Assessment of Chemical Pollution Load in Surface Waters of the Turkestan Region and Its Indirect Impact on Landscapes: A Comprehensive Study
Abstract
:1. Introduction
- Evaluate water quality based on chemical parameters obtained from various sampling points;
- Perform variational-statistical analysis, principal component analysis (PCA), and calculate the OIP, NPI, and HPI indices to determine the pollution level;
- Identify land use and land cover changes (LULC);
- Apply statistical methods to explore the relationships between water quality and land use.
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Analytical Methods
2.3. Variational-Statistical Analysis
2.4. Water Quality Analysis
2.4.1. Overall Pollution Index (OIP)
2.4.2. Nemerov Pollution Index (NPI)
2.4.3. Heavy Metal Pollution Index (HPI)
2.5. Land Use and Land Cover (LULC) Classification
3. Results and Discussion
3.1. Physicochemical Indicators of Surface Waters in the Turkestan Region
3.2. Water Quality Analysis
3.2.1. Water Quality Analysis Through the Overall Pollution Index (OIP)
3.2.2. Analysis Using the Nemerov Pollution Index (NPI)
3.2.3. Heavy Metal Pollution Index (HPI)
3.3. Land Use Changes and Water Quality
3.4. Indirect Effects of Chemical Pollution Load in Surface Waters on Landscapes
3.5. Water Pollution’s Impact on Local Hydrological Cycles and Landscapes
3.6. Purification of River Water Contaminated with Heavy Metals
- Accumulation of pollutants (phytoextraction and rhizofiltration);
- Immobilization of pollutants (phytostabilization);
- Biodegradation (rhizodegradation and phytodegradation);
- Dissipation (phytovolatilization).
- Continuous water quality monitoring: Use sensors to monitor the dynamics of heavy metals.
- Adaptation of local plant species: Utilize plants adapted to the local climatic conditions.
- Recycling plant biomass: Use the biomass obtained after purification as a source of bioenergy.
- Conduct additional scientific research: Continue research to find effective solutions adapted to different ecosystems.
- These recommendations will allow for the ecological, safe, and sustainable restoration of the water resources in the Turkestan region.
3.7. Limitations of This Study
3.8. Future Research Needs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bunn, S.E.; Davies, P.M.; Mosisch, T.D. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw. Biol. 1999, 41, 333–345. [Google Scholar] [CrossRef]
- Newson, M. Understanding ‘hot-spot’ problems in catchments: The need for scale-sensitive measures and mechanisms to secure effective solutions for river management and conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, S62–S72. [Google Scholar] [CrossRef]
- Guermazi, E.; Milano, M.; Reynard, E.; Zairi, M. Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment. Mitig. Adapt. Strat. Glob. Chang. 2018, 24, 73–92. [Google Scholar] [CrossRef]
- Bracken, L.J.; Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol. Process. 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; de Oliveira Martins, L.M.; Pacheco, F.A.L.; Fernandes, L.F.S. The consequences for stream water quality of long-term changes in landscape patterns: Implications for land use management and policies. Land Use Policy 2021, 109, 105679. [Google Scholar] [CrossRef]
- Ba, W.; Du, P.; Liu, T.; Bao, A.; Chen, X.; Liu, J.; Qin, C. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China. J. Geogr. Sci. 2020, 30, 164–176. [Google Scholar] [CrossRef]
- Alamri, D.A.; Al-Solaimani, S.G.; Abohassan, R.A.; Rinklebe, J.; Shaheen, S.M. Assessment of water contamination by potentially toxic elements in mangrove lagoons of the Red Sea, Saudi Arabia. Environ. Geochem. Health 2021, 43, 4819–4830. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Xu, Y.; Ma, T.; Wilson, J.P.; Zhao, N.; Ni, Y. Improving surface water quality of the Yellow River Basin due to anthropogenic changes. Sci. Total Environ. 2022, 836, 155607. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A. Impacts of land use and land cover change on vegetation diversity of tropical highland in Ethiopia. Appl. Environ. Soil Sci. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Pandey, P.C.; Koutsias, N.; Petropoulos, G.P.; Srivastava, P.K.; Ben Dor, E. Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—A review of the state of the art. Geocarto Int. 2021, 36, 957–988. [Google Scholar] [CrossRef]
- Chaemiso, S.E.; Kartha, S.A.; Pingale, S.M. Effect of land use/land cover changes on surface water availability in the Omo Gibe basin, Ethiopia. Hydrol. Sci. J. 2021, 66, 1936–1962. [Google Scholar] [CrossRef]
- Emenike, P.C.; Tenebe, I.T.; Neris, J.B.; Omole, D.O.; Afolayan, O.; Okeke, C.U.; Emenike, I.K. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 2020, 265, 114795. [Google Scholar] [CrossRef] [PubMed]
- Phanmala, K.; Lai, Y.; Xiao, K. Impact of land use change on the water environment of a key marsh area in Vientiane Capital, Laos. Water 2023, 15, 4302. [Google Scholar] [CrossRef]
- Qiu, Z.; Kennen, J.G.; Giri, S.; Walter, T.; Kang, Y.; Zhang, Z. Reassessing the relationship between landscape alteration and aquatic ecosystem degradation from a hydrologically sensitive area perspective. Sci. Total Environ. 2019, 650, 2850–2862. [Google Scholar] [CrossRef]
- Bhat, S.U.; Khanday, S.A.; Islam, S.T.; Sabha, I. Understanding the spatiotemporal pollution dynamics of highly fragile montane watersheds of Kashmir Himalaya, India. Environ. Pollut. 2021, 286, 117335. [Google Scholar] [CrossRef] [PubMed]
- Mello, K.D.; Taniwaki, R.H.; Paula, F.R.D.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wu, C.; Jia, X.; Zhang, Y.; Zhou, Z. Predicting water quality using partial least squares regression of land use and morphology (Danjiangkou Reservoir, China). J. Hydrol. 2023, 624, 129828. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Dong, R.; Jiang, C.; Ni, M. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China. J. Clean. Prod. 2019, 206, 76–85. [Google Scholar] [CrossRef]
- Abazeri, M. Women of the Sun: Mediating Co-Production in Iranian Agrarian Systems. Ph.D. Thesis, University of Miami, Coral Gables, FL, USA, 2023. Available online: https://scholarship.miami.edu/esploro/outputs/991031786017502976 (accessed on 1 December 2024).
- Mrabet, R. Sustainable agriculture for food and nutritional security. In Sustainable Agriculture and the Environment; Mrabet, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 25–90. [Google Scholar]
- Nwachukwu, B.C. Microbial Diversity, Community Structure and Functional Characteristics of Sunflower Rhizospheric Soil. Ph.D. Thesis, North-West University, Potchefstroom, South Africa, 2023. Available online: https://repository.nwu.ac.za/dissertations/nwachukwu-2023 (accessed on 1 December 2024).
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef]
- Barroso, G.R.; Pinto, C.C.; Gomes, L.N.L.; Oliveira, S.C. Assessment of water quality based on statistical analysis of physical chemical, biomonitoring and land use data: Manso River supply reservoir. Sci. Total Environ. 2024, 912, 169554. [Google Scholar] [CrossRef]
- Chattopadhayay, R.; Ghosh, A.K. Performance appraisal based on a forced distribution system: Its drawbacks and remedies. Int. J. Product. Perform. Manag. 2012, 61, 881–896. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Dawood, A.S. Using of Nemerow’s Pollution Index (NPI) for water quality assessment of some Basrah Marshes, South of Iraq. J. Babylon Univ. Pure Appl. Sci. 2017, 25, 1708–1720. [Google Scholar]
- Subagiyo, L.; Nuryadin, A.; Sulaeman, N.F.; Widyastuti, R. Water quality status of Kalimantan water bodies based on the pollution index. Pollut. Res. 2019, 38, 536–543. [Google Scholar]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Shah, S.M.A.; et al. Heavy metal contamination of natural foods is a serious health issue: A review. Sustainability 2021, 14, 161. [Google Scholar] [CrossRef]
- Sharma, R.; Agrawal, P.R.; Kumar, R.; Gupta, G. Current scenario of heavy metal contamination in water. In Contaminants in Water; Elsevier: Amsterdam, The Netherlands, 2021; pp. 49–64. [Google Scholar]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Ali, M.M.; Hossain, D.; Al-Imran, A.; Khan, M.S.; Begum, M.; Osman, M.H. Environmental pollution with heavy metals: A public health concern. In Heavy Metals—Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021; pp. 771–783. [Google Scholar]
- Authman, M.M.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquac. Res. Dev. 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog; IntechOpen: London, UK, 2019; pp. 70–90. [Google Scholar] [CrossRef]
- Patel, N.; Chauhan, D.; Shahane, S.; Rai, D.; Khan, Z.A.; Mishra, U.; Chaudhary, V.K. Contamination and health impact of heavy metals. In Water Pollution and Remediation: Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2021; pp. 259–280. [Google Scholar]
- Ustaoğlu, F.; Tepe, Y.; Aydin, H. Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environ. Forensics 2020, 21, 145–156. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Taş, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef] [PubMed]
- Egbueri, J.C.; Unigwe, C.O. Understanding the extent of heavy metal pollution in drinking water supplies from Umunya, Nigeria: An indexical and statistical assessment. Anal. Lett. 2020, 53, 2122–2144. [Google Scholar] [CrossRef]
- Alam, S.S.; Chakraborty, S.; Jain, F.C.; Deb, S.; Singh, R.; Weindorf, D.C. Proximal sensor integration for land use classification and soil analysis in a coastal environment. Case Stud. Chem. Environ. Eng. 2025, 11, 101079. [Google Scholar] [CrossRef]
- OKG.KZ. Implementation of Water-Saving Technology—An Urgent Matter. 2024. Available online: https://okg.kz/post?id=35356&slug=su-unemdeu-tehnologiyasyn-engizu-kezek-kuttirmeitin-is (accessed on 11 October 2024).
- Environmental Initiatives, Improvement of Legislation, and Government Support Measures: Development of Kazakhstan's Geology and Natural Resources Sector Based on the 2020 Results. Available online: https://primeminister.kz/news/reviews/ekologiyalyk-bastamalar-zannamany-zhetildiru-zhane-memlekettik-koldau-sharalary-2020-zhyldyn-korytyndysy-boyynsha-kazakstannyn-geologiya-zhane-tabigi-resurstar-salasynyn-damuy-1813013 (accessed on 11 October 2024).
- Quality Kazakhstan. The Issue of Environmental Pollution with Wastewater and Its Solutions. 2024. Available online: https://standard.kz/kz/post/qorsagan-ortany-agyndy-sularmen-lastau-maselesi-zane-ony-sesu (accessed on 11 October 2024).
- Akhmetova, D.S.; Ramazanova, N.E.; Yeginbayeva, A.E.; Kenzhebay, N.R. Pollution of the soil cover of Turkestan region landscapes due to the impact of anthropogenic factors. Geogr. Water Resour. 2024, 3, 96–107. [Google Scholar] [CrossRef]
- Ogar, N.P. Project for the Scientific Substantiation of the Expansion of the Syrdarya-Turkestan State Regional Natural Park; Center for Remote Sensing and GIS “Terra”: Almaty, Kazakhstan, 2018. [Google Scholar]
- Gorshkov, S.P. Exodynamic Processes of Developed Territories; Nedra: Moscow, Russia, 1982; 286p. [Google Scholar]
- Akhmetova, D. Anthropogenic impact on soil and vegetation in Turkistan region: Chemical composition and heavy metal contamination. J. Geogr. Inst. Jovan Cvijic SASA 2024, 13. [Google Scholar] [CrossRef]
- Ozgeldinova, Z.; Mukayev, Z.; Ramazanova, N.; Bektemirova, A.; Zhanguzhina, A.; Ulykpanova, M. Spatial distribution of potentially toxic elements in soils and water bodies of the Kostanay region in Kazakhstan. Scott. Geogr. J. 2024, 140, 277–290. [Google Scholar] [CrossRef]
- Approval of the Unified System for Water Quality Classification in the Water Bodies of the Republic of Kazakhstan. Adilet. 2016. Available online: https://adilet.zan.kz/kaz/docs/V1600014513 (accessed on 3 December 2024).
- Liu, D.; Huang, F.; Kang, W.; Du, Y.; Cao, Z. Water pollution index evaluation of lake based on principal component analysis. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 032010. [Google Scholar] [CrossRef]
- El Mountassir, O.; Bahir, M.; Ouazar, D.; Chehbouni, A.; Carreira, P.M. Temporal and spatial assessment of groundwater contamination with nitrate using nitrate pollution index (NPI), groundwater pollution index (GPI), and GIS (case study: Essaouira basin, Morocco). Environ. Sci. Pollut. Res. 2022, 29, 17132–17149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote. Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Debnath, J.; Saha, S.; Sharma, R.; Tiwari, K.; Deka, P. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environ. Sci. Pollut. Res. 2023, 30, 106997–107020. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.H.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023, 13, 17595–17610. [Google Scholar] [CrossRef]
- Wong, C.S.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2005, 142, 1–16. [Google Scholar] [CrossRef]
- Gong, C.; Wang, L.; Wang, S.-X.; Zhang, Z.-X.; Dong, H.; Liu, J.-F.; Wang, D.-W.; Yan, B.-Q.; Chen, Y. Spatial differentiation and influencing factor analysis of soil heavy metal content at town level based on geographic detector. Environ. Sci. 2022, 43, 4566–4577. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Nguyen, H.; Nguyen-Quoc, H. Unveiling the research landscape of planetscope data in addressing earth-environmental issues: A bibliometric analysis. Earth Sci. Inform. 2025, 18, 52. [Google Scholar] [CrossRef]
- Byers, E.N.; Messer, T.L.; Unrine, J.; Agouridis, C.; Miller, D.N. The occurrence and persistence of surface water contaminants across different landscapes. Sci. Total Environ. 2025, 958, 177837. [Google Scholar] [CrossRef]
- Ferreira, V.R.S.; Cunha, E.J.; Calvão, L.B.; Michelan, T.S.; Juen, L. Amazon streams impacted by bauxite mining present distinct local contributions to the beta diversity of aquatic insects, fish, and macrophytes. Sci. Total Environ. 2024, 955, 177292. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Yu, H.; Jiang, R.; Wang, C.; Cao, J. Unveiling the lifeblood of cities: Identifying urban ecological networks from the perspective of biodiversity conservation. Sci. Total Environ. 2024, 955, 177055. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; Emrani, J.; Teleha, J.C.; Shamshiripour, A.; Fini, E.H. Health risks of asphalt emission: State-of-the-art advances and research gaps. J. Hazard. Mater. 2024, 480, 136048. [Google Scholar] [CrossRef] [PubMed]
- Al-Raeei, M. Artificial intelligence for climate resilience: Advancing sustainable goals in SDGs 11 and 13 and its relationship to pandemics. Discov. Sustain. 2024, 5, 513. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, W.; Qiao, L. Characteristics of the vertical variation in water quality indicators of aquatic landscapes in urban parks: A case study of Xinxiang, China. PLoS ONE 2024, 19, e0314860. [Google Scholar] [CrossRef] [PubMed]
- Pascuali, N.; Tobias, F.; Valyi-Nagy, K.; Salih, S.; Veiga-Lopez, A. Delineating lipidomic landscapes in human and mouse ovaries: Spatial signatures and chemically-induced alterations via MALDI mass spectrometry imaging: Spatial ovarian lipidomics. Environ. Int. 2024, 194, 109174. [Google Scholar] [CrossRef]
- Sun, H.; Hu, Z.; Wang, S.; Song, D. Long-term effects of underground mining on surface soil moisture and vegetation environment: Evidence from the Xishan mining area. Environ. Monit. Assess. 2024, 196, 1280. [Google Scholar] [CrossRef] [PubMed]
- Moussaoui, T.; Derdour, A.; Abdelkarim, B.; Reghais, A.; de-los-Santos, M.B. A novel comprehensive approach to soil and water conservation: Integrating morphometric analysis, WSA, PCA, and CoDA-PCA in the Naama sub-basins case study, Southwest of Algeria. Environ. Monit. Assess. 2024, 196, 1258. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, P.; Bignell, D.; Lepage, M.; Wolters, V.; Roger, P.; Ineson, P.; Heal, O.W.; Dhillion, S. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 1997, 33, 159–193. [Google Scholar]
- Pen-Mouratov, S.; Shukurov, N.; Steinberger, Y. Influence of industrial heavy metal pollution on soil free-living nematode population. Environ. Pollut. 2008, 152, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Aaron, S.E.; Aaron, J.-J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, M.; Li, X.; Luo, X.; Pan, R.; Ouyang, T. Spatial distribution, pollution, and health risk assessment of heavy metal in agricultural surface soil for the Guangzhou-Foshan urban zone, South China. PLoS ONE 2020, 15, e0239563. [Google Scholar] [CrossRef]
- Zhou, M.C. Current status and prospects of research on heavy metal pollution risk in the Qinghai-Tibet Plateau. Environ. Ecol. 2022, 4, 47–50. [Google Scholar]
- Bo, L.J.; Li, B.; Zhang, R.Q.; Li, Y.P.; Li, Y.; Duan, G.; Gao, X.H. Characteristics and potential ecological risk assessment of heavy metals in garlic producing areas of Jinxiang. Chin. J. Soil Sci. 2021, 52, 434–442. [Google Scholar] [CrossRef]
- Yang, A.; Wang, Y.; Hu, J.; Liu, X.; Li, J. Evaluation and source of heavy metal pollution in surface soil of Qinghai-Tibet Plateau. Environ. Sci. 2020, 41, 886–894. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Javed, M.T.; Saleem, M.H.; Aslam, S.; Rehman, M.; Iqbal, N.; Begum, R.; Ali, S.; Alsahli, A.A.; Alyemeni, M.N.; Wijaya, L. Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.). Plant Physiol. Biochem. 2020, 157, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef]
- Zhang, B.C.; Jia, T.Z.; Peng, S.Z.; Yu, X.H.; She, D. Spatial distribution, source identification, and risk assessment of heavy metals in the cultivated soil of the Qinghai-Tibet Plateau region: Case study on Huzhu County. Glob. Ecol. Conserv. 2022, 35, e02073. [Google Scholar] [CrossRef]
- Wu, J.; Duan, D.; Lu, J.; Luo, Y.; Wen, X.; Guo, X.; Boman, B.J. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Sci. Total Environ. 2016, 550, 628–636. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Zheng, D.M.; Xue, Z.S.; Wu, H.T.; Jiang, M. Identification of anthropogenic contributions to heavy metals in wetland soils of the Karuola Glacier in the Qinghai-Tibetan Plateau. Ecol. Indic. 2019, 98, 678–685. [Google Scholar] [CrossRef]
- Guan, Z.H.; Li, X.G.; Wang, L. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau. Environ. Sci. Pollut. Res. 2018, 25, 7625–7637. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.R.; He, Z.Y.; Yang, Z.M.; Sun, G.X.; He, J.Z. Variability of heavy metal content in soils of typical Tibetan grasslands. RSC Adv. 2016, 6, 105398–105405. [Google Scholar] [CrossRef]
- Bachand, S.M.; Kraus, T.E.C.; Stern, D.; Liang, Y.L.; Horwath, W.R.; Bachand, P.A.M. Aluminum- and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection byproducts, mercury, and other constituents from agricultural drain water. Ecol. Eng. 2019, 134, 26–38. [Google Scholar] [CrossRef]
- Kumar, R.; Chawla, J.; Kaur, I. Removal of cadmium ion from wastewater by carbon-based nanosorbents: A review. J. Water Health 2019, 17, 589–602. [Google Scholar] [CrossRef]
- Lawler, D.; Katz, L.; Yeo, S.; Stewart, T.; Gee, I.; Herrboldt, J. Evaluation of Aluminum- and Iron-Based Coagulants for Removal of Inorganic Contaminants; Center for Water and the Environment, University of Texas: Austin, TX, USA, 2024; Available online: https://cwe.engr.utexas.edu/researchpage/pollutant-exposure-impacts-and-remediation/evaluation-of-aluminum-and-iron-based-coagulants-for-removal-of-inorganic-contaminants/ (accessed on 14 December 2024).
- Liu, C.; Zhang, D.; Liu, Y. Distribution and impact of calcium in agricultural ecosystems. Environ. Sci. Pollut. Res. 2015, 22, 2518–2525. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, H.; Xu, Z. Magnesium dynamics in agricultural soils: Implications for ecosystem function. J. Soil Water Conserv. 2018, 73, 157–165. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department of Agriculture Handbook No. 60; United States Department of Agriculture: Washington, DC, USA, 1954.
- Latif, M.; Nasim, I.; Ahmad, M.; Al-Hussain, S.A.; Zaki, M.E.A. Human health risk assessment of drinking water using heavy metal pollution index: A GIS-based investigation in mega city. Appl. Water Sci. 2025, 15, 12. [Google Scholar] [CrossRef]
- UNEP. Global Resources Outlook 2024: UNEP Report on the State of Natural Resource Extraction and Pollution Impacts; UNEP: Nairobi, Kenya, 2024; Available online: https://www.unep.org/resources/global-resources-outlook-2024 (accessed on 15 December 2024).
- Ceballos, R.F.; Gallano, R.C.; Visaya, L.D. Assessing the relationship and effect of air pollution [PM2.5] on child respiratory illness and mortality in the Philippines. Appl. Environ. Res. 2024, 46, 29–42. [Google Scholar]
- Kruasilp, J.; Pattanakiat, S.; Lawawirojwong, S. Unveiling long-term impacts of forest cover changes and carbon storage assessment in Nan Province, Thailand. Appl. Environ. Res. 2024, 46, 38–50. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Grigoropoulou, H.P. Modeling of ion exchange of Pb2+ in fixed beds of clinoptilolite. Microporous Mesoporous Mater. 2003, 61, 273–282. [Google Scholar] [CrossRef]
- Mashangwa, T.D. An Investigation into the Efficacy of Eggshells as a Low-Cost Adsorbent for the Removal of Potentially Toxic Inorganic Elements from Aqueous Solutions. Ph.D. Thesis, University of South Africa, Pretoria, South Africa, 2016. Available online: http://hdl.handle.net/10500/22963 (accessed on 14 December 2024).
- Roongtanakiat, N.; Tangruangkiat, S.; Meesat, R. Utilization of Vetiver Grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Sci. Asia 2007, 33, 397–403. [Google Scholar] [CrossRef]
- Kidd, P.S.; Monterroso, C. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Sci. Total Environ. 2005, 336, 1–11. [Google Scholar] [CrossRef]
- Ashok, I.; Balaji, R.; Sakthivel, S.; Sasikumar, S. Efficacy of accumulation on heavy metals from aqueous solution using water hyacinth (Eichhornia crassipes). Asian J. Microbiol. Biotechnol. Environ. Sci. 2014, 16, 115–120. [Google Scholar]
- Islam, M.M.; Saxena, N.; Sharma, D. Phytoremediation as a green and sustainable prospective method for heavy metal contamination: A review. RSC Sustain. 2024, 2, 1269–1288. [Google Scholar] [CrossRef]
- Bhandari, G.; Gangola, S.; Bhatt, P.; Rafatullah, M. Editorial: Potential of the plant rhizomicrobiome for bioremediation of contaminants in agroecosystems. Front. Plant Sci. 2024, 15, 1397360. [Google Scholar] [CrossRef]
- Ayu Kristanti, R.; Hadibarata, T. Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Curr. Opin. Environ. Sci. Health 2023, 32, 100451. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Deletic, A.; Hatt, B.E. The role of aquatic plants in the removal of contaminants from water. Water Res. 2020, 172, 115550. [Google Scholar] [CrossRef]
- Dhote, S.; Dixit, S. Phytoremediation of heavy metals: A review. Int. J. Environ. Sci. 2009, 1, 569–577. [Google Scholar]
- Sivaramakrishnan, M.; Sivarajasekar, N.; Js, V.; Thanaraj, P.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- McIntyre, T. Phytoremediation of Heavy Metals from Soils. In Phytoremediation; Tsao, D.T., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2003; Volume 78. [Google Scholar] [CrossRef]
- Brix, H. Dias, V., Vymazal, J., Eds.; Plants used in constructed wetlands and their functions. In 1st International Seminar on the use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands; Instituto da Conservação da Natureza: Instituto da Água: Lisboa, Portugal, 2003; pp. 81–109. [Google Scholar]
- Dhir, B. Phytoremediation: A green technology for environmental cleanup. Environ. Ecol. 2013, 31, 1399–1406. [Google Scholar]
- Rezanian, A.; Hossain, M.B.; Kadir, M.O. Phytoremediation of heavy metals using aquatic plants. Environ. Eng. Manag. J. 2016, 15, 1293–1300. [Google Scholar]
- Fletcher, J.; Willby, N.; Oliver, D.M.; Quilliam, R.S. Phytoremediation Using Aquatic Plants. In Phytoremediation. Concepts and Strategies in Plant Sciences; Shmaefsky, B., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Dhir, B.; Sharmila, P.; Pardha-Saradhi, P. Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol. 2009, 39, 754–781. [Google Scholar] [CrossRef]
- McAndrew, B.A.; Reddy, M.E.R.; Kumar, K.D. The role of aquatic plants in the remediation of contaminated water: A review. Water Sci. Technol. 2016, 73, 2263–2272. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Li, M.; Kalinowski, M.; Cao, Y. Directed Assembly of Proteinaceous-Polysaccharide Nanofibrils to Fabricate Membranes for Emerging Contaminant Remediation. MIT News. 2024. Available online: https://news.mit.edu/2024/new-filtration-material-remove-contaminants-0912 (accessed on 14 December 2024).
- American Chemical Society. Carbohydrate Polymers Could be a Sweet Solution for Water Purification. ScienceDaily. 2024. Available online: https://www.sciencedaily.com/releases/2024/09/240911112052.htm (accessed on 14 December 2024).
- Naorem, A.; Panwar, N.R.; Patel, A.; Saritha, M.; Kumar, S. How does land use affect soil quality and biological fertility in the arid ecosystem of Kutch, India? Environ. Monit. Assess. 2024, 196, 1241. [Google Scholar] [CrossRef]
№ | Sampling Location | Geocoordinates | Location Description | Anthropogenic Activities (According to S.P. Gorshkov Classification) [48] | Water Temperature (°C) | Elevation | Sampling Date |
---|---|---|---|---|---|---|---|
1 | S1 Shardara Reservoir | 41°14′44.70″ N, 67°58′50.41″ E | 100 m southeast of Shardara city | Water management: reservoir (Shardara Reservoir) Recreation: rest areas (“GOLDEN BEACH RESORT”) | 18 °C | 255 m | 1 August 2024. |
2 | S2 Syr Darya River | 41°56′20.82″ N, 68°6′20.28″ E | 500 m east of Sütkent village | Agriculture: livestock, haymaking (“Bolashak” farm) Crop production: irrigated agriculture (57,800 hectares) Grazing (600,000–700,000 hectares) | 19 °C | 213 m | 1 August 2024. |
3 | S3 Arys River | 42°26′25″ N, 68°50′38″ E | 700 m east of Arys city | Urban industrial: food industry (meat, dairy, flour products) Mining industry: non-metallic minerals (bentonite, limestone) Agriculture: livestock, haymaking (“Argynbek” farm) Crop production: (“Mubarak Agro” farm) Grazing (426,643 hectares) | 18 °C | 224 m | 1 August 2024. |
4 | S4 Bogen River | 42°47′45″ N, 69°12′20″ E | 58 m south of Ekpindi village | Agriculture: livestock, haymaking (“Zher-Nur” cooperative) Crop production: irrigated agriculture (93,000 hectares) Grazing (600,000–700,000 hectares) | 18 °C | 256 m | 2 August 2024. |
5 | S5 Aksu River | 42°29′27″ N, 69°43′29″ E | 710 m southeast of Karabulak village | Agriculture: livestock, haymaking (“Karabulak” farm) Crop production: (“Aisha” farm) Grazing (8234 hectares) | 19 °C | 485 m | 3 August 2024. |
6 | S6 Badam River | 42°18′38″ N, 69°32′14″ E | 100 m south of “Yuzhpolimetal” JSC | Urban industrial: food industry (vegetable oils, flour, dairy, pasta products) Light industry: textile production companies Construction industry: new ceramic tile factory Metal processing industry: metallurgical plant | 17 °C | 463 m | 3 August 2024. |
7 | S7 Keles River | 41°47′37″ N, 69°25′16″ E | 5.9 km north of Kazygurt village | Urban industrial: food industry (instant noodles, natural juice, dry milk) Construction industry: “Reinforced concrete products” factory Agriculture: livestock, haymaking (“Saydusman Ata” farm) Crop production: (“Nur-Aidar” farm) Grazing (133,460 hectares) | 17 °C | 603 m | 4 August 2024. |
8 | S8 Kurkeles River | 41°29′41″ N, 69°07′42″ E | 300 m southwest of Saryagash city | Urban industrial: food industry (mineral water, wine, flour products) Light industry: cotton fiber production Recreation: resorts Agriculture: livestock, haymaking (“Kuanish Myktybaev” farm) Crop production: (“Kamiljan” farm) Grazing (294,579 hectares) | 19 °C | 393m | 5 August 2024 |
Water Quality Status | Class | pH | Hardness (mg/L) | Lyness (mg/L) | BOD (mg/L) | TDS (mg/L) |
---|---|---|---|---|---|---|
Best water quality | C1 | 6.5–8.5 | 50–75 | <5 | <3 | <1000 |
Water suitable for all types of use; simple purification required for domestic and drinking water supply | C2 | 6.0–6.5 and 8.5–9.0 | 100–150 | 5–10 | 3–6 | 1000–1500 |
Suitable for recreational use (swimming and other leisure activities), irrigation, industry, and fish farming (carp species); normal treatment required for domestic and drinking water supply | C3 | 5.0–6.0 and 9.0–9.5 | 150–250 | 10–50 | 6–10 | 1500–2000 |
Suitable for irrigation and industry; deep water treatment methods required for domestic drinking water supply | C4 | <5.0 and >9.5 | >250 | 50–100 | 10–20 | >2000 |
Actual concentration exceeds Class 5 norm | C5 | <5.0 and >9.5 | >500 | >100 | >20 | >3000 |
Parameters | X ± Sx | lim | P | σ | CV, % |
---|---|---|---|---|---|
Total hardness, mg*eq/L | 7.00 ± 0.89 | 10.64–1.92 | 8.72 | 3.08 | 43.94 |
Hydrogen index of water (pH) | 8.13 ± 0.04 | 8.39–7.94 | 0.45 | 0.14 | 1.71 |
Total dissolved solids, mg/L | 949.75 ± 110.39 | 1614–512 | 1102 | 382.40 | 40.26 |
Aluminum (Al), mg/L | 5.39 ± 2.15 | 22.38–0.00 | 22.38 | 7.43 | 137.99 |
Arsenic (As), mg/L | - | - | - | - | - |
Boron (B), mg/L | - | - | - | - | - |
Calcium (Ca), mg/L | 108.30 ± 11.85 | 161–25 | 136 | 41.06 | 37.91 |
Cadmium (Cd), mg/L | - | - | - | - | - |
Koбальт (Co) (мг/л) | - | - | - | - | |
Chromium (Cr), mg/L | - | - | - | - | - |
Titanium (Ti), mg/L | - | - | - | - | - |
Iron (Fe), mg/L | 7.21 ± 1.96 | 5.25 | 9.58 | 6.77 | 93.95 |
Lead (Pb), mg/L | - | - | - | - | - |
Copper (Cu), mg/L | - | - | - | - | - |
Magnesium (Mg), mg/L | 55.73 ± 4.82 | 78–27 | 51 | 16.68 | 29.94 |
Potassium (K), mg/L | 6.15 ± 0.65 | 9.99–3.40 | 6.59 | 2.24 | 36.45 |
Mapганец (Mn) (мг/л) | - | - | - | - | - |
Sodium (Na), mg/L | 101.80 ± 15.45 | 180.05–38.72 | 141.33 | 53.51 | 52.57 |
Nickel (Ni), mg/L | - | - | - | - | - |
Zinc (Zn), mg/L | - | - | - | - | - |
Sulfates (SO42−), mg/L | 337.18 ± 64.78 | 639–92.2 | 546.8 | 224.40 | 66.55 |
Phenol (C6H5OH), mg/L | - | - | - | - | - |
Electrical conductivity, µS/cm | 1107.75 ± 133.94 | 1714–555.00 | 1 159 | 463.97 | 41.88 |
Sampling Site | PC1 | PC2 |
---|---|---|
S1 | −1.46 | −1.82 |
S2 | −0.99 | −0.20 |
S3 | −0.85 | 0.08 |
S4 | 0.77 | 1.51 |
S5 | 0.89 | −0.93 |
S6 | 0.30 | 0.38 |
S7 | −0.38 | 2.32 |
S8 | 3.50 | −1.18 |
Parameters | PC1 | PC2 |
---|---|---|
Total hardness (mg*eq/L) | −0.35 | 0.01 |
pH | 0.27 | 0.14 |
TDS (mg/L) | −0.32 | 0.32 |
Aluminum (Al, mg/L) | −0.18 | −0.64 |
Calcium (Ca, mg/L) | −0.33 | −0.12 |
Magnesium (Mg, mg/L) | −0.35 | 0.16 |
Potassium (K, mg/L) | −0.22 | −0.57 |
Sodium (Na, mg/L) | −0.35 | 0.18 |
Sulfates (SO42−, mg/L) | −0.34 | 0.08 |
Electrical conductivity (µS/cm) | −0.35 | 0.21 |
Titanium (Ti, mg/L) | 0.24 | −0.38 |
Iron (Fe, mg/L) | 0.12 | 0.59 |
Lead (Pb, mg/L) | −4.82 | −3.23 |
Copper (Cu, mg/L) | 5.57 | 2.44 |
Magnesium (Mg, mg/L) | 0.43 | −0.04 |
Potassium (K, mg/L) | 0.22 | 0.52 |
Manganese (Mn, mg/L) | 2.49 | 8.47 |
Sodium (Na, mg/L) | 0.45 | 0.01 |
Nickel (Ni, mg/L) | −0.0 | −0.0 |
Zinc (Zn, mg/L) | −0.0 | −0.0 |
Sulfates (SO42−, mg/L) | 0.44 | 0.09 |
Phenol (C6H5OH, mg/L) | −0.0 | −0.0 |
Electrical conductivity (µS/cm) | 0.45 | −0.01 |
Total dissolved solids (mg/L) | 0.26 | −0.45 |
Sampling Site | OPI Value | Water Quality Status | Class |
---|---|---|---|
S1 | 3.1 | Significant pollution | 4 |
S2 | 0.56 | Satisfactory | 2 |
S3 | 0.43 | Satisfactory | 2 |
S4 | 1.27 | Moderate pollution | 3 |
S5 | 2.38 | Significant pollution | 4 |
S6 | 3.68 | Significant pollution | 4 |
S7 | 0.73 | Satisfactory | 2 |
S8 | 12.14 | Highly polluted | 6 |
Indicator | MAC (mg/L) | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
---|---|---|---|---|---|---|---|---|---|
Total hardness, mg*eq/L | 7 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
pH | (6.5, 8.5) | 0.934 | 0.944 | 0.955 | 0.987 | 0.965 | 0.955 | 0.964 | 0.944 |
Dry residue, mg/L | 1000 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
Aluminum (Al), mg/L | 0.5 | 13 | 0 | 0 | 5 | 11 | 12 | 0 | 45 |
Arsenic (As), mg/L | 0.1 | - | - | - | - | - | - | - | - |
Boron (B), mg/L | 0.5 | - | - | - | - | - | - | - | - |
Calcium (Ca), mg/L | 200 | 0.7 | 0.5 | 0.5 | 0.1 | 0.5 | 0.6 | 0.6 | 0.8 |
Cadmium (Cd), mg/L | 0.005 | 0 | 0 | - | - | 0 | - | - | - |
Cobalt (Co), mg/L | 0.1 | 0 | 0 | - | 0 | 0 | - | - | - |
Chromium (Cr), mg/L | 0.05 | - | - | - | 0.1 | - | - | - | - |
Titanium (Ti), mg/L | - | - | - | - | - | - | - | - | - |
Iron (Fe), mg/L | 0.3 | - | - | - | 8 | - | - | - | 43 |
Lead (Pb), mg/L | 0.01 | - | - | - | - | - | - | - | - |
Copper (Cu), mg/L | 1 | - | - | - | - | - | - | - | - |
Magnesium (Mg), mg/L | 50 | 1.44 | 1.06 | 0.9 | 0.54 | 0.96 | 1.08 | 1.56 | 1.38 |
Potassium (K), mg/L | 10 | 0.9 | 0.5 | 0.3 | 0.6 | 0.5 | 0.6 | 0.4 | 1 |
Manganese (Mn), mg/L | 0.1 | - | - | - | - | - | - | - | - |
Sodium (Na), mg/L | 200 | 0.7 | 0.5 | 0.3 | 0.2 | 0.3 | 0.3 | 0.9 | 0.8 |
Nickel (Ni), mg/L | 0.02 | - | - | - | - | - | - | - | - |
Zinc (Zn), mg/L | 5 | - | - | - | - | - | - | - | - |
Sulfates (SO42−), mg/L | 500 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
Phenol (C6H5OH), mg/L | 0.001 | - | - | - | - | - | - | - | - |
Electrical conductivity, µS/cm | 1000 | 1.6 | 1.2 | 0.8 | 0.6 | 0.6 | 0.8 | 1.7 | 1.5 |
Total salinity, mg/L | 1000 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
Sampling Site | HPI Value | Interpretation |
---|---|---|
S1 | 19.19 | Safe and clean water (low pollution level). Water quality meets ecological standards. |
S2 | 20.00 | Safe and clean water (low pollution level). No risk to ecosystems or human health. |
S3 | 2.00 | Safe and clean water (very low pollution level). Water quality is very good. |
S4 | 120.38 | Highly polluted water. Heavy metal concentrations exceed the norm, posing a risk to ecosystems and human health. |
S5 | 19.09 | Safe and clean water (low pollution level). Meets ecological and sanitary standards. |
S6 | - | No data (sample not taken or measurement results unavailable). |
S7 | - | No data (sample not taken or measurement results unavailable). |
S8 | 4253.33 | Extremely polluted water. Heavy metal concentrations are very high, posing significant risks to water ecosystems and human health. This water should be prohibited for use. |
Pollutant | Occurs in LULC (Land Use Types) | Natural Sources | Anthropogenic Sources | Ecological Impacts | Technical Solutions |
---|---|---|---|---|---|
Al | S4, S8 | Soil erosion, rock weathering, forest fires | Industrial areas, agriculture, construction, open land | Industrial waste, fertilizers, pesticides, water treatment reagents | Sorbents, electrolysis, coagulation, waste control |
Cd | S1, S2, S5 | Natural dust, volcanic activity | Croplands, rural areas | Pesticides, batteries, industrial waste | Nanocomposite adsorbents, phytoremediation (e.g., mustard), electrolysis |
Ca | S4 | Limestone, volcanic rocks, mineral solubility | Farmland, grazing areas | Construction waste, livestock farming | Chemical and physical soil restoration methods |
Fe | S4 | Magmatic rocks, organic waste | Bogen River, agricultural areas | Construction waste, runoff | Chemical oxidation, filtration, coagulation |
Mg | S8 | Magmatic rocks, limestone | Farmland, grazing areas | Livestock feed, fertilizers | Water softening, coagulation |
Na | S1–S8 | Silicate minerals, sea salt | Suburban areas, agriculture | Road salt, household softeners | Gypsum application, reverse osmosis, ion exchange |
Aquatic Plant | Heavy Metal Accumulation Potential | Accumulated Metals |
---|---|---|
Populus spp. (Poplar) | High | Pb, Cd, Cu, Zn |
Tamarix spp. (Tamarisk) | High | As, Pb, Zn, Cd |
Phragmites australis (Reed) | High | Fe, Cu, Cd, Pb, Zn |
Carex spp. (Sedge) | Medium | Cu, Zn, Pb |
Medicago sativa (Alfalfa) | Medium | Pb, Cd, Zn |
Lupinus spp. (Lupine) | High | Pb, Cd, Ni, Zn |
Typha latifolia (Bulrush) | High | Pb, Zn, Mn, Ni, Fe, Cu |
Salix spp. (Willow) | Medium | Pb, Cd, Zn |
Mechanism in Aquatic Plants | Pollutants | Description | Site of Action | Plant Examples |
---|---|---|---|---|
Phytoextraction/Phytoaccumulation | Organic/inorganic pollutants | Absorption through roots and transport to aerial parts. Absorption from water and air. | Leaves | Juncus repens, Pistia stratiotes |
Rhizofiltration/Phytofiltration | Organic/inorganic, heavy metals | Removal through adsorption/absorption from polluted water. | Stems/roots | Lemna minor, Hydrocharis morsus, Eichhornia crassipes |
Phytostabilization/Phytoaccumulation/Phytosequestration | Heavy metals, Cd, and Zn | High bioconcentration and transport coefficients. | Roots | E. crassipes, Typha angustifolia |
Phytodegradation/Rhizodegradation | Organic/inorganic | Breakdown through microbiological degradation or plant metabolism. | Rhizosphere for pollutant degradation | Typha angustifolia, Myriophyllum aquaticum |
Phytovolatilization | Organic compounds | Transformation and release of pollutants into the atmosphere. | Atmospheric release | Phragmites australis, Typha minima |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetova, D.; Ozgeldinova, Z.; Ramazanova, N.; Sadvakassova, S.; Inkarova, Z.; Kenzhebay, R.; Shingisbayeva, Z.; Abildaeva, R.; Kozhabekova, Z.; Alagujayeva, M.; et al. Assessment of Chemical Pollution Load in Surface Waters of the Turkestan Region and Its Indirect Impact on Landscapes: A Comprehensive Study. Geosciences 2025, 15, 73. https://doi.org/10.3390/geosciences15020073
Akhmetova D, Ozgeldinova Z, Ramazanova N, Sadvakassova S, Inkarova Z, Kenzhebay R, Shingisbayeva Z, Abildaeva R, Kozhabekova Z, Alagujayeva M, et al. Assessment of Chemical Pollution Load in Surface Waters of the Turkestan Region and Its Indirect Impact on Landscapes: A Comprehensive Study. Geosciences. 2025; 15(2):73. https://doi.org/10.3390/geosciences15020073
Chicago/Turabian StyleAkhmetova, Dana, Zhanar Ozgeldinova, Nurgul Ramazanova, Saltanat Sadvakassova, Zhansulu Inkarova, Rabiga Kenzhebay, Zhadra Shingisbayeva, Roza Abildaeva, Zakhida Kozhabekova, Manira Alagujayeva, and et al. 2025. "Assessment of Chemical Pollution Load in Surface Waters of the Turkestan Region and Its Indirect Impact on Landscapes: A Comprehensive Study" Geosciences 15, no. 2: 73. https://doi.org/10.3390/geosciences15020073
APA StyleAkhmetova, D., Ozgeldinova, Z., Ramazanova, N., Sadvakassova, S., Inkarova, Z., Kenzhebay, R., Shingisbayeva, Z., Abildaeva, R., Kozhabekova, Z., Alagujayeva, M., & Sikhynbayeva, Z. (2025). Assessment of Chemical Pollution Load in Surface Waters of the Turkestan Region and Its Indirect Impact on Landscapes: A Comprehensive Study. Geosciences, 15(2), 73. https://doi.org/10.3390/geosciences15020073