Refining the Concept of Earthquake Precursory Fingerprint
Abstract
1. Introduction
2. Conceptual Background of the Precursory Fingerprint
3. Precursory Fingerprints
3.1. The Concept
3.2. Finding Precursory Fingerprints
3.3. Expected Complexity of the Precursory Fingerprints
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wyss, M. Why is earthquake prediction research not progressing faster? Tectonophysics 2001, 338, 217–223. [Google Scholar] [CrossRef]
- Main, I. Earthquake prediction: Concluding Remarks. Nature Debates 1999, 1–4. [Google Scholar] [CrossRef]
- Hough, S. Predicting the Unpredictable. The Tumultuous Science of Earthquake Prediction; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Geller, R.J.; Jackson, D.D.; Kagan, Y.Y.; Mulargia, F. Earthquakes Cannot Be Predicted. Science 1997, 275, 1616. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Lithosphere–Atmosphere–Ionosphere–Magnetosphere Cou-pling—A Concept for Pre-Earthquake Signals Generation. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 79–98. [Google Scholar]
- Martinelli, G.; Peresan, A.; Li, Y. Editorial: Achievements and New Frontiers in Research Oriented to Earthquake Forecasting. In Achievements and New Frontiers Oriented to Earthquake Forecasting; Martinelli, G., Peresan, A., Li, Y., Eds.; Frontiers in Earth Science: Solid Earth Geophysics; Frontier: Denver, CO, USA, 2022; Volume 9. [Google Scholar] [CrossRef]
- Shebalin, P.; Keilis-Borok, V.; Gabrielov, A.; Zaliapin, I.; Turcotte, D. Short-term earthquake prediction by reverse analysis of lithosphere dynamics. Tectonophysics 2006, 413, 63–75. [Google Scholar] [CrossRef]
- Hayakawa, M. Earthquake Precursor Studies in Japan. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 7–18. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Liu, J.-Y.; Hattori, K.; Han, P. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 339–359. [Google Scholar]
- Papadopoulos, G.; Minadakis, G.; Orfanogiannaki, K. Short-Term Foreshocks and Earthquake Prediction. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 127–147. [Google Scholar]
- Peresan, A. Recent Developments in the Detection of Seismicity Patterns for the Italian Region. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 149–171. [Google Scholar]
- Tramutoli, V.; Genzano, N.; Lisi, M.; Pergola, N. Significant Cases of Preseismic Thermal Infrared Anomalies. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 331–338. [Google Scholar]
- Zafrir, H.; Barbosa, S.; Levintal, E.; Weisbrod, N.; Ben Horin, Y.; Zalevsky, Z. The Impact of Atmospheric and Tectonic Constraints on Radon-222 and Carbon Dioxide Flow in Geological Porous Media—A Dozen-Year Research Summary. Front. Earth Sci. 2020, 8, 559298. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Fu, C.-C.; Lai, C.-W.; Yang, T.F.; Hilton, D.R.; Chen, C.-H.; Walia, V.; Kumar, A.; Lee, L.-C. An Automatic System for Continuous Monitoring and Sampling of Groundwater Geochemistry in Earthquake-Prone Regions of SW Taiwan. Front. Earth Sci. 2021, 9, 635913. [Google Scholar] [CrossRef]
- Ferrari, E.; Massa, M.; Lovati, S.; Di Michele, F.; Rizzo, A.L. Multiparametric stations for real-time monitoring and long-term assessment of natural hazards. Front. Earth Sci. 2024, 12, 1412900. [Google Scholar] [CrossRef]
- Xiang, Y.; Sun, X.; Liu, D.; Yan, L.; Wang, B.; Gao, X. Spatial Distribution of Rn, CO2, Hg, and H2 Concentrations in Soil Gas Across a Thrust Fault in Xinjiang, China. Front. Earth Sci. 2020, 8, 554924. [Google Scholar] [CrossRef]
- Chelidze, T.; Melikadze, G.; Kiria, T.; Jimsheladze, T.; Kobzev, G. Statistical and Non-linear Dynamics Methods of Earthquake Forecast: Application in the Caucasus. Front. Earth Sci. 2020, 8, 194. [Google Scholar] [CrossRef]
- Matsumoto, N.; Koizumi, N. Recent hydrological and geochemical research for earthquake prediction in Japan. Nat. Hazards 2013, 69, 1247–1260. [Google Scholar] [CrossRef]
- Szakács, A. Precursor-Based Earthquake Prediction Research: Proposal for a Paradigm-Shifting Strategy. Front. Earth Sci. 2021, 8, 548398. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Q.-F.; Sun, S.; Wang, A. Predicting the 1975 Haicheng Earthquake. Bull. Seismol. Soc. Am. 2006, 96, 757–795. [Google Scholar] [CrossRef]
- Lomnitz, C.; Lomnitz, L. Tangshan 1976: A case history in earthquake prediction. Nature 1978, 271, 109–111. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Earthquakes with 50,000 or More Deaths; Archive; U.S. Geological Survey: Reston, VA, USA, 2013. Available online: https://web.archive.org/web/20130507101448/http://earthquake.usgs.gov/earthquakes/world/most_destructive.php (accessed on 1 August 2025).
- Pulinets, S.; Ouzounov, D. The Possibility of Earthquake Forecasting. Learning from Nature; IOP Publishing Ltd.: Bristol, UK, 2018; Online ISBN: 978-0-7503-1248-6; Print ISBN: 978-0-7503-1249-3. [Google Scholar]
- Martinelli, G.; Facca, G.; Genzano, N.; Gherardi, F.; Lisi, M.; Pierotti, L.; Tramutoli, V. Earthquake-Related Signals in Central Italy Detected by Hydrogeochemical and Satellite Techniques. In Achievements and New Frontiers Oriented to Earthquake Forecasting; Martinelli, G., Peresan, A., Li, Y., Eds.; Frontiers Research Topics; Frontier: Denver, CO, USA, 2022. [Google Scholar] [CrossRef]
- Martinelli, G.; Dadomo, A. Geochemical and Fluid-Related Precursors of Earthquakes: Previous and Ongoing Research Trends. In Pre-Earthquake Processes. A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; AGU, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 219–228. [Google Scholar]
- Martinelli, G. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences 2020, 10, 189. [Google Scholar] [CrossRef]
- Vasilev, A.; Tsekov, M.; Petsinski, P.; Gerilowski, K.; Slabakova, V.; Trukhchev, D.; Botev, E.; Dimitrov, O.; Dobrev, N.; Parlichev, D. New Possible Earthquake Precursor and Initial Area for Satellite Monitoring. Front. Earth Sci. 2021, 8, 586283. [Google Scholar] [CrossRef]
- Bulusu, J.; Arora, K.; Singh, S.; Edara, A. Simultaneous electric, magnetic and ULF anomalies associated with moderate earthquakes in Kumaun Himalaya. Nat. Hazards 2023, 116, 3925–3955. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Yang, Y.; Rui, X.; Lu, M.; Lan, S. Implications of groundwater level changes before near field earthquakes and its influencing factors-several earthquakes in the vicinity of the Longmenshan-Anninghe fault as an example. Front. Earth Sci. 2025, 13, 1541346. [Google Scholar] [CrossRef]
- Szakács, A. Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy. J. Volcanol. Geotherm. Res. 2011, 201, 404–411. [Google Scholar] [CrossRef]
- Jordan, T.H.; Chen, Y.-T.; Gasparini, P.; Madariaga, R.; Main, I.; Marzocchi, W.; Papadopoulos, G.; Sobolev, G.; Yamaoka, K.; Zschau, J. Operational Earthquake forecasting. State of knowledge and guidelines for utilization. Report by the International Commission on Earthquake Forecasting for Civil Protection. Istituto Nazionale di Geofisica e Vulcanologia. Ann. Geophys. 2011, 54, 391. [Google Scholar]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K. Multiparameter Approach and LAIC Validation. In Earthquake Precursors in the Atmosphere and Ionosphere. New Concepts; Springer: Dordrecht, The Netherlands, 2022; pp. 187–247. [Google Scholar]
- Pulinets, S.; Herrera, V.M.V. Earthquake Precursors: The Physics, Identification, and Application. Geosciences 2024, 14, 209. [Google Scholar] [CrossRef]
- He, M.; Li, Q.; Li, X. Injection-Induced Seismic Risk Management Using Machine Learning Methodology—A Perspective Study. Front. Earth Sci. 2020, 8, 227. [Google Scholar] [CrossRef]
- Völgyesi, L.; Tóth, G.; Égető, C.; Szondy, G.; Kiss, B.; Barnaföldi, G.G.; Fenyvesi, E.; Lévai, P.; Kovács, P.; Imre, E.; et al. A pre-earthquake signal detection by the Eötvös torsion balance. Book chapter in Askar Zhussupbekov. In Smart Geotechnics for Smart Societies; Sarsembayeva, A., Kaliakin, V.N., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 819–822. [Google Scholar] [CrossRef]
- Fu, C.-C.; Lee, L.-C.; Ouzounov, D.; Jan, J.-C. Earth’s Outgoing Longwave Radiation Variability Prior to M ≥ 6.0 Earthquakes in the Taiwan Area During 2009–2019. Front. Earth Sci. 2020, 8, 364. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szakács, A. Refining the Concept of Earthquake Precursory Fingerprint. Geosciences 2025, 15, 319. https://doi.org/10.3390/geosciences15080319
Szakács A. Refining the Concept of Earthquake Precursory Fingerprint. Geosciences. 2025; 15(8):319. https://doi.org/10.3390/geosciences15080319
Chicago/Turabian StyleSzakács, Alexandru. 2025. "Refining the Concept of Earthquake Precursory Fingerprint" Geosciences 15, no. 8: 319. https://doi.org/10.3390/geosciences15080319
APA StyleSzakács, A. (2025). Refining the Concept of Earthquake Precursory Fingerprint. Geosciences, 15(8), 319. https://doi.org/10.3390/geosciences15080319