Mapping the Flood Vulnerability of Residential Structures: Cases from The Netherlands, Puerto Rico, and the United States
Abstract
:1. Introduction
- i.
- What is the flood vulnerability of structures located in each country? And how do FFEs compare to water surface elevations, respectively?
- ii.
- What additional building elevation information should be considered to reduce flood vulnerabilities in the future?
1.1. From Tulips to the Tropics: Flood Management in the Netherlands, Puerto Rico, and the US
1.2. Current Flood Risk Standards within the NL, PR, and the US
2. Materials and Methods
2.1. Site Selection
2.2. Data Acquisition
2.2.1. Building Inventories and Elevation Information
2.2.2. Water Surface Elevations
2.3. Flood Vulnerability Analysis
2.4. Flood Vulnerability Classification and Mapping Rubric
3. Results
3.1. Flood Vulnerability Analysis
3.1.1. Meyerland
3.1.2. Old Empel
3.1.3. Cataño Pueblo
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brody, S. The characteristics, causes, and consequences of sprawling development patterns in the United States. Nat. Educ. Knowl. 2013, 4, 2. [Google Scholar]
- Brody, S.D.; Zahran, S.; Highfield, W.E.; Grover, H.; Vedlitz, A. Identifying the impact of the built environment on flood damage in Texas. Disasters 2008, 32, 1–18. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Güneralp, B.; Li, X.; Zhao, K.; Zhang, H. Increasing global urban exposure to flooding: An analysis of long-term annual dynamics. Sci. Total Environ. 2022, 817, 153012. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I. Are Pluvial and Fluvial Floods on the Rise? Water 2022, 14, 2612. [Google Scholar] [CrossRef]
- Sebastian, A. Compound flooding. In Coastal Flood Risk Reduction; Elsevier: Amsterdam, The Netherlands, 2022; pp. 77–88. [Google Scholar]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Hada, C.; Shaw, R. Chapter 35: Integrating disaster and climate change in risk sensitive land use planning. In Handbook on Climate Change and Disasters; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 462–469. [Google Scholar]
- Gersonius, B.; Ashley, R.; Pathirana, A.; Zevenbergen, C. Climate change uncertainty: Building flexibility into water and flood risk infrastructure. Clim. Chang. 2013, 116, 411–423. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- English, E.C.; Chen, M.; Zarins, R.; Patange, P.; Wiser, J.C. Building resilience through flood risk reduction: The benefits of amphibious foundation retrofits to heritage structures. Int. J. Archit. Herit. 2021, 15, 976–984. [Google Scholar] [CrossRef]
- Berkes, F. Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking. Nat. Hazards 2007, 41, 283–295. [Google Scholar] [CrossRef]
- Paton, D.; Smith, L.; Violanti, J. Disaster response: Risk, vulnerability and resilience. Disaster Prev. Manag. Int. J. 2000, 9, 173–180. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Branson, J. Coastal resilience and planning for an uncertain future: An introduction. Geogr. J. 1998, 164, 255–258. [Google Scholar] [CrossRef]
- Diaconu, D.C.; Costache, R.; Popa, M.C. An overview of flood risk analysis methods. Water 2021, 13, 474. [Google Scholar] [CrossRef]
- Díez-Herrero, A.; Garrote, J. Flood risk analysis and assessment, applications and uncertainties: A bibliometric review. Water 2020, 12, 2050. [Google Scholar] [CrossRef]
- Apel, H.; Aronica, G.; Kreibich, H.; Thieken, A. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Schlögl, M.; Dosser, L.; Roesch, F.; Borga, M.; Erlicher, M.; Keiler, M.; Fuchs, S. Physical vulnerability to dynamic flooding: Vulnerability curves and vulnerability indices. J. Hydrol. 2022, 607, 127501. [Google Scholar] [CrossRef]
- Grahn, T.; Nyberg, L. Assessment of pluvial flood exposure and vulnerability of residential areas. Int. J. Disaster Risk Reduct. 2017, 21, 367–375. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Colomina, I.; de la Tecnologia, P.M. Towards a new paradigm for high-resolution low-cost photogrammetryand remote sensing. In Proceedings of the ISPRS XXI Congress, Beijing, China, 3–11 July 2008; pp. 1201–1206. [Google Scholar]
- Fortenberry, B. Digital documentation in historic preservation education and research: Prospects and perils. Preserv. Educ. Res. 2019, 11, 81–116. [Google Scholar] [CrossRef]
- Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Autom. Constr. 2018, 93, 252–264. [Google Scholar] [CrossRef]
- Erenoglu, R.C.; Akcay, O.; Erenoglu, O. An UAS-assisted multi-sensor approach for 3D modeling and reconstruction of cultural heritage site. J. Cult. Herit. 2017, 26, 79–90. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Wang, J.; Li, C. Acquisition of UAV images and the application in 3D city modeling. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2007: Image Processing, Beijing, China, 9–12 September 2007; pp. 280–290. [Google Scholar]
- Ho, Y.-H.; Lee, C.-C.; Diaz, N.D.; Brody, S.D.; Mostafavi, A. ELEV-VISION: Automated Lowest Floor Elevation Estimation from Segmenting Street View Images. arXiv 2023, arXiv:2306.03050. [Google Scholar]
- Xia, J.; Gong, J. Computer vision based first floor elevation estimation from mobile LiDAR data. Autom. Constr. 2024, 159, 105258. [Google Scholar] [CrossRef]
- Gao, G.; Ye, X.; Li, S.; Huang, X.; Ning, H.; Retchless, D.; Li, Z. Exploring flood mitigation governance by estimating first-floor elevation via deep learning and google street view in coastal Texas. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 296–313. [Google Scholar] [CrossRef]
- Guo, M.; Gong, J.; Whytlaw, J.L. Large-scale cloud-based building elevation data extraction and flood insurance estimation to support floodplain management. Int. J. Disaster Risk Reduct. 2022, 69, 102741. [Google Scholar] [CrossRef]
- Taghinezhad, A.; Friedland, C.J.; Rohli, R.V.; Marx, B.D. An imputation of first-floor elevation data for the avoided loss analysis of flood-mitigated single-family homes in Louisiana, United States. Front. Built Environ. 2020, 6, 138. [Google Scholar] [CrossRef]
- Brody, S.; Lee, Y.; Kothuis, B. Coastal Flood Risk Reduction: The Netherlands and the US Upper Texas Coast; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Molenveld, A.; van Buuren, A. Flood risk and resilience in the Netherlands: In search of an adaptive governance approach. Water 2019, 11, 2563. [Google Scholar] [CrossRef]
- Kothuis, B.; Jonkman, S.; Sebastian, A. Delta planning and design in the Houstan Galveston Bay region, Texas. In Delta Interventions: Design and Engineering in Urban Water Landscapes; Nillesen, A., Kothuis, B., Meyer, H., Palmboom, F., Eds.; Delft University Publishers: Delft, The Netherlands, 2016. [Google Scholar]
- Jonkman, S.N.; Kok, M.; Vrijling, J.K. Flood risk assessment in the Netherlands: A case study for dike ring South Holland. Risk Anal. Int. J. 2008, 28, 1357–1374. [Google Scholar] [CrossRef]
- (RWS), Rijkswaterstaat. The Storm Surge Barrier in the Eastern Scheldt. 2015. Available online: https://open.rijkswaterstaat.nl/publish/pages/100035/brochure_eastern_scheldt_storm_surge_barrier.pdf (accessed on 12 June 2023).
- (ENW), Water Safety Expertise Network. High Water 2021 Facts and Interpretation. 2021. Available online: https://www.enwinfo.nl/publicaties/ (accessed on 12 June 2023).
- Jonkman, S.; de Moel, H.; Moll, R.; Slager, K. Editorial for the Special issue on “2021 Summer Floods in Europe”. J. Coast. Riverine Flood Risk 2023, 2, 11. [Google Scholar] [CrossRef]
- Kok, M.; Slager, K.; de Moel, H.; Botzen, W.; de Bruijn, K.; Wagenaar, D.; Rikkert, S.; Koks, E.; van Ginkel, K. Rapid damage assessment caused by the flooding event 2021 in Limburg, Netherlands. J. Coast. Riverine Flood Risk 2023, 2. [Google Scholar] [CrossRef]
- Bessette-Kirton, E.K.; Cerovski-Darriau, C.; Schulz, W.H.; Coe, J.A.; Kean, J.W.; Godt, J.W.; Thomas, M.A.; Hughes, K.S. Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico. GSA Today 2019, 29, 4–10. [Google Scholar]
- Reis-Silvia, A.; Vecchiarelli, C.E.; Taylor, H.J.; Mues, L.M. Estimating Floodplain Populations and Assessing Flood Risk and Flood Mitigation in Puerto Rico; Worcester Polytechnic Institute: Worcester, MA, USA, 2011. [Google Scholar]
- Rodriguez, H. A socioeconomic analysis of hurricanes in puerto rico: An overview of disaster mitigation and preparedness. In Hurricanes: Climate and Socioeconomic Impacts; Springer: Berlin/Heidelberg, Germany, 1997; pp. 121–143. [Google Scholar]
- Ramsey, M.M.; Muñoz-Erickson, T.A.; Mélendez-Ackerman, E.; Nytch, C.J.; Branoff, B.L.; Carrasquillo-Medrano, D. Overcoming barriers to knowledge integration for urban resilience: A knowledge systems analysis of two-flood prone communities in San Juan, Puerto Rico. Environ. Sci. Policy 2019, 99, 48–57. [Google Scholar] [CrossRef]
- Ma, C.; Baker, A.C.; Smith, T.E. How income inequality influenced personal decisions on disaster preparedness: A multilevel analysis of homeowners insurance among Hurricane Maria victims in Puerto Rico. Int. J. Disaster Risk Reduct. 2021, 53, 101953. [Google Scholar] [CrossRef]
- López-Marrero, T. An integrative approach to study and promote natural hazards adaptive capacity: A case study of two flood-prone communities in puerto rico. Geogr. J. 2010, 176, 150–163. [Google Scholar] [CrossRef]
- Kunreuther, H. Improving the national flood insurance program. Behav. Public Policy 2021, 5, 318–332. [Google Scholar] [CrossRef]
- FEMA. 2023 Hurricane Fiona Recovery Overview. Available online: https://www.fema.gov/press-release/20231220/2023-hurricane-fiona-recovery-overview (accessed on 20 February 2024).
- Gall, M.; Borden, K.A.; Emrich, C.T.; Cutter, S.L. The unsustainable trend of natural hazard losses in the United States. Sustainability 2011, 3, 2157–2181. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E.; Kang, J.E. Rising Waters: The Causes and Consequences of Flooding in the United States; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- White, G.F. Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States. Ph.D. Thesis, The University of Chicago, Chicago, IL, USA, 1942. [Google Scholar]
- Kienholz, C.; Pierce, J.; Hood, E.; Amundson, J.M.; Wolken, G.J.; Jacobs, A.; Hart, S.; Wikstrom Jones, K.; Abdel-Fattah, D.; Johnson, C. Deglacierization of a marginal basin and implications for outburst floods, Mendenhall Glacier, Alaska. Front. Earth Sci. 2020, 8, 137. [Google Scholar] [CrossRef]
- Thompson, P.R.; Widlansky, M.J.; Merrifield, M.A.; Becker, J.M.; Marra, J.J. A statistical model for frequency of coastal flooding in Honolulu, Hawaii, during the 21st century. J. Geophys. Res. Ocean. 2019, 124, 2787–2802. [Google Scholar] [CrossRef]
- Knowles, S.G.; Kunreuther, H.C. Troubled waters: The national flood insurance program in historical perspective. J. Policy Hist. 2014, 26, 327–353. [Google Scholar] [CrossRef]
- Michel-Kerjan, E.; Lemoyne de Forges, S.; Kunreuther, H. Policy tenure under the US national flood insurance program (NFIP). Risk Anal. Int. J. 2012, 32, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Burby, R.J. Flood insurance and floodplain management: The US experience. Glob. Environ. Chang. Part B Environ. Hazards 2001, 3, 111–122. [Google Scholar] [CrossRef]
- FEMA. OpenFEMA. Available online: https://www.fema.gov/about/reports-and-data/openfema (accessed on 22 July 2023).
- Merrell, W. Mixing tulips with tacos: Flood prevention practices and policies—A comparison of north Texas coastal communities and the Netherlands. In Coastal Flood Risk Reduction; Elsevier: Amsterdam, The Netherlands, 2022; pp. 5–16. [Google Scholar]
- Brody, S.D.; Highfield, W.E.; Merrell, W.; Lee, Y. Recovery versus protection-based approaches to flood risk reduction. In The Routledge Handbook of Urban Disaster Resilience: Integrating Mitigation, Preparedness, and Recovery Planning; Routledge: London, UK, 2019. [Google Scholar]
- (RWS), Rijkswaterstaat. The National Water and Flood Information System (LIWO). Available online: https://basisinformatie-overstromingen.nl/#/maps (accessed on 14 June 2023).
- (RWS), Rijkswaterstaat. Flooding Standards. Available online: https://www.infomil.nl/onderwerpen/lucht-water/handboek-water/thema-s/wateroverlast/normen-wateroverlast/ (accessed on 19 February 2024).
- Vader, H.; Bakker, A.M.; Jonkman, S.N.; van den Boomen, M.; van Baaren, E.; Diermanse, F.L. A framework for assessing the remaining life of storm surge barriers. Struct. Infrastruct. Eng. 2023, 1–13. [Google Scholar] [CrossRef]
- Eilander, D.; Boisgontier, H.; Buitink, J.; Couasnon, A.; Dalmijn, B.; Hegnauer, M.; de Jong, T.; Loos, S.; Marth, I.; van Verseveld, W. HydroMT: Automated and reproducible model building and analysis. J. Open Source Softw. 2023, 8, 4897. [Google Scholar] [CrossRef]
- Slomp, R.; Diemanse, F.; de Waal, H.; Stijnen, J.; Noort, J.; Wentholt, L. A consistent suite of models for flood risk management. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015; pp. 1–5. [Google Scholar]
- Jafarzadegan, K.; Moradkhani, H.; Pappenberger, F.; Moftakhari, H.; Bates, P.; Abbaszadeh, P.; Marsooli, R.; Ferreira, C.; Cloke, H.L.; Ogden, F. Recent advances and new frontiers in riverine and coastal flood modeling. Rev. Geophys. 2023, 61, e2022RG000788. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Trinh, M.X.; Molkenthin, F. Flood hazard mapping for data-scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal-spatial resolution remote sensing precipitation data, and satellite imageries. Nat. Hazards 2021, 109, 441–469. [Google Scholar] [CrossRef]
- De Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P.J. Flood risk assessments at different spatial scales. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 865–890. [Google Scholar] [CrossRef]
- Iqbal, A.; Mondal, M.S.; Veerbeek, W.; Khan, M.S.A.; Hakvoort, H. Effectiveness of UAV-based DTM and satellite-based DEMs for local-level flood modeling in Jamuna floodplain. J. Flood Risk Manag. 2023, 16, e12937. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.; Waller, S.T. Remote sensing methods for flood prediction: A review. Sensors 2022, 22, 960. [Google Scholar] [CrossRef] [PubMed]
- Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The use of LiDAR-derived DEM in flood applications: A review. Remote Sens. 2020, 12, 2308. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for small-scale flood hazard mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Backes, D.; Schumann, G.; Teferle, F.N.; Boehm, J. Towards a high-resolution drone-based 3D mapping dataset to optimise flood hazard modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 181–187. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Guardiola-Albert, C.; Aroca-Jiménez, E.; Eguibar, M.Á.; Martínez-Chenoll, M.L. Flood damage analysis: First floor elevation uncertainty resulting from LiDAR-derived digital surface models. Remote Sens. 2016, 8, 604. [Google Scholar] [CrossRef]
- Diaz, N.D.; Highfield, W.E.; Brody, S.D.; Fortenberry, B.R. Deriving First Floor Elevations within Residential Communities Located in Galveston Using UAS Based Data. Drones 2022, 6, 81. [Google Scholar] [CrossRef]
- de Moel, H.; van Vliet, M.; Aerts, J.C. Evaluating the effect of flood damage-reducing measures: A case study of the unembanked area of Rotterdam, the Netherlands. Reg. Environ. Chang. 2014, 14, 895–908. [Google Scholar] [CrossRef]
- Koivumäki, L.; Alho, P.; Lotsari, E.; Käyhkö, J.; Saari, A.; Hyyppä, H. Uncertainties in flood risk mapping: A case study on estimating building damages for a river flood in Finland. J. Flood Risk Manag. 2010, 3, 166–183. [Google Scholar] [CrossRef]
- van Herk, S.; Zevenbergen, C.; Gersonius, B.; Waals, H.; Kelder, E. Process design and management for integrated flood risk management: Exploring the multi-layer safety approach for Dordrecht, The Netherlands. J. Water Clim. Chang. 2014, 5, 100–115. [Google Scholar] [CrossRef]
- FEMA. Flood Zones. Available online: https://www.fema.gov/flood-zones (accessed on 15 January 2024).
- FEMA. Base Flood Elevation (BFE). Available online: https://www.fema.gov/node/404233 (accessed on 15 January 2024).
- FEMA. Base Level Engineering (BLE) Tools and Resources. Available online: https://www.fema.gov/about/organization/region-6/base-level-engineering-ble-tools-and-resources (accessed on 8 November 2023).
- Tate, E.; Munoz, C.; Suchan, J. Uncertainty and sensitivity analysis of the HAZUS-MH flood model. Nat. Hazards Rev. 2015, 16, 04014030. [Google Scholar] [CrossRef]
- de MOEL, H.; Aerts, J. Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Nat. Hazards 2011, 58, 407–425. [Google Scholar] [CrossRef]
- Atoba, K.; Newman, G.; Brody, S.; Highfield, W.; Kim, Y.; Juan, A. Buy them out before they are built: Evaluating the proactive acquisition of vacant land in flood-prone areas. Environ. Conserv. 2021, 48, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Blessing, R.; Juan, A.; Brody, S.; Bedient, P. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling. J. Hydrol. 2019, 568, 82–95. [Google Scholar] [CrossRef]
- Juan, A.; Gori, A.; Sebastian, A. Comparing floodplain evolution in channelized and unchannelized urban watersheds in Houston, Texas. J. Flood Risk Manag. 2020, 13, e12604. [Google Scholar] [CrossRef]
- FEMA. Lowest Floor Guide, April 2021 NFIP Flood Insurance Manual. Available online: https://www.fema.gov/sites/default/files/documents/fema_fim-appendix-c-lowest-floor-guide_apr2020.pdf (accessed on 22 March 2022).
- FEMA. Elevation Certificate and Instructions. 2019. Available online: https://www.fema.gov/sites/default/files/2020-07/fema_nfip_elevation-certificate-form-instructions_feb-2020.pdf?id=1383 (accessed on 17 February 2022).
- de Ruig, L.T.; Haer, T.; de Moel, H.; Brody, S.D.; Botzen, W.W.; Czajkowski, J.; Aerts, J.C. How the USA can benefit from risk-based premiums combined with flood protection. Nat. Clim. Chang. 2022, 12, 995–998. [Google Scholar] [CrossRef]
- Horn, D.P. National Flood Insurance Program: The Current Rating Structure and Risk Rating 2.0; Congressional Research Service: Washington, DC, USA, 2021; Volume 45999.
- DJI. Phantom 4 RTK. Available online: https://enterprise.dji.com/phantom-4-rtk (accessed on 22 June 2023).
- Chow, T.E.; Chien, J.; Meitzen, K. Validating the quality of volunteered geographic information (VGI) for flood modeling of Hurricane Harvey in Houston, Texas. Hydrology 2023, 10, 113. [Google Scholar] [CrossRef]
- Gori, A.; Gidaris, I.; Elliott, J.R.; Padgett, J.; Loughran, K.; Bedient, P.; Panakkal, P.; Juan, A. Accessibility and recovery assessment of Houston’s roadway network due to fluvial flooding during Hurricane Harvey. Nat. Hazards Rev. 2020, 21, 04020005. [Google Scholar] [CrossRef]
- Garcia, M.; Juan, A.; Bedient, P. Integrating reservoir operations and flood modeling with HEC-RAS 2D. Water 2020, 12, 2259. [Google Scholar] [CrossRef]
- FEMA. Freeboard. Available online: https://www.fema.gov/glossary/freeboard (accessed on 17 July 2023).
- Baker, F. Risk communication about environmental hazards. J. Public Health Policy 1990, 11, 341–359. [Google Scholar] [CrossRef]
- Dransch, D.; Rotzoll, H.; Poser, K. The contribution of maps to the challenges of risk communication to the public. Int. J. Digit. Earth 2010, 3, 292–311. [Google Scholar] [CrossRef]
- Kellens, W.; Vanneuville, W.; Ooms, K.; De Maeyer, P. Communicating flood risk to the public by cartography. In Proceedings of the 24th International Cartographic Conference, Santiago, Chili, 15–21 November 2009. [Google Scholar]
- Leonard, S.D. Does color of warnings affect risk perception? Int. J. Ind. Ergon. 1999, 23, 499–504. [Google Scholar] [CrossRef]
- Stephens, K.K.; Blessing, R.; Tasuji, T.; McGlone, M.S.; Stearns, L.N.; Lee, Y.; Brody, S.D. Investigating ways to better communicate flood risk: The tight coupling of perceived flood map usability and accuracy. Environ. Hazards 2024, 23, 92–111. [Google Scholar] [CrossRef]
- Wong, B. Color blindness. Nat. Methods 2011, 8, 441. [Google Scholar] [CrossRef] [PubMed]
- USACE. Economic Guidance Memorandum (EGM) 01-03, Generic Depth-Damage Relationships. 2000. Available online: https://planning.erdc.dren.mil/toolbox/library/EGMs/egm01-03.pdf (accessed on 21 February 2024).
- USACE. Depth-Damage Relationships for Structures, Contents, and Vehicles and Content-to-Structure Value Ratios (CSVR) in Support of the Donaldsonville to the Gulf, Louisiana, Feasibility Study 2006. Available online: https://www.mvn.usace.army.mil/Portals/56/docs/PD/Donaldsv-Gulf.pdf (accessed on 21 February 2024).
- USACE. North Atlantic Coast Comprehensive Study: Resilient Adaptation to Increasing Risk Physical Depth Damage Function Summary Report. 2015. Available online: https://www.nad.usace.army.mil/Portals/40/docs/NACCS/10A_PhysicalDepthDmgFxSummary_26Jan2015.pdf (accessed on 21 February 2024).
- State of New South Wales. Flood Risk Management Guideline FB03. 2023. Available online: https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Water/Floodplains/flood-risk-management-flood-hazard-230231.pdf (accessed on 21 February 2024).
- NOAA. Global and Regional Sea Level Rise Scenarios for the United States; NOAA: Washington, DC, USA, 2022.
- Fortenberry, B.R. Heritage justice, conservation, and tourism in the greater Caribbean. J. Sustain. Tour. 2021, 29, 253–276. [Google Scholar] [CrossRef]
- Carballo, D.M.; Fortenberry, B. Bridging prehistory and history in the archaeology of cities. J. Field Archaeol. 2015, 40, 542–559. [Google Scholar] [CrossRef]
- Nadal, N.C.; Zapata, R.E.; Pagán, I.; López, R.; Agudelo, J. Building damage due to riverine and coastal floods. J. Water Resour. Plan. Manag. 2010, 136, 327–336. [Google Scholar] [CrossRef]
- Al Assi, A.; Mostafiz, R.B.; Friedland, C.J.; Rahim, M.A.; Rohli, R.V. Flood risk assessment for residences at the neighborhood scale by owner/occupant type and first-floor height. Front. Big Data 2023, 5, 997447. [Google Scholar] [CrossRef]
- Pricope, N.G.; Halls, J.N.; Rosul, L.M. Modeling residential coastal flood vulnerability using finished-floor elevations and socio-economic characteristics. J. Environ. Manag. 2019, 237, 387–398. [Google Scholar] [CrossRef]
Country | Managing Agency | Flood Risk Standard | Flood Standard Probability | 30-Year Mortgage % Probability of Flooding | ||
---|---|---|---|---|---|---|
(Impact) | (Designation) | (per Year) | ||||
The Netherlands | Rijkswaterstaat (RWS) | Dutch national flood policy | Lowest | Dike rings 54–95 | 1/250–1/100 | 12–30% |
Highest | Dike rings 13 and 14 | 1/10,000 | 0.3% | |||
Puerto Rico and the United States | Federal Emergency Management Agency (FEMA) | Special flood hazard areas (SFHAs) | Lowest | 100-year floodplain | 1/100 | 30% |
Highest | 500-year floodplain | 1/500 | 6% |
Data Source | Flood Probability | WSE (m) | Flood Source | |
---|---|---|---|---|
Meyerland | HEC-RAS 2D | 1/100 per year | 7.56–33.2 | Pluvial |
Old Empel | LIWO | 1/100 per year | 5.54–8.88 | Fluvial |
Cataño Pueblo | FEMA | 1/100 per year | 2.7–4.0 | Coastal |
Flood Vulnerability Classification | Major Inundation | Moderate Inundation | Minor Inundation | At Risk | Safe | Very Safe |
---|---|---|---|---|---|---|
Flood inundation | >0.61 m | 0.3–0.61 m | 0–0.29 m | |||
Building freeboard | −0.01–−0.29 m | −0.3–−0.61 m | <−0.61 m | |||
Mapping symbology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, N.D.; Lee, Y.; Kothuis, B.L.M.; Pagán-Trinidad, I.; Jonkman, S.N.; Brody, S.D. Mapping the Flood Vulnerability of Residential Structures: Cases from The Netherlands, Puerto Rico, and the United States. Geosciences 2024, 14, 109. https://doi.org/10.3390/geosciences14040109
Diaz ND, Lee Y, Kothuis BLM, Pagán-Trinidad I, Jonkman SN, Brody SD. Mapping the Flood Vulnerability of Residential Structures: Cases from The Netherlands, Puerto Rico, and the United States. Geosciences. 2024; 14(4):109. https://doi.org/10.3390/geosciences14040109
Chicago/Turabian StyleDiaz, Nicholas D., Yoonjeong Lee, Baukje L. M. Kothuis, Ismael Pagán-Trinidad, Sebastiaan N. Jonkman, and Samuel D. Brody. 2024. "Mapping the Flood Vulnerability of Residential Structures: Cases from The Netherlands, Puerto Rico, and the United States" Geosciences 14, no. 4: 109. https://doi.org/10.3390/geosciences14040109
APA StyleDiaz, N. D., Lee, Y., Kothuis, B. L. M., Pagán-Trinidad, I., Jonkman, S. N., & Brody, S. D. (2024). Mapping the Flood Vulnerability of Residential Structures: Cases from The Netherlands, Puerto Rico, and the United States. Geosciences, 14(4), 109. https://doi.org/10.3390/geosciences14040109