay with an average of 20.61% and those of sand (14.06%), which constitutes the minor component of the sample.
- “Sandy Mud”: With a prevalent silt component, represented on average by 43.60% of the total sample, followed by silt values with an average of 35.43% and those of sand (20.97%), which is the minor component of the sample.
8. Conclusions
- Although there is a slight disparity in the average CaCO3 content between Corfu island samples (30.90%) and Kefalonia island samples (24.60%), both percentages significantly surpass the recommended 10% value for optimal plasticity. However, no observable impact on the mechanical behavior and plasticity of the clay was noted, rendering it a neutral quality criterion.
- Corfu island samples exhibit higher TOC content, suggesting potential superiority for mud therapy. Nevertheless, all samples show a TOC content (<0.77%) considerably below the required threshold (2–5%) for material maturation in mud therapy. Therefore, enriching the samples with organic matter is required.
- Although TOC values are below the recommended maturity level, the TOC content (<0.77%) on both islands samples does not affect the mechanical behavior of the mud (TOC > 10% has a negative effect), indicating its potential for therapeutic purposes.
- Cumulative frequency percentage curves and grain-size statistics classify the studied samples as fine- to very fine-grained sediments (clay to very fine sand).
- Linear and multigroup discriminant analyses categorize two sediment types: a unimodal type, characterized by mud grain-size dominance, deposited in shallow water environments, and a bimodal type, featuring mud and sand content alterations, deposited in tidal-affected environments.
- Based on the statistical analysis, sedimentary environments in shallow seas exhibit more uniformity in the clay/silt ratio compared to tidal environments. This uniformity, characteristic of the samples from Kefalonia island, is preferable for mud therapy utilization.
- The studied sediments from Corfu island also have potential for mud therapy but require additional processing due to elevated sand content.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models: Conceptual basis and stratigraphic implications. J. Sediment. Pet. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Dyer, K.R. Estuaries, a Physical Introduction, 2nd ed.; John Wiley & Sons: Chichester, UK, 1997; p. 195. [Google Scholar]
- McLaren, P.; Bowles, D. The Effects of Sediment Transport on Grain-Size Distributions. SEPM J. Sediment. Res. 1985, 55, 457–470. [Google Scholar]
- Kristensen, E.; Penha-Lopes, G.; Delefosse, M.; Valdemarsen, T.; Quintana, C.O.; Banta, G.T. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 2012, 446, 285–302. [Google Scholar] [CrossRef]
- Bender, T.; Karagülle, Z.; Bálint, G.P.; Gutenbrunner, C.; Bálint, P.V.; Sukenik, S. Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatol. Int. 2005, 25, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, A.; Tenti, S.; Giannitti, C.; Fortunati, N.A.; Galeazzi, M. Short-and long-term effects of mud-bath treatment on hand osteoarthritis: A randomized clinical trial. Int. J. Biometeorol. 2014, 58, 79–86. [Google Scholar] [CrossRef]
- Dischereit, G.; Goronzy, J.E.; Müller-Ladner, U.; Fetaj, S.; Lange, U. Effects of serial mud baths on inflammatory rheumatic and degenerative diseases. Z. Rheumatol. 2019, 78, 143–154. [Google Scholar] [CrossRef]
- Mennuni, G.; Fontana, M.; Perricone, C.; Nocchi, S.; Rosso, R.; Ceccarelli, F.; Fraioli, A. A meta-analysis of the effectiveness of mud-bath therapy on knee osteoarthritis. Clin. Ter. 2021, 172, 372–387. [Google Scholar]
- Maraver, F.; Armijo, F.; Fernandez-Toran, M.A.; Armijo, O.; Ejeda, J.M.; Vazquez, I.; Corvillo, I.; Torres-Piles, S. Peloids as Thermotherapeutic Agents. Int. J. Environ. Res. Public Health 2021, 18, 1965. [Google Scholar] [CrossRef] [PubMed]
- Carretero, M.I. Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Appl. Clay Sci. 2020, 189, 105526. [Google Scholar] [CrossRef]
- Nayar, S.; Miller, D.J.; Hunt, A.; Goh, B.P.L.; Chou, L.M. Environmental effects of dredging on sediment nutrients, carbon and granulometry in a tropical estuary. Environ. Monit. Assess. 2007, 127, 1–13. [Google Scholar] [CrossRef]
- Gray, J.S.; Elliott, M. Ecology of Marine Sediments: Science to Management, 2nd ed.; Oxford University Press: Oxford, UK, 2009; p. 225. [Google Scholar]
- Venkatramanan, S.; Ramkumar, T.; Anithamary, I. Distribution of grain size, clay mineralogy and organic matter of surface sediments from Tirumalairajanar Estuary, Tamilnadu, east coast of India. Arab. J. Geosci. 2013, 6, 1371–1380. [Google Scholar] [CrossRef]
- Bellometti, S.; Cecchettin, M.; Galzigna, L. Mud pack therapy in osteoarthrosis: Changes in serum levels of chondrocyte markers. Clin. Chim. Acta 1997, 268, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Flusser, D.; Abu-Shakra, M.; Friger, M.; Codish, S.; Sukenik, S. Therapy with mud compresses for knee osteoarthritis: Comparison of natural mud preparations with mineral-depleted mud. J. Clin. Rheumatol. 2002, 8, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Veniale, F.; Barberis, E.; Carcangiu, G.; Morandi, N.; Setti, M.; Tamanini, M.; Tessier, D. Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Appl. Clay Sci. 2004, 25, 135–148. [Google Scholar] [CrossRef]
- Bourli, N.; Botziolis, C.; Papadopoulou, P.; Kovani, A.; Dimopoulos, N.; Zelilidis, P.; Aspioti, D.C.; Iliopoulos, G.; Zoumpouli, E.; Iliopoulos, I.; et al. Determination of all the physicochemical, mineralogical, and sedimentological required parameters of mud deposits in the direction of their use for pelotherapy, in Kefalonia and Corfu Islands, Greece. Minerals, 2024; submitted. [Google Scholar]
- De Graciansky, P.C.; Dardeau, G.; Lemoine, M.; Tricart, P. The inverted margin of the French Alps and forehand basin inversion. Geol. Soc. Lond. Spec. Publ. 1989, 44, 87–104. [Google Scholar] [CrossRef]
- Doutsos, T.; Piper, G.; Boronkay, K.; Koukouvelas, I. Kinematics of the Central Hellenides. Tectonics 1993, 12, 936–953. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I.K.; Xypolias, P. A new orogenic model for the External Hellenides. Geol. Soc. Lond. Spec. Publ. 2006, 260, 507–520. [Google Scholar] [CrossRef]
- Karakitsios, V. Western Greece and Ionian Sea petroleum systems. AAPG Bull. 2013, 97, 1567–1595. [Google Scholar] [CrossRef]
- Zelilidis, A.; Maravelis, A.G.; Tserolas, P.; Konstantopoulos, P.A. An overview of the petroleum systems in the Ionian zone, onshore NW Greece, and Albania. J. Pet. Geol. 2015, 38, 331–347. [Google Scholar] [CrossRef]
- Ricou, L.E. Tethys reconstructed: Plates continental fragments and their boundaries since 260 Ma from Central America to South-Eastern Asia. Geodin. Acta 1994, 7, 169–218. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Raulin, C.; Mouchot, N.; Wrobel-Daveau, J.C.; Blanpied, C.; Ringenbach, J.C. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 2011, 30, TC3002. [Google Scholar] [CrossRef]
- Aubouin, J. Geosynclines: Developments in Geotectonics; Elsevier: Amsterdam, The Netherlands, 1965; Volume 1, p. 355. [Google Scholar]
- Smith, A.G.; Woodcock, N.H.; Naylor, M.A. The structural evolution of a Mesozoic continental margin, Othris Mountains, Greece. J. Geol. Soc. 1979, 136, 589–603. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Clift, P.D.; Degnan, P.J.; Jones, G. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 87, 289–343. [Google Scholar] [CrossRef]
- Karakitsios, V. The influence of preexisting structure and halokinesis on organic matter preservation and thrust system evolution in the Ionian basin, northwestern Greece. AAPG Bull. 1995, 79, 960–980. [Google Scholar]
- Zelilidis, A.; Piper, D.; Vakalas, I.; Avramidis, P.; Getsos, K. Oil, and gas plays in Albania: Do equivalent plays exist in Greece? J. Pet. Geol. 2003, 26, 29–48. [Google Scholar] [CrossRef]
- Bourli, N.; Kokkaliari, M.; Iliopoulos, I.; Pe-Piper, G.; Piper, D.J.W.; Maravelis, A.G.; Zelilidis, A. Mineralogy of siliceous concretions, Cretaceous of Ionian zone, western Greece: Implication for diagenesis and porosity. Mar. Pet. Geol. 2019, 105, 45–63. [Google Scholar] [CrossRef]
- Bourli, N.; Pantopoulos, G.; Maravelis, A.G.; Zoumpoulis, E.; Iliopoulos, G.; Pomoni-Papaioannou, F.; Kostopoulou, S.; Zelilidis, A. Late Cretaceous to early Eocene geological history of the eastern Ionian Basin, southwestern Greece: An integrated sedimentological and bed thickness statistics analysis. Cretac. Res. 2019, 98, 47–71. [Google Scholar] [CrossRef]
- Karakitsios, V. Chronologie et Géométrie de L’ouverture d’un Bassin et de son Inversion Tectonique: Le Bassin Ionien (Epire, Grèce). Ph.D. Thesis, Sciences de la Terre Université Pierre et Marie Curie, Paris, France, 1990. Mémoire 411. pp. 91–94. [Google Scholar]
- Zoumpouli, E.; Maravelis, A.G.; Iliopoulos, G.; Botziolis, C.; Zygouri, V.; Zelilidis, A. Re-evaluation of the Ionian Basin evolution during the late Cretaceous to Eocene (Aetoloakarnania area, Western Greece). Geosciences 2022, 12, 106. [Google Scholar] [CrossRef]
- Pomoni-Papaioannou, F. Studiul Pétrographie si Sedimentologie al Evaporitelor Triasice din Regiunea Epir. Ph.D. Thesis, Universitatea Bucuresti, București, Romania, 1983; 190p. [Google Scholar]
- Bourli, N.; Iliopoulos, G.; Zelilidis, A. Reassessing Depositional Conditions of the Pre-Apulian Zone Based on Syn-sedimentary Deformation Structures during Upper Paleocene to Lower Miocene Carbonate Sedimentation, from Paxoi and Anti-Paxoi Islands, Northwestern End of Greece. Minerals 2022, 12, 2. [Google Scholar] [CrossRef]
- Botziolis, C.; Maravelis, A.G.; Pantopoulos, G.; Kostopoulou, S.; Catuneanu, O.; Zelilidis, A. Stratigraphic and paleogeographic development of a deep-marine foredeep: Southern Pindos foreland basin, western Greece. Mar. Pet. Geol. 2021, 128, 105012. [Google Scholar] [CrossRef]
- Botziolis, C.; Maravelis, A.G.; Catuneanu, O.; Zelilidis, A. Controls on sedimentation in a deep-water foredeep: Central Pindos foreland basin, western Greece. Basin Res. 2023, 36, e12804. [Google Scholar] [CrossRef]
- Botziolis, C.; Maravelis, A.G.; Pantopoulos, G.; Iliopoulos, I.; Iliopoulos, G.; Zelilidis, A. Orogenic exhumation, erosion, and sedimentation in a pro-foreland basin: Central Pindos foreland basin, western Greece. Arab. J. Geosci. 2023, 16, 471. [Google Scholar] [CrossRef]
- Kovani, A.; Botziolis, C.; Maravelis, A.G.; Iliopoulos, G.; Zelilidis, A. Provenance, and statistical analysis of the Lower Oligocene gravelly deposits in central Pindos foreland basin, western Greece: Implications for Orogenic buildup and unroofing. Geol. J. 2023, 58, 497–521. [Google Scholar] [CrossRef]
- Aubouin, J. Contribution a I’etudegeologique de la Greceseptrionale: Les confins de 1′Epire et de la Thessalie. Ann. Géologiques Pays Helléniques 1959, 9, 279–295. [Google Scholar]
- Jacobshagen, V. Geologie von Griechenland. Borntraeger; Borntraeger: Berlin, Germany, 1986; p. 363. [Google Scholar]
- Pavlides, S.; Zouros, N.; Chatzipetros, A.; Kostopoulos, D.; Moudrakis, D. The I3 May 1995 western Macedonia, Greece (Kozani Grevena) earthquake; preliminary results. Terra Nova 1995, 7, 544549. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I. Fractal analysis of normal faults in northwestern Aegean area, Greece. J. Geodyn. 1998, 26, 197–216. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I.; Poulimenos, G.; Kokkalas, S.; Xypolias, P.; Skourlis, K. An exhumation model of the south Peloponnesus, Greece. Int. J. Earth Sci. 2000, 89, 350–365. [Google Scholar] [CrossRef]
- Cimerman, F.; Langer, M. Mediterranean Foraminifera. Slovenska Akademija Znanosti: Ljubljana, Slovenia, 1991; ISBN 86-7131-053-1. [Google Scholar]
- Holbourn, A.; Henderson, A.; MacLeod, N. Atlas of Benthic Foraminifera; Wiley-Blackwell; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Sen Gupta, B.K. Modern Foraminifera; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Murray, J.W. Ecology and Palaeoecology of Benthic Foraminifera; Logman Scientific & Technical: London, UK, 1991; pp. 1–397. [Google Scholar]
- McLaughlin, P.P.; Gill, I.P.; van den Bold, W.A. Biostratigraphy paleoenvironments stratigraphic evolution of the Neogen of St Croix, U.S. Virgin Islands. Micropaleontology 1995, 41, 293–320. [Google Scholar] [CrossRef]
- Murray, J. Ecology and Applications of Benthic Foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 95, 1–426. [Google Scholar]
- Yu, J.; Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 2017, 258, 73–86. [Google Scholar] [CrossRef]
- Geraga, Μ.; Tsaila-Monopoli, S.; Papatheodorou, G.; Ioakeim, C.h.; Ferentinos, G. Contribution of factor analysis to the study of paleoclimatic and paleoceanographic variability in SW Aegean Sea, Greece. Bull. Geol. Soc. Greece 2008, 34, 557–564. [Google Scholar] [CrossRef]
- Ridha, D.; Boomer, I.; Edgar, K. Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean. J. Micropalaeontology 2019, 38, 189–229. [Google Scholar] [CrossRef]
- Varnavas, S.P. Geochemistry of Sediments from the Eastern Pacific. Ph.D. Thesis, University of London, London, UK, 1979; p. 431. [Google Scholar]
- Espitalie, J.; Deroo, G.; Marquis, F. La pyrolyse Rock-Eval et ses applications. Troisième Partie. Rev. Inst. Fr. Pét. 1986, 41, 73–89. [Google Scholar] [CrossRef]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 1998, 53, 421–437. [Google Scholar]
- Behar, F.; Beaumont, V.; Penteado, H.L.D.B. Technologie Rock-Eval 6: Performances et développements. Oil Gas Sci. Technol. Rev. IFP 2001, 56, 111–134. [Google Scholar]
- Folk, R.L.; Ward, W.C. A Study in the Significance of Grain-Size Parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Sahu, B.K. Depositional Mechanisms from the Size Analysis of Clastic Sediments. J. Sediment. Petrol. 1964, 34, 73–83. [Google Scholar]
- BP Co. (British Petroleum). The Geological Results of Petroleum Exploration in Western Greece; Institute of Geology and Subsurface Research: Athens, Greece, 1976. [Google Scholar]
- Underhill, J.R. Neogene and Quaternary Tectonics and Sedimentation in Western Greece. Ph.D. Thesis, University of Wales, Cardiff, UK, 1985. [Google Scholar]
- Tserolas, P.; Mpotziolis, C.; Maravelis, A.; Zelilidis, A. Preliminary geochemical and sedimentological analysis in NW Corfu: The Miocene sediments in Agios Georgios Pagon. Bull. Geol. Soc. Greece 2016, 50, 402–412. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Knight, R.J.; Zaitlin, B.A.; Middleton, G.V. Dynamics, and facies model of a macrotidal sand-bar complex, Cobequid Bay—Salmon River Estuary (Bay of Fundy). Sedimentology 1990, 37, 577–612. [Google Scholar] [CrossRef]
- Tserolas, P.; Maravelis, A.G.; Tsochandaris, N.; Pasadakis, N.; Zelilidis, A. Organic geochemistry of the Upper Miocene-Lower Pliocene sedimentary rocks in the Hellenic Fold and Thrust Belt, NW Corfu Island, Ionian Sea, NW Greece. Mar. Pet. Geol. 2019, 106, 17–29. [Google Scholar] [CrossRef]
- Allen, J.R.L. Developments in Sedimentology, Sedimentary Structures Their Character, and Physical Basis Volume II; Elsevier: Amsterdam, The Netherlands, 1982; Volume 30, Part B; 663p. [Google Scholar]
- Best, J.L.; Bridge, J.S. The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology 1992, 39, 737–752. [Google Scholar] [CrossRef]
- Mutti, E.; Tinterri, R.; Benevelli, G.; di Biase, D.; Cavanna, G. Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Mar. Pet. Geol. 2003, 20, 733–755. [Google Scholar] [CrossRef]
- Allen, G.P. Suspended sediment transport and deposition in the Gironde estuary and adjacent shelf. Mem. Inst. Geol. Bassin d’Aquitane 1973, 7, 27–36. [Google Scholar]
- Lowe, D.R. Suspended-load fallout rate as an independent variable in the analysis of current structures. Sedimentology 1988, 35, 765–776. [Google Scholar] [CrossRef]
- Leclair, S.F.; Arnott, R.W.C. Parallel Lamination Formed by High-Density Turbidity Currents. J. Sediment. Res. 2005, 75, 1–5. [Google Scholar] [CrossRef]
- Nichols, G. Sedimentology and Stratigraphy; Blackwell Science Ltd.: London, UK, 2009; p. 335. [Google Scholar]
- Visher, G.S. Grain-Size Distribution and Depositional Processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Mycielska-Dowgiallo, E.; Ludwikowska-Kedzia, M. Alternative Interpretations of Grain-Size Data from Quaternary Deposits. Geologos 2011, 17, 189–203. [Google Scholar] [CrossRef]
- Boggs, S., Jr. Petrology of Sedimentary Rocks, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Major, J.J.; Iverson, R.M. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. Geol. Soc. Am. Bull. 1999, 111, 1424–1434. [Google Scholar] [CrossRef]
- Iverson, R.M.; Denlinger, R.P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 2001, 106, 537–552. [Google Scholar] [CrossRef]
- Selvaraj, K.; Ram Mohan, V. Textural variation, and depositional environments of inner shelf sediments, off Kalpakkam, southeast coast of India. J. Geol. Soc. India 2003, 61, 449–462. [Google Scholar]
- Hanamgond, P.T.; Mitra, D. Dynamics of the Karwar Coast, India, with Special Reference to Study of Tectonics and Coastal Evolution Using Remote Sensing Data. J. Coast. Res. 2007, 842–847. [Google Scholar]
- Ramanathan, A.L.; Rajkumar, K.; Majumdar, J.; Singh, G.; Behera, P.N.; Santra, S.C.; Chidambaram, S. Textural characteristics of the surface sediments of a tropical mangrove Sundarban ecosystem India. Indian. J. Geo-Mar. Sci. 2009, 38, 397–403. [Google Scholar]
- Bertolani-Marchetti, D. Pollen paleoclimatology in the Mediterranean since Messinian time. In Geological Evolution of the Mediterranean Basin: Raimondo Selli Commemorative Volume; Springer: New York, NY, USA, 1985; pp. 525–543. [Google Scholar]
- Friedman, G.M. Differences in size distributions of populations of particles among sands of various origins: Addendum to IAS Presidential Address. Sedimentology 1979, 26, 859–862. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Lee, C.T. Discrimination between coastal sub-environments using textural characteristics. Sedimentology 1994, 41, 1133–1145. [Google Scholar] [CrossRef]
- Martins, L.R. Recent sediments and grain-size analysis. Gravel 2003, 1, 90–105. [Google Scholar]
- Srivastava, A.K.; Mankar, R.S. Grain size analysis and depositional pattern of upper Gondwana sediments (Early Cretaceous) of Salbardi area, districts Amravati, Maharashtra and Betul, Madhya Pradesh. J. Geol. Soc. India 2009, 73, 393–406. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ingle, P.S.; Khare, N. Textural characteristics, distribution pattern and provenance of heavy minerals in glacial sediments of Schirmacher Oasis, East Antarctica. J. Geol. Soc. India 2010, 75, 393–402. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ingle, P.S.; Lunge, H.S.; Khare, N. Grain-size characteristics of deposits derived from different glaciogenic environments of the Schirmacher Oasis, East Antarctica. Geologos 2012, 18, 251–266. [Google Scholar] [CrossRef]
- Rajganapathi, V.C.; Jitheshkumar, N.; Sundararajan, M.; Bhat, K.H.; Velusamy, S. Grain size analysis and characterization of sedimentary environment along Thiruchendur coast, Tamilnadu, India. Arab. J. Geosci. 2013, 6, 4717–4728. [Google Scholar] [CrossRef]
- Griffith, J.C. Scientific Methods in Analysis of Sediments; McGrawHill: New York, NY, USA, 1967; 508p. [Google Scholar]
- Moiola, R.J.; Weiser, D. Textural parameters; an evaluation. J. Sediment. Res. 1968, 38, 45–53. [Google Scholar]
- Flemming, B.W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis. Sediment. Geol. 2007, 202, 425–435. [Google Scholar] [CrossRef]
- Molinaroli, E.; Guerzoni, S.; De Falco, G.; Sarretta, A.; Cucco, A.; Como, S.; Simeone, S.; Perilli, A.; Magni, P. Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: The Lagoons of Venice and Cabras, Italy. Sediment. Geol. 2009, 219, 196–207. [Google Scholar] [CrossRef]
- Friedman, G.M. Distinction between dunes, beach, and river sands from their textural characteristics. J. Sediment. Res. 1961, 31, 514–529. [Google Scholar]
- Friedman, G.M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. J. Sediment. Res. 1967, 37, 327–354. [Google Scholar]
- Stewart , H.B., Jr. Sedimentary reflections of depositional environment in San Miguel lagoon, Baja California, Mexico. Am. Assoc. Pet. Geol. 1958, 42, 2567–2618. [Google Scholar]
- Passega, R. Texture as Characteristic of Clastic Deposition. Am. Assoc. Pet. Geol. 1957, 41, 1952–1984. [Google Scholar]
- Kalicki, T. Grain size of the overbank deposits as carriers of paleogeographical information. Quat. Int. 2000, 72, 107–114. [Google Scholar] [CrossRef]
- Le Roux, J.P.; Rojas, E.M. Sediment transport patterns determined from grain size parameters: Overview and state of the art. Sediment. Geol. 2007, 202, 473–488. [Google Scholar] [CrossRef]
- Sahu, B.K. Multigroup discrimination of depositional environments using size distribution statistics. Indian. J. Earth Sci. 1983, 10, 20–29. [Google Scholar]
- Reineck, H.; Wunderlich, F. Classification, and origin of flaser and lenticular bedding. Sedimentology 1968, 11, 99–104. [Google Scholar] [CrossRef]
- Harshbarger, J.W.; Repenning, C.A.; Irwin, J.H. Stratigraphy of the Uppermost Triassic Jurassic Rock of the Navajo Country; US Geological Survey: Reston, VA, USA, 1957; Volume 291, p. 74. [Google Scholar]
- Miall, A.D. Architectural elements and bounding surfaces in fluvial deposits: Anatomy of the Kayenta Formation (Lower Jurassic), southwest Colorado. Sedim. Geol. 1988, 55, 233–262. [Google Scholar] [CrossRef]
- Bromley, M.H. Variations in fluvial style as revealed by architectural elements, Kayenta Formation, Mesa Creek, Colorado, USA: Evidence for both ephemeral and perennial fluvial processes. In The Three-Dimensional Facies Architecture of Terrigenous Clastic Sediments and its Implications for Hydrocarbon Discovery and Recovery; Miall, A.D., Tyler, N., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1991; Volume 3, pp. 94–102. [Google Scholar]
- Luttrell, P.R. Basinwide sedimentation and the continuum of paleoflow in an ancient river system: Kayenta Formation (Lower Jurassic), central portion Colorado Plateau. Sedim. Geol. 1993, 85, 411–434. [Google Scholar] [CrossRef]
- Mutti, E.; Tinterri, R.; Muzzi Magalhaes, P.; Basta, G. Deep-water Turbidites and Their Equally Important Shallower Water Cousins. In Proceedings of the American Association of Petroleum Geologists (AAPG) Annual Convention, Long Beach, CA, USA, 1–4 April 2007. [Google Scholar]
- Dalrymple, R.W.; Mackay, D.A.; Ichaso, A.A.; Choi, K.S. Processes, morphodynamics, and facies of tide-dominated estuaries. In Principles of Tidal Sedimentology; Springer: Dordrecht, The Netherlands, 2012; pp. 79–107. [Google Scholar]
- Hoitink, A.J.F.; Jay, D.A. Tidal River dynamics: Implications fordeltas. Rev. Geophys. 2016, 54, 240–272. [Google Scholar] [CrossRef]
- Feng, H.; Tang, L.; Wang, Y.; Guo, C.; Liu, D.; Zhao, H.; Zhao, L.; Wang, W.J. Effects of recent morphological change on the redistribution of flow discharge in the Yangtze River Delta. Cont. Shelf Res. 2020, 208, 104–218. [Google Scholar] [CrossRef]
- Mutti, E.; Chibaudo, G. Un Esemplio de Torbiditidi cono De Sottomarina Esterna le Arenarie di San Salvatores. (Formazione Di Bobbio, Miocene) Nell Appennino Di Piacenta; Accademi a delle Scienze: Torino, Italy, 1972; p. 40. [Google Scholar]
- Mulder, T.; Syvitski, J.P.M. Turbidity Currents Generated at River Mouths during Exceptional Discharges to the World Oceans. J. Geol. 1995, 103, 285–299. [Google Scholar] [CrossRef]
- Mulder, T.; Chapron, E. Flood deposits in continental and marine environments: Character and significance. In Sediment Transfer from Shelf to Deep Water—Revisiting the Delivery System: AAPG Studies in Geology; Slatt, R.M., Zavala, C., Eds.; AAPG: Tulsa, OK, USA, 2011; Volume 61, pp. 1–30. [Google Scholar]
- Talling, P.J.; Paull, C.K.; Piper, D.J.W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth Sci. Rev. 2013, 125, 244–287. [Google Scholar] [CrossRef]
- Hallsworth, C.R.; Knox, R. Classification of sediments and sedimentary rocks. In BGS Rock Classification Scheme; Research Report RR/99/003; British Geological Survey: Nottingham, UK, 1999; Volume 3. [Google Scholar]
- Firincioglu, B.S.; Bilsel, H. Unified Plasticity Potential of Soils. Appl. Sci. 2023, 13, 7889. [Google Scholar] [CrossRef]
- Yvon, J.; Ferrand, T. Preparation Ex-Situ de Peloids: Propriets Thermiques, Mechaniques et D’echange; Gruppo Italiano AIPEA, Salice Terme (PV), Tipografia Trabella: Milano, Italy, 1996; pp. 67–74. [Google Scholar]
- Morandi, N. Thermal and diffractometric behavior: Decisive parameters for assessing the quality of clays used for healing purposes. Mineral. Petrogr. Acta 1999, 42, 307–316. [Google Scholar]
- Veniale, F.; Setti, M.; Soggetti, F.; Lofrano, M.; Trailo, F. Esperimenti di maturazione di geomateriali argillosi con acqua sulfurea e salso-bromo-iodica per la preparazione di fanghi peloidi termali e per trattamenti dermatologici. Mineral. Petrogr. Acta 1999, 42, 267–275. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Bergamaschi, B.; Marzola, L.; Radice, M.; Manfredini, S.; Baldini, E.; Vicentini, C.B.; Marrocchino, E.; Molesini, S.; Ziosi, P.; Vaccaro, C.; et al. Comparative Study of SPA Mud from “Bacino Idrominerario Omogeneo dei Colli Euganei (B.I.O.C.E.)–Italy” and Industrially Optimized Mud for Skin Applications. Life 2020, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Mohan, C. Basics of clay minerals and their characteristic properties. Clay Clay Miner. 2021, 24, 1–29. [Google Scholar]
- Komar, D.; Dolenec, T.; Dolenec, M.; Vrhovnik, P.; Lojen, S.; Belak, Z.L.; Kniewald, G.; Šmuc, N.R. Physico-chemical and geochemical characterization of Makirina Bay peloid mud and its evaluation for potential use in balneotherapy (N Dalmatia, Republic of Croatia). Indian. J. Tradit. Knowl. 2015, 1, 5–12. [Google Scholar]
Studied Area | Section | Age Determination | Characteristic Pl. Foraminifera | |
---|---|---|---|---|
Kefalonia Island | Xi beach | X | Piacenzian | Globoconella inflata, Globigerinoides bollii, Globigerinoides extremus |
Koutala beach | K | Upper Piacenzian to Gelasian | Globigerinoides tenellus, Globigerinoides extremus | |
Matzavinata | MA | Upper Zanclean to Gelasian | Globigerinoides extremus, Globoturborotalita rubescens | |
Chavdata | CH | Zanclean to Gelasian | Globigerinoides elongatus | |
Corfu Island | Arillas South | B | Tortonian to Messinian | Globorotalia plesiotumida, Globorotalia tumida, Globoturborotalita nepenthes, Globoturborotalita apertura, Globigerinoides conglobatus |
Arillas North | at least Middle Miocene or younger age | Cyprideis torosa | ||
Agios Stefanos | A | Zanclean | Globigerinoides conglobatus, Globorotalia margaritae, Neogloboquadrina dutertei |
Studied Area | Section | Calcium Carbonate (CaCO3) | |||
---|---|---|---|---|---|
Min | Max | Aver. | |||
Kefalonia Island | Xi beach | X | 16.00 | 34.72 | 24.27 |
Xi beach sand | 17.87 (1 sample) | ||||
Koutala beach | K | 20.28 | 33.66 | 25.36 | |
Matzavinata | MA | 19.1 | 34.6 | 25.7 | |
Chavdata | CH | 12.22 | 35.81 | 24.14 | |
Corfu Island | Arillas | B | 17.76 | 39.27 | 31.86 |
Agios Stefanos | A | 22.86 | 37.45 | 29.96 |
Studied Area | Section | Total Organic Carbon (Corg) | |||
---|---|---|---|---|---|
Min | Max | Aver. | |||
Kefalonia Island | Xi beach | X | 0.13 | 0.77 | 0.42 |
Xi beach sand | 0.13 (1 sample) | ||||
Koutala beach | K | 0.19 | 0.62 | 0.36 | |
Matzavinata | MA | 0.10 | 0.29 | 0.18 | |
Chavdata | CH | 0.13 | 0.47 | 0.23 | |
Corfu Island | Arillas | B | 0.11 | 0.45 | 0.27 |
Agios Stefanos | A | 0.18 | 0.58 | 0.33 |
Grain Size | Clay | Silt | Sand | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Studied Area | Min | Max | Aver. | Min | Max | Aver. | Min | Max | Aver. | |
Kefalonia Island | Xi beach | 7.34 | 51.28 | 37.09 | 46.96 | 88.63 | 59.04 | 0.80 | 19.07 | 3.87 |
Koutala beach | 4.88 | 49.59 | 31.49 | 49.81 | 87.85 | 65.45 | 0.60 | 7.28 | 3.06 | |
Matzavinata | 3.78 | 48.86 | 37.3 | 50.03 | 90.72 | 58.60 | 1.11 | 11.16 | 4.10 | |
Chavdata | 33.89 | 53.84 | 48.48 | 43.53 | 64.89 | 49.98 | 0.57 | 3.94 | 1.85 | |
Corfu Island | Arillas | 8.73 | 55.90 | 28.79 | 27.04 | 84.61 | 58.54 | 3.46 | 44.87 | 12.67 |
Agios Stefanos | 0.18 | 56.24 | 43.44 | 39.78 | 98.89 | 50.77 | 0.93 | 10.97 | 5.79 |
Studied Area | Section | Statistical Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Size (Mz) | Sorting (σ1) | Skewness (SK1) | Kurtosis (KG) | |||||||||||
Min | Max | Aver. | Min | Max | Aver. | Min | Max | Aver. | Min | Max | Aver. | |||
Kefalonia Island | Xi beach | X | 5.54 | 8.82 | 8.04 | 1.09 | 3.50 | 2.76 | 0.11 | 0.66 | 0.43 | 0.65 | 2.63 | 1.03 |
Xi beach sand | 2.28 | 2.86 | 2.51 | 0.31 | 0.62 | 0.43 | −0.37 | −0.07 | −0.23 | 0.93 | 1.51 | 1.15 | ||
Koutala beach | K | 6.23 | 8.80 | 7.41 | 1.19 | 2.88 | 2.20 | 0.37 | 0.73 | 0.45 | 0.61 | 1.28 | 1.01 | |
Matzavinata | MA | 6.81 | 8.72 | 8.08 | 1.07 | 3.19 | 2.78 | 0.31 | 0.56 | 0.42 | 0.66 | 1.49 | 1.03 | |
Chavdata | CH | 7.25 | 8.99 | 8.60 | 2.05 | 2.92 | 2.73 | 0.27 | 0.42 | 0.35 | 0.63 | 0.82 | 1.62 | |
Corfu Island | Arillas | B | 6.13 | 9.14 | 7.19 | 1.21 | 3.26 | 2.36 | −0.30 | 0.39 | 0.22 | 0.74 | 1.73 | 1.17 |
Agios Stefanos | A | 6.47 | 9.08 | 8.26 | 0.64 | 3.28 | 2.84 | −0.09 | 0.40 | 0.23 | 0.66 | 1.65 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botziolis, C.; Bourli, N.; Zoumpouli, E.; Papadopoulou, P.; Dimopoulos, N.; Kovani, A.; Zelilidis, P.; Aspioti, D.C.; Iliopoulos, G.; Zelilidis, A. The Knowledge and Application of Sedimentary Conditions of Shallow Marine and Tidal Waters of Ionian Islands, Greece: Implications for Therapeutic Use. Geosciences 2024, 14, 48. https://doi.org/10.3390/geosciences14020048
Botziolis C, Bourli N, Zoumpouli E, Papadopoulou P, Dimopoulos N, Kovani A, Zelilidis P, Aspioti DC, Iliopoulos G, Zelilidis A. The Knowledge and Application of Sedimentary Conditions of Shallow Marine and Tidal Waters of Ionian Islands, Greece: Implications for Therapeutic Use. Geosciences. 2024; 14(2):48. https://doi.org/10.3390/geosciences14020048
Chicago/Turabian StyleBotziolis, Chrysanthos, Nicolina Bourli, Elena Zoumpouli, Penelope Papadopoulou, Nikolaos Dimopoulos, Andriana Kovani, Panagiotis Zelilidis, Diamantina Christina Aspioti, George Iliopoulos, and Avraam Zelilidis. 2024. "The Knowledge and Application of Sedimentary Conditions of Shallow Marine and Tidal Waters of Ionian Islands, Greece: Implications for Therapeutic Use" Geosciences 14, no. 2: 48. https://doi.org/10.3390/geosciences14020048
APA StyleBotziolis, C., Bourli, N., Zoumpouli, E., Papadopoulou, P., Dimopoulos, N., Kovani, A., Zelilidis, P., Aspioti, D. C., Iliopoulos, G., & Zelilidis, A. (2024). The Knowledge and Application of Sedimentary Conditions of Shallow Marine and Tidal Waters of Ionian Islands, Greece: Implications for Therapeutic Use. Geosciences, 14(2), 48. https://doi.org/10.3390/geosciences14020048