Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrophone Deployments and Data
2.2. Manual Picking and Location of Events
3. Results
3.1. Biological and Man-Made Noises
3.2. T Phases of Earthquakes
3.3. Submarine Landslides
3.4. Impulsive Events
4. The Eruptive Phase of Fani Maoré: Processes Inferred from Hydroacoustic Data
4.1. Evolution in Space and Time of the Lava Flows
4.2. Mechanism Causing the Lava Events
4.3. Energy Released by Lava Events
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AuHs | Autonomous Hydrophones |
SOFAR | SOund Fixing And Ranging |
OBSs | Ocean Bottom Seismometers |
FMV | Fani Maoré Volcano |
RL | Receiver Level |
SEL | Sound Exposure Level |
SL | Source Level |
References
- Crisp, J.A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 1984, 20, 177–211. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Mazot, A.; Ohba, T. Monitoring active volcanoes: The geochemical approach. Ann. Geophys. 2011, 54, 115–119. [Google Scholar] [CrossRef]
- Biasi, J.; Tivey, M.; Fluegel, B. Volcano Monitoring with Magnetic Measurements: A Simulation of Eruptions at Axial Seamount, Kīlauea, Bárðarbunga, and Mount Saint Helens. Geophys. Res. Lett. 2022, 49, e2022GL100006. [Google Scholar] [CrossRef]
- De Plaen, R.S.M.; Lecocq, T.; Caudron, C.; Ferrazzini, V.; Francis, O. Single-station monitoring of volcanoes using seismic ambient noise. Geophys. Res. Lett. 2016, 43, 8511–8518. [Google Scholar] [CrossRef]
- Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Guarin, C.A.; Rivera, C.; Inguaggiato, S. Characterization of a UV camera system for SO2 measurements from Popocatépetl Volcano. J. Volcanol. Geotherm. Res. 2019, 370, 82–94. [Google Scholar] [CrossRef]
- Stremme, W.; Grutter, M.; Baylón, J.; Taquet, N.; Bezanilla, A.; Plaza-Medina, E.; Schiavo, B.; Rivera, C.; Blumenstock, T.; Hase, F. Direct solar FTIR measurements of CO2 and HCl in the plume of Popocatépetl Volcano, Mexico. Front. Earth Sci. 2023, 11, 1022976. [Google Scholar] [CrossRef]
- McNutt, S.R.; Roman, D.C. Chapter 59-Volcanic Seismicity. In The Encyclopedia of Volcanoes, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 1011–1034. [Google Scholar] [CrossRef]
- Power, J.A.; Haney, M.M.; Botnick, S.M.; Dixon, J.P.; Fee, D.; Kaufman, A.M.; Ketner, D.M.; Lyons, J.J.; Parker, T.; Paskievitch, J.F.; et al. Goals and Development of the Alaska Volcano Observatory Seismic Network and Application to Forecasting and Detecting Volcanic Eruptions. Seismol. Res. Lett. 2020, 91, 647–659. [Google Scholar] [CrossRef]
- Peltier, A.; Bachèlery, P.; Staudacher, T. Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data. J. Volcanol. Geotherm. Res. 2009, 184, 93–108. [Google Scholar] [CrossRef]
- Tepp, G.; Dziak, R.P. The Seismo-Acoustics of Submarine Volcanic Eruptions. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020912. [Google Scholar] [CrossRef]
- Swainson, O.W. Velocity and ray paths of sound waves in sea water. US Coast Geod. Surv. Field Eng. Bull 1936, 10, 64. [Google Scholar]
- Ewing, M.; Woollard, G.P.; Vine, A.C.; Worzel, J.L. Recent results in submarine geophysics. Geol. Soc. Am. Bull. 1946, 57, 909–934. [Google Scholar] [CrossRef]
- Dziak, R.P.; Fox, C.G. Evidence of harmonic tremor from a submarine volcano detected across the Pacific Ocean basin. J. Geophys. Res. Solid Earth 2002, 107, ESE 1-1–ESE 1-11. [Google Scholar] [CrossRef]
- Tepp, G.; Chadwick, W.W.; Haney, M.M.; Lyons, J.J.; Dziak, R.P.; Merle, S.G.; Butterfield, D.A.; Young, C.W. Hydroacoustic, Seismic, and Bathymetric Observations of the 2014 Submarine Eruption at Ahyi Seamount, Mariana Arc. Geochem. Geophys. Geosystems 2019, 20, 3608–3627. [Google Scholar] [CrossRef]
- Fox, C.G.; Matsumoto, H.; Lau, T.A. Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. J. Geophys. Res. Solid Earth 2001, 106, 4183–4206. [Google Scholar] [CrossRef]
- Schmid, F.; Schlindwein, V. Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment. Geochem. Geophys. Geosystems 2016, 17, 2905–2921. [Google Scholar] [CrossRef]
- Matoza, R.S.; Okubo, P.G.; Shearer, P.M. Comprehensive High-Precision Relocation of Seismicity on the Island of Hawai‘i 1986–2018. Earth Space Sci. 2021, 8, 1–10. [Google Scholar] [CrossRef]
- Jurado, M.J.; Ripepe, M.; Lopez, C.; Ricciardi, A.; Blanco, M.J.; Lacanna, G. Underwater records of submarine volcanic activity: El Hierro (Canary Islands 2011–2012) eruption. J. Volcanol. Geotherm. Res. 2020, 408, 107097. [Google Scholar] [CrossRef]
- Wilcock, W.S.D.; Tolstoy, M.; Waldhauser, F.; Garcia, C.; Tan, Y.J.; Bohnenstiehl, D.R.; Caplan-Auerbach, J.; Dziak, R.P.; Arnulf, A.F.; Mann, M.E. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 2016, 354, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Tepp, G.; Dziak, R.P.; Haney, M.M.; Lyons, J.J.; Searcy, C.; Matsumoto, H.; Haxel, J. Seismic and hydroacoustic observations of the 2016–17 Bogoslof eruption. Bull. Volcanol. 2020, 82, 4. [Google Scholar] [CrossRef]
- Matsumoto, H.; Zampolli, M.; Haralabus, G.; Stanley, J.; Mattila, J.; Meral Özel, N. Interpretation of detections of volcanic activity at Ioto Island obtained from in situ seismometers and remote hydrophones of the International Monitoring System. Sci. Rep. 2019, 9, 19519. [Google Scholar] [CrossRef]
- Wright, I.C.; Chadwick, W.W.; de Ronde, C.E.J.; Reymond, D.; Hyvernaud, O.; Gennerich, H.; Stoffers, P.; Mackay, K.; Dunkin, M.A.; Bannister, S.C. Collapse and reconstruction of Monowai submarine volcano, Kermadec arc, 1998–2004. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Caplan-Auerbach, J.; Dziak, R.P.; Haxel, J.; Bohnenstiehl, D.R.; Garcia, C. Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones. Geochem. Geophys. Geosystems 2017, 18, 1761–1774. [Google Scholar] [CrossRef]
- Le Saout, M.; Bohnenstiehl, D.R.; Paduan, J.B.; Clague, D.A. Quantification of Eruption Dynamics on the North Rift at Axial Seamount, Juan de Fuca Ridge. Geochem. Geophys. Geosystems 2020, 21, e2020GC009136. [Google Scholar] [CrossRef]
- Ingale, V.V.; Bazin, S.; Olive, J.; Briais, A.; Royer, J.Y. Hydroacoustic Study of a Seismic Swarm in 2016–2017 near the Melville Transform Fault on the Southwest Indian Ridge. Bull. Seismol. Soc. Am. 2023, 113, 1523–1541. [Google Scholar] [CrossRef]
- Tan, Y.J.; Tolstoy, M.; Waldhauser, F.; Wilcock, W.S.D. Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature 2016, 540, 261–265. [Google Scholar] [CrossRef]
- Feuillet, N.; Jorry, S.; Crawford, W.C.; Deplus, C.; Thinon, I.; Jacques, E.; Saurel, J.M.; Lemoine, A.; Paquet, F.; Satriano, C.; et al. Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion. Nat. Geosci. 2021, 14, 787–795. [Google Scholar] [CrossRef]
- Lemoine, A.; Briole, P.; Bertil, D.; Roullé, A.; Foumelis, M.; Thinon, I.; Raucoules, D.; de Michele, M.; Valty, P.; Hoste Colomer, R. The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: Seismicity and ground deformation markers of an exceptional submarine eruption. Geophys. J. Int. 2020, 223, 22–44. [Google Scholar] [CrossRef]
- REVOSIMA. Bulletin Mensuel. Technical Report. 2024. Available online: https://www.ipgp.fr/actualites-du-revosima/ (accessed on 23 March 2024).
- Briole, P. Note sur la crise tellurique en cours à Mayotte. Technical Report. 2018. Available online: http://volcano.iterre.fr/wp-content/uploads/2018/11/mayotte_note_deformation_GPS_20181126.pdf (accessed on 23 March 2024).
- Saurel, J.M.; Retailleau, L.; Deplus, C.; Loubrieu, B.; Pierre, D.; Frangieh, M.; Khelifi, N.; Bonnet, R.; Ferrazzini, V.; Bazin, S.; et al. Combining hydro-acoustic sources and bathymetric differences to track the vent evolution of the Mayotte eruption, Mozambique Channel. Front. Earth Sci. 2022, 10, 983051. [Google Scholar] [CrossRef]
- Lavayssière, A.; Retailleau, L. Capturing Mayotte’s deep magmatic plumbing system and its spatiotemporal evolution with volcano-tectonic seismicity. Volcanica 2023, 6, 331–344. [Google Scholar] [CrossRef]
- Peltier, A.; Saur, S.; Ballu, V.; Beauducel, F.; Briole, P.; Chanard, K.; Dausse, D.; De Chabalier, J.B.; Grandin, R.; Rouffiac, P.; et al. Ground deformation monitoring of the eruption offshore Mayotte. Comptes Rendus. Géosci. 2023, 354, 171–193. [Google Scholar] [CrossRef]
- Berthod, C.; Médard, E.; Bachèlery, P.; Gurioli, L.; Di Muro, A.; Peltier, A.; Komorowski, J.C.; Benbakkar, M.; Devidal, J.L.; Langlade, J.; et al. The 2018-ongoing Mayotte submarine eruption: Magma migration imaged by petrological monitoring. Earth Planet. Sci. Lett. 2021, 571, 117085. [Google Scholar] [CrossRef]
- Verdurme, P.; Gurioli, L.; Chevrel, O.; Médard, E.; Berthod, C.; Komorowski, J.C.; Harris, A.; Paquet, F.; Cathalot, C.; Feuillet, N.; et al. Magma ascent and lava flow field emplacement during the 2018–2021 Fani Maoré deep-submarine eruption insights from lava vesicle textures. Earth Planet. Sci. Lett. 2024, 636, 118720. [Google Scholar] [CrossRef]
- Bazin, S.; Royer, J.Y.; Dubost, F.; Paquet, F.; Loubrieu, B.; Lavayssière, A.; Deplus, C.; Feuillet, N.; Jacques, E.; Rinnert, E.; et al. Initial results from a hydroacoustic network to monitor submarine lava flows near Mayotte Island. Comptes Rendus. Géosci. 2023, 354, 257–273. [Google Scholar] [CrossRef]
- Rinnert, E.; Thinon, I.; Feuillet, N. Oceanographic Campaign MAYOBS15. 2020. [CrossRef]
- Rinnert, E.; Thinon, I.; Lebas, E. Oceanographic Campaign MAYOBS21. 2021. [Google Scholar] [CrossRef]
- Rinnert, E.; Thinon, I.; Lebas, E. Oceanographic Campaign MAYOBS18. 2021. [Google Scholar] [CrossRef]
- Jorry, S.; Paquet, F.; Lebas, E. Oceanographic Campaign MAYOBS23. 2022. [Google Scholar] [CrossRef]
- Thinon, I.; Lebas, E. Oceanographic Campaign MAYOBS25. 2023. [Google Scholar] [CrossRef]
- Dréo, R. Étude de la saisonnalité des grandes baleines à l ’ est de Mayotte (Océan Indien) à partir de données Rapport d ’ étude. Technical Report. 2023. [Google Scholar]
- Thinon, I.; Leroy, S.; Lemoine, A. Oceanographic Campaign SISMAORÉ. 2020. [Google Scholar] [CrossRef]
- Division Plans de DMI-SHOM. Oceanographic Campaign CARAPASS 2021. 2021. Available online: https://campagnes.flotteoceanographique.fr/campaign (accessed on 23 March 2024).
- Tolstoy, I.; Ewing, M. The T phase of shallow-focus earthquakes*. Bull. Seismol. Soc. Am. 1950, 40, 25–51. [Google Scholar] [CrossRef]
- Talandier, J.; Okal, E.A. On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores. Bull. Seismol. Soc. Am. 1998, 88, 621–632. [Google Scholar] [CrossRef]
- Lavayssière, A.; Crawford, W.C.; Saurel, J.M.; Satriano, C.; Feuillet, N.; Jacques, E.; Komorowski, J.C. A new 1D velocity model and absolute locations image the Mayotte seismo-volcanic region. J. Volcanol. Geotherm. Res. 2022, 421, 107440. [Google Scholar] [CrossRef]
- Gregg, T.K.P.; Fink, J.H. Quantification of submarine lava-flow morphology through analog experiments. Geology 1995, 23, 73. [Google Scholar] [CrossRef]
- Lee, H.J.; Locat, J.; Desgagnés, P.; Parsons, J.D.; McAdoo, B.G.; Orange, D.L.; Puig, P.; Wong, F.L.; Dartnell, P.; Boulanger, E. Submarine mass movements on continental margins. In Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy; Jarvis, I., Nittrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L., Eds.; Blackwell Publishing: Malden, MA, USA, 2007; Volume 37, pp. 213–274. [Google Scholar] [CrossRef]
- Chadwick, W.W.; Cashman, K.V.; Embley, R.W.; Matsumoto, H.; Dziak, R.P.; de Ronde, C.E.J.; Lau, T.K.; Deardorff, N.D.; Merle, S.G. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J. Geophys. Res. Solid Earth 2008, 113, B08S10. [Google Scholar] [CrossRef]
- Green, D.N.; Evers, L.G.; Fee, D.; Matoza, R.S.; Snellen, M.; Smets, P.; Simons, D. Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive activity and sub-aerial plume generation at South Sarigan, May 2010. J. Volcanol. Geotherm. Res. 2013, 257, 31–43. [Google Scholar] [CrossRef]
- Dziak, R.P.; Bohnenstiehl, D.R.; Baker, E.T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R.W.; Merle, S.G.; Walker, S.L.; Lau, T.; Chadwick, W.W. Long-term explosive degassing and debris flow activity at West Mata submarine volcano. Geophys. Res. Lett. 2015, 42, 1480–1487. [Google Scholar] [CrossRef]
- Crone, T.J.; Bohnenstiehl, D.R. Acoustic evidence of a long-lived gas-driven submarine volcanic eruption in the Bismarck Sea. Geophys. J. Int. 2019, 217, 169–178. [Google Scholar] [CrossRef]
- Murch, A.P.; Portner, R.A.; Rubin, K.H.; Clague, D.A. Deep-subaqueous implosive volcanism at West Mata seamount, Tonga. Earth Planet. Sci. Lett. 2022, 578, 117328. [Google Scholar] [CrossRef]
- Costa, O. Investigating Kīlauea’s 2018 Offshore Lava Emplacement through Hydroacoustic Data. Ph.D. Thesis, Western Washington University, Washington, DC, USA, 2023. [Google Scholar]
- Ducatel, C. Campagne SISMAORE N/O Pourquoi Pas? Analyse des Risques Sonores Potentiels. Technical Report, IFREMER. 2020. Available online: https://archimer.ifremer.fr (accessed on 23 March 2024).
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosystems 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
- Beyreuther, M.; Barsch, R.; Krischer, L.; Megies, T.; Behr, Y.; Wassermann, J. ObsPy: A Python Toolbox for Seismology. Seismol. Res. Lett. 2010, 81, 530–533. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavayssière, A.; Bazin, S.; Royer, J.-Y. Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase. Geosciences 2024, 14, 170. https://doi.org/10.3390/geosciences14060170
Lavayssière A, Bazin S, Royer J-Y. Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase. Geosciences. 2024; 14(6):170. https://doi.org/10.3390/geosciences14060170
Chicago/Turabian StyleLavayssière, Aude, Sara Bazin, and Jean-Yves Royer. 2024. "Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase" Geosciences 14, no. 6: 170. https://doi.org/10.3390/geosciences14060170
APA StyleLavayssière, A., Bazin, S., & Royer, J. -Y. (2024). Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase. Geosciences, 14(6), 170. https://doi.org/10.3390/geosciences14060170