Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan
Abstract
1. Introduction
Deposit Characterization
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.X.; Fu, Z.H.; Hu, Y.F.; Yang, Z.; Ma, J.L.; Sun, Y.Z. Geochemical characteristics of REY, Li, Ga trace elements in the No. 9 coal seam of the Daheng mine, Ningwu coalfield, Shanxi Province, China. China Geol. 2021, 4, 266–273. [Google Scholar] [CrossRef]
- Kalmykov, D.E.; Malikova, A.D. Zagnannyye v Ugol. Obzor Ugledobycha i Ugolnaya Energogeneratsiya v Kazakhstane. Sostoyaniye i Perspektivy. Driven into the Coal. Review of Coal Mining and Coal Energy Generation in Kazakhstan. Current State and Trends—Karaganda. 2017. Available online: https://bankwatch.org/wp-content/uploads/2018/01/KZ-Coal_RU.pdf (accessed on 1 January 2024). (In Russian).
- Arbuzov, S.I.; Vergunov, A.V.; Ilyenok, S.S.I.D. Geokhimiya, mineralogiya i genezis redkometalno-ugolnogo mestorozhdeniya v plaste XI na yuge Kuznetskogo basseyna Geochemistry, mineralogy and genesis of rare metal-coal deposits in seam XI in the south of the Kuznetsk basin. Geosph. Res. 2019, 2, 35–61. (In Russian) [Google Scholar] [CrossRef]
- Seredin, V.V. Metallonosnost’ ugley: Usloviya formirovaniya i perspektivy osvoyeniya Metal content of coals: Formation conditions and perspectives of development. Ugol’naya baza Rossii. TomVI (svodnyy, zaklyuchitel’nyy). In Osnovnyye Zakonomernosti Ugleobrazovaniya i Razmeshcheniya Uglenosnosti na Territorii Rossii; OOO “Geoinformmark”: Moscow, Russia, 2004; pp. 452–519. (In Russian) [Google Scholar]
- Seredin, V.; Finkelman, R. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Seredin, V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal geology in china: An overview. Int. Geol. Rev. 2018, 60, 531–534. [Google Scholar] [CrossRef]
- Dai, S.; Chekryzhov, I.; Seredin, V.; Nechaev, V.; Graham, I.; Hower, J.; Ward, C.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2016, 60, 590–620. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Volostnov, A.V.; Mashenkin, V.S.; Mezhibor, A.M. Scandium in the coals of Northern Asia (Siberia, Russian Far East, Mongolia, Kazakhstan). Russ. Geol. Geophys. 2014, 55, 1649–1660. [Google Scholar] [CrossRef]
- Hower, J.C.; Fu, B.; Dai, S. Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel 2020, 279, 118542. [Google Scholar] [CrossRef]
- Arbuzov, S.I.I.D. Geokhimiya i Metallonosnost Ugley Krasnoyarskogo Kraya. In Geochemistry and Metal Content of Coals of the Krasnoyarsk Region Tomskiy Politekhnicheskiy Universitet; STT: Tomsk, Russia, 2008; 300p, Available online: https://koha.lib.tsu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=524080 (accessed on 14 December 2023).
- Karagandinskiy Ugolnyy Basseyn. Karaganda Coal Basin. Available online: http://www.mining-enc.ru/k/karagandinskij-ugolnyj-bassejn/ (accessed on 23 December 2023). (In Russian).
- Amangeldikyzy, A.; Kopobayeva, A.N.; Blyalova, G.G.; Askarova, N.S. Geochemical speciation of coals in the Karaganda coal Basin. Min. J. Kazakhstan 2023, 7, 15–20. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Liu, P.; Huang, R.; Tang, Y. Comprehensive understandings of rare earth element (REE) speciation in coal fly ashes and implication for REE extractability. Environ. Sci. Technol. 2019, 53, 5369–5377. [Google Scholar] [CrossRef] [PubMed]
- Eterigho-Ikelegbe, O.; Harrar, H.; Bada, S. Rare earth elements from coal and coal discard—A review. Miner. Eng. 2021, 173, 107187. [Google Scholar] [CrossRef]
- Baba, A.; Kaya, A. Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. J. Environ. Manag. 2004, 73, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Hower, J.C.; Groppo, J.G.; Joshi, P.; Preda, D.V.; Gamliel, D.P.; Mohler, D.T.; Wiseman, J.D.; Hopps, S.D.; Morgan, T.D.; Beers, T.; et al. Distribution of lanthanides, yttrium, and scandium in the pilot-scale beneficiation of fly ashes derived from Eastern Kentucky coals. Minerals 2020, 10, 105. [Google Scholar] [CrossRef]
- Li, X.; Ma, B.; Wang, C.; Chen, Y.; Yang, W.; Zhang, W. A sustainable process to recycle aluminum from coal fly ash for simultaneous removal of iron: Solid waste management and evaluation. Miner. Eng. 2022, 184, 107638. [Google Scholar] [CrossRef]
- Bekman, V.M.; Seydalin, O.A.; Zinova, R.A. Geologiya Karagandinskogo Ugolnogo Basseyna. Kollektiv avtorov. In Karaganda Coal Basin. Joint Authorship; Nedra: Moscow, Russia, 1972; p. 415. Available online: https://rusneb.ru/catalog/000016_000021_CHONB (accessed on 23 January 2024). (In Russian)
- Kopobayeva, A.; Amangeldikyzy, A.; Blyalova, G.; Askarova, N. Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals 2024, 14, 349. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Tsennyye Elementy-Primesi v Uglyakh. Ekaterinburg: Izd-vo UrO RAN Valuable Trace Elements in Coals; Yekaterinburg; Pub/House UrO RAN: Shinagawa City, Tokyo, Japan, 2006; p. 538. Available online: https://www.geokniga.org/books/8321 (accessed on 12 January 2024). (In Russian)
- Liu, B.J.; Chu, G.C.; Zhao, C.L.; Sun, Y.Z. Leaching behavior of Li and Ga from granitic rocks and sorption on kaolinite: Implications for their enrichment in the Jungar Coalfield, Ordos Basin. China Geol. 2022, 5, 34–45. [Google Scholar] [CrossRef]
- Kolker, A.; Scott, C.; Lefticariu, L.; Mastalerz, M.; Drobniak, A.; Scott, A. Trace element partitioning during coal preparation: Insights from U.S. illinois basin coals. Int. J. Coal Geol. 2021, 243, 103781. [Google Scholar] [CrossRef]
- Li, J.; Wu, P.; Yang, G.; Pan, L.; Zhuang, X.; Querol, X.; Shangguan, Y. Enrichment of li-ga-zr-hf and se-mo-cr-V-as-pb assemblages in the no. 11 superhigh organic sulfur coal from the sangshuping coal mine, weibei coalfield, shaanxi, north china. Energies 2020, 13, 6660. [Google Scholar] [CrossRef]
- Ilyenok, S.S. Geokhimiya Elementov-Primesey v Uglyakh Azeyskogo Mestorozhdeniya Irkutskogo Ugolnogo Basseyna Geochemistry of Trace Elements in Coals of the Azeyskoye Deposit of the Irkutsk Coal Basin. 2017. Available online: https://earchive.tpu.ru/bitstream/11683/46973/1/dis00240.pdf (accessed on 29 December 2023). (In Russian).
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Fu, J.; Chen, T.; Cui, F. Zonal Geochemistry and Elasticity Characteristics of Gallium- and Lithium-rich No. 6 Coalbed in the Haerwusu Mine, North China. Minerals 2024, 14, 404. [Google Scholar] [CrossRef]
- Lewińska-Preis, L.; Fabiańska, M.J.; Ćmiel, S.; Kita, A. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. Int. J. Coal Geol. 2009, 80, 211–223. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Song, H.; Nechaev, V.P.; French, D.; Spiro, B.F.; Zhao, J. Geological factors controlling variations in the mineralogical and elemental compositions of late permian coals from the zhijin-nayong coalfield, western guizhou, China. Int. J. Coal Geol. 2021, 247, 103855. [Google Scholar] [CrossRef]
- Amangeldykyzy, A. Issledovaniye Rasprostranennosti Redkozemelnykh Metallov v Uglyakhglavnykh Ugolnykh Basseynov Tsentralnogo Kazakhstana Study of the Prevalence of Rare Earth Metals in Coals MAIN Coal Basins of Central Kazakhstan. 2021. Available online: https://www.geokniga.org/bookfiles/geokniga-issledovanie-rasprostranennosti-redkozemelnyh-metallov.pdf (accessed on 21 January 2024). (In Russian).
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, Northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in wuchiapingian coals from the Liupanshui Coalfield, Guizhou, Southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Nechaev, V.P.; Bechtel, A.; Dai, S.; Chekryzhov, I.Y.; Pavlyutkin, B.I.; Vysotskiy, S.V.; Ignatiev, A.V.; Velivetskaya, T.A.; Guo, W.; Tarasenko, I.A.; et al. Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Appl. Geochem. 2020, 117, 104602. [Google Scholar] [CrossRef]
- Ahmed, U.A.Q.; Wagner, N.J.; Joubert, J.A. Quantification of U, Th and specific radionuclides in coal from selected coal fired power plants in South Africa. PLoS ONE 2020, 15, e0229452. [Google Scholar] [CrossRef]
- IAEA. Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation; United Nations: New York, NY, USA, 1993.
- Arbuzov, S.I.; Maslov, S.G.; Volostnov, A.V.; Ilyenok, S.S.; Arkhipov, V.S. Soedinenija urana i torija v ugljah i torfah Severnoj Azii. Him. Tverd. Topl. 2012, 1, 55–68. (In Russian) [Google Scholar]
- Finkleman, R.B.; Palmer, C.A.; Krasnow, M.R.; Aruscavage, P.J.; Sellers, G.A.; Dulong, F.T. Combustion and leaching behavior of elements in the Argon Premium Coal Samples. Energy Fuels 1990, 4, 766–767. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Toksichnyye Elementy Primesi v Iskopayemykh Uglyakh. In Toxic Trace Elements in Mineral Coals; UrO RAS: Yekaterinburg, Russia, 2005; p. 648. Available online: https://www.geokniga.org/books/10695 (accessed on 15 September 2023). (In Russian)
- Guo, W.; Wang, Z.; Zhao, L.; Liu, B.; Liu, S.; Zhang, H.; Wang, J.; Zhao, C. Occurrence and origin of Cu, as and Se in a magmatic affected anthracite from the Yunjialing coal Mine, Handan Coalfield, northern China. Ore Geol. Rev. 2023, 154, 105345. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Priroda Anomalnykh Kontsentratsiy Skandiya v Uglyakh. Izvestiya Tomskogo Politekhnicheskogo Universiteta The Nature of Anomalous Concentrations of Scandium in Coals. News of Tomsk Polytechnic University, 2013, 323 №1. Available online: https://earchive.tpu.ru/bitstream/11683/4894/1/bulletin_tpu-2013-323-1-10.pdf (accessed on 9 October 2023). (In Russian).
- Roser, B.P.; Korsch, R.J. Provenance signature of sandstone mudstone determined using discriminate function analysis of major element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Gu, X.X.; Liu, J.M.; Zheng, M.H.; Tang, J.X.; Qi, L. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. J. Sediment. Res. 2002, 72, 393–407. [Google Scholar] [CrossRef]
- Armstrong-Altrin, J.S. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int. Geol. Rev. 2015, 57, 1446–1461. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; pp. 1–311. [Google Scholar]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. Lond. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Spears, D.A.; Arbuzov, S.I. A geochemical and mineralogical update on two major tonsteins in the UK Carboniferous Coal Measures. Int. J. Coal Geol. 2019, 210, 103192. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Ward, C.R.; Guo, W.; Song, H.; O‘Keefe, J.M.K.; Xie, P.; Hood, M.M.; Yan, X. Elements and phosphorus minerals in the middle Jurassic inertiniterich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144, 23–47. [Google Scholar] [CrossRef]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
Element | Average Content in the k7 Seam, ppm | Average Content in the Coal, ppm | Average Content in CL, ppm | Coal Clarke acc. to Yudovich (2006) [25], ppm |
---|---|---|---|---|
Li | 42.39 | 15.44 | 137.6 | 14.00 |
S | 4704.22 | 168.488 | 15.103 | |
Be | 0.71 | 0.33 | 2.1 | 2.00 |
Sc | 6.51 | 5.48 | 9.6 | 3.7 |
V | 40.54 | 36.98 | 48.5 | 28.00 |
Cr | 4.01 | 2.57 | 3.9 | 17.00 |
Co | 2.73 | 3.02 | 1.9 | 6.00 |
Ni | 2.71 | 2.43 | 2.6 | 17.00 |
Cu | 18.98 | 17.22 | 20.4 | 16.00 |
Zn | 14.52 | 12.30 | 13.5 | 28.00 |
Ga | 9.62 | 3.65 | 31.1 | 6.2 |
Ge | 0.60 | 0.34 | 1.5 | 2.5 |
As | 1.78 | 1.18 | 0.4 | 9.00 |
Se | 2.47 | 1.72 | 3.2 | 1.6 |
Rb | 5.45 | 1.96 | 18.7 | 18.00 |
Sr | 91.97 | 63.20 | 198.6 | 100.00 |
Zr | 54.66 | 46.64 | 52.1 | 36.00 |
Nb | 2.29 | 0.88 | 7.1 | 4.00 |
Mo | 1.09 | 0.81 | 0.6 | 2.1 |
Ag | 0.26 | 0.22 | 0.3 | 0.1 |
Cd | 0.09 | 0.08 | 0.1 | 0.2 |
Sn | 1.06 | 0.54 | 2.5 | 1.4 |
Sb | 0.12 | 0.10 | 0.1 | 1.00 |
Te | 0.09 | 0.06 | 0.1 | 0.05 |
Cs | 0.41 | 0.14 | 1.4 | 1.1 |
Ba | 115.39 | 34.87 | 239.0 | 150 |
Hf | 1.71 | 1.20 | 2.6 | 1.2 |
Ta | 0.24 | 0.07 | 0.8 | 0.3 |
W | 0.43 | 0.22 | 0.8 | 1.00 |
Tl | 0.05 | 0.03 | 0.1 | 0.58 |
Pb | 6.40 | 3.48 | 11.9 | 9.00 |
Bi | 0.14 | 0.10 | 0.3 | 1.1 |
Th | 4.15 | 1.21 | 13.2 | 3.2 |
U | 1.08 | 0.43 | 2.6 | 1.9 |
Element | Saranskaya Mine | Aktasskaya Mine | Kuzembayev Mine | Coal Clarke (Yudovich, 2006) [25], ppm |
---|---|---|---|---|
Lithophile Elements | ||||
Li | 40.89 | 46.15 | 41.45 | 14.00 |
Be | 0.66 | 0.71 | 0.74 | 2.00 |
V | 37.07 | 47.3 | 39.34 | 28.00 |
Cr | 6.22 | 3.05 | 3.11 | 17.00 |
Rb | 4.89 | 6.39 | 5.34 | 18.00 |
Sr | 88.24 | 105.59 | 87.49 | 100.00 |
Zr | 50.92 | 49 | 59.84 | 36.00 |
Nb | 2.12 | 2.33 | 2.38 | 4.00 |
Cs | 0.37 | 0.43 | 0.43 | 1.10 |
Ba | 64.99 | 90.54 | 159.31 | 150.00 |
Hf | 1.58 | 1.43 | 1.93 | 1.20 |
Ta | 0.21 | 0.2 | 0.28 | 0.30 |
W | 0.6 | 0.31 | 0.39 | 1.00 |
Tl | 0.03 | 0.08 | 0.06 | 0.58 |
Th | 3.81 | 3.29 | 4.79 | 3.20 |
U | 0.97 | 0.81 | 1.29 | 1.90 |
Chalcophile elements | ||||
S | 2529.6 | 7392.45 | 4719.24 | |
Ag | 0.17 | 0.16 | 0.37 | 0.10 |
Cd | 0.07 | 0.09 | 0.1 | 0.20 |
Sn | 1 | 1 | 1.13 | 1.40 |
Sb | 0.05 | 0.23 | 0.12 | 1.00 |
Te | 0.1 | 0.1 | 0.07 | 0.05 |
Cu | 18.71 | 20.37 | 18.45 | 16.00 |
Zn | 14.72 | 14.35 | 14.48 | 28.00 |
Ga | 8.51 | 10.25 | 9.99 | 6.20 |
Ge | 0.56 | 0.6 | 0.62 | 2.50 |
As | 0.22 | 3.34 | 1.97 | 9.00 |
Se | 1.9 | 3.06 | 2.52 | 1.60 |
Pb | 5.64 | 4.93 | 7.61 | 9.00 |
Bi | 0.13 | 0.13 | 0.15 | 1.10 |
Siderophile elements | ||||
Sc | 5.42 | 6.89 | 7.01 | 3.70 |
Co | 2.8 | 2.99 | 2.57 | 6.00 |
Ni | 2.93 | 2.79 | 2.54 | 17.00 |
Mo | 0.35 | 2.25 | 0.98 | 2.10 |
Major Oxides in the Rocks, Mass % | Average Content |
---|---|
TiO2 | 0.22 |
Al2O3 | 10.16 |
Fe2O3 | 1.90 |
MnO | 0.03 |
MgO | 0.32 |
CaO | 1.46 |
Na2O | 0.20 |
K2O | 0.28 |
P2O5 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopobayeva, A.; Baidauletova, I.; Amangeldikyzy, A.; Askarova, N. Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan. Geosciences 2024, 14, 143. https://doi.org/10.3390/geosciences14060143
Kopobayeva A, Baidauletova I, Amangeldikyzy A, Askarova N. Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan. Geosciences. 2024; 14(6):143. https://doi.org/10.3390/geosciences14060143
Chicago/Turabian StyleKopobayeva, Aiman, Irina Baidauletova, Altynay Amangeldikyzy, and Nazym Askarova. 2024. "Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan" Geosciences 14, no. 6: 143. https://doi.org/10.3390/geosciences14060143
APA StyleKopobayeva, A., Baidauletova, I., Amangeldikyzy, A., & Askarova, N. (2024). Trace Elements Distribution in the k7 Seam of the Karaganda Coal Basin, Kazakhstan. Geosciences, 14(6), 143. https://doi.org/10.3390/geosciences14060143