Deep-Water Volcaniclastic Layers in the Late Messinian Apennines Foreland Basin Unravel the First Calc-Alkaline Rhyolitic Eruption in the Central Italy Magmatic System
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Macroscopic Description of the Volcaniclastic Deposits
3.2. Microscopic and Petrographic Characterization
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giordano, G.; Caricchi, L. Determining the state of activity of transcrustal magmatic systems and their volcanoes. Annu. Rev. Earth Planet. Sci. 2022, 50, 231–259. [Google Scholar] [CrossRef]
- Moruzzi, G.; Follador, U. Segnalazione di uno “strato-guida” nel Miocene superiore flyschioide delle Marche meridionali. Geol. Romana 1973, 12, 125–128. [Google Scholar]
- Manzi, V.; Lugli, S.; Ricci Lucchi, F.; Roveri, M. Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): Did the Mediterranean ever dry out? Sedimentology 2005, 52, 875–902. [Google Scholar] [CrossRef]
- Bernardes, C.; Bigazzi, G.; Bonadonna, F.P.; Centamore, E.; Lattes, C.M.G.; Hadler, J.C. Fission track dating on glass from “Flysch della Laga” formation. A very interesting and problematic application. Nucl. Tracks 1986, 12, 901–904. [Google Scholar] [CrossRef]
- Odin, G.S.; Ricci Lucchi, F.; Tateo, F.; Cosca, M.; Hunziker, J.C. Integrated stratigraphy of the Maccarone section, Late Messinian (Marche region, Italy). Dev. Palaeontol. Stratigr. 1997, 15, 531–545. [Google Scholar]
- Cosentino, D.; Buchwaldt, R.; Sampalmieri, G.; Iadanza, A.; Cipollari, P.; Schildgen, T.F.; Hinnov, L.A.; Ramezani, J.; Bowring, S.A. Refining the Mediterranean “Messinian gap” with high-precision U-Pb zircon geochronology, central and northern Italy. Geology 2013, 41, 323–326. [Google Scholar] [CrossRef]
- Girotti, O.; Parotto, M. Mio-Pliocene di Ascoli Piceno. Atti dell’Accademia Gioenia di Scienze Naturali, Supplemento di scienze Geologiche 1969, 1, 127–174. [Google Scholar]
- Guerrera, F.; Tonelli, G.; Veneri, F.; Domeniconi, G. Caratteri lito-sedimentologici e mineralogico-petrografici di vulcanoclastiti mioceniche presenti nella successione Umbro-Marchigiana. Boll. Della Soc. Geol. Ital. 1986, 105, 307–325. [Google Scholar]
- Trua, T.; Manzi, V.; Roveri, M.; Artoni, A. The Messinian volcaniclastic layers of the Northern Apennines: Evidence for the initial phases of the Southern Tyrrhenian spreading? Ital. J. Geosci. 2010, 129, 269–279. [Google Scholar] [CrossRef]
- Potere, D.; Scisciani, V.; Piochi, M.; Pierantoni, P.P.; Mormone, A.; Nazzari, M.; Scarlato, P.; Iezzi, G. The Volcanic-Rich Layer of the “Camporotondo (Marche, Italy)” Section: Petrography and Sedimentation of an Unknown Distal Messinian Eruption. Minerals 2022, 12, 893. [Google Scholar] [CrossRef]
- Potere, D.; Iezzi, G.; Scisciani, V.; Tangari, A.C.; Nazzarri, M. Provenance and deposition of a lithified volcanic-rich layer (VRL-5.5) at 5.5 Ma from Central Apennines (Italy). Sci. Rep. 2023, 13, 6880. [Google Scholar] [CrossRef]
- Schneider, J.L.; Le Ruyet, A.; Chanier, F.; Buret, C.; Ferrière, J.; Proust, J.N.; Rosseel, J.B. Primary or secondary distal volcaniclastic turbidites: How to make the distinction? An example from the Miocene of New Zeland (Mahia Peninsula, North Island). Sediment. Geol. 2001, 145, 1–22. [Google Scholar] [CrossRef]
- White, J.D.L.; Houghton, B.F. Primary volcaniclastic rocks. Geology 2006, 34, 677–680. [Google Scholar] [CrossRef]
- Di Capua, A.; De Rosa, R.; Kereszturi, G.; Le Pera, E.; Rosi, M.; Watt, S.F.L. Volcanically-derived deposits and sequences: A unified terminological scheme for application in modern and ancient environments. Geol. Soc. Lond. Spec. Publ. 2023, 520, 11–27. [Google Scholar] [CrossRef]
- Serri, G.; Innocenti, F.; Manetti, P. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 1993, 223, 117–147. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937. [Google Scholar] [CrossRef]
- Heiken, G.; Wohletz, K. Fragmentation processes in explosive volcanic eruptions. In Sedimentation in Volcanic Settings; Fisher, R.V., Smith, G.A., Eds.; Special Publication; SEPM: Boulder, CO, USA, 1991; Volume 45, pp. 19–26. [Google Scholar]
- Polacci, M. Constraining the dynamics of volcanic eruptions by characterization of pumice textures. Ann. Geophys. 2005, 48, 731–738. [Google Scholar] [CrossRef]
- Paredes-Mariño, J.; Scheu, B.; Montanaro, C.; Arciniega-Ceballos, A.; Dingwell, D.B.; Perugini, D. Volcanic ash generation: Effects of componentry, particle size and conduit geometry on size-reduction processes. Earth Planet. Sci. Lett. 2019, 514, 13–27. [Google Scholar] [CrossRef]
- Piochi, M.; Polacci, M.; Arzilli, F.; Ventura, G. Microscale textural heterogeneity and tip-streaming instability in alkaline magmas: Evidence in tube pumices from Campi Flegrei, Italy. J. Volcanol. Geotherm. Res. 2021, 413, 107200. [Google Scholar] [CrossRef]
- Le Bas, M.L.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. IUGS Subcommission on the Systematics of Igneous Rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Wright, J.V. Subaqueous pyroclastic flows and ignimbrites: An assessment. Bull. Volcanol. 1991, 53, 357–380. [Google Scholar] [CrossRef]
- Fisher, R.V.; Schmincke, H.-U. Pyroclastic Rocks; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1984; pp. 1–472. [Google Scholar]
- Druitt, T.; Kutterolf, S.; Ronge, T.A.; Hubsher, C.; Nomikou, P.; Preine, J.; Gettirser, R.; Karstens, J.; Keller, J.; Koukousioura, O.; et al. Giant offshore pumice deposit records a shallow submarine explosive eruption of ancestral Santorini. Commun. Earth Environ. 2024, 5, 24. [Google Scholar] [CrossRef]
- Fiske, R.S. Subaqueous pyroclastic flows in the Ohanapecosh formation. Geol. Soc. Am. Bull. 1963, 74, 391–406. [Google Scholar] [CrossRef]
- Fiske, R.S.; Matsuda, T. Submarine equivalents of ash flows in the Tokiwa formation. Am. J. Sci. 1964, 262, 76–106. [Google Scholar] [CrossRef]
- Allen, J.R.L. Structures and sequences related to gravity-current surges. In Sedimentary Structures. Their Character and Physical Basis; Elsevier: Amsterdam, The Netherlands, 1982; Volume 2, pp. 395–431. [Google Scholar]
- Wright, J.V.; Mutti, E. The Dali ash, Island of Rhodes, Greece: A problem in interpreting submarine volcanogenic sediments. Bullettin Volcanol. 1981, 44, 153–167. [Google Scholar] [CrossRef]
- Iezzi, G.; Lanzafame, G.; Mancini, G.; Behrens, H.; Tamburrino, S.; Vallefuoco, M.; Passaro, S.; Signanini, P.; Ventura, G. Deep Sea explosive eruptions may be not so diferent from subaerial eruptions. Sci. Rep. 2020, 10, 6709. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.V.; Fiske, R.S. Fallout of pyroclastic debris from submarine volcanic eruption. Science 1991, 253, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, D.B.; Lavallée, Y.; Hess, K.U.; Flaws, A.; Marti, J.; Alexander, R.L.; Nichols, A.R.L.; Gilg, H.A.; Schillinger, B. Eruptive shearing of tube pumice: Pure and simple. Solid Earth 2016, 7, 1383–1393. [Google Scholar] [CrossRef]
- Castro, J.M.; Dingwell, D.B. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 2009, 461, 780–783. [Google Scholar] [CrossRef]
- Trofimovs, J.; Amy, L.; Boudon, G.; Deplus, C.; Doyle, E.; Fournier, N.; Talling, P.J. Submarine pyroclastic deposits formed at the Soufrière Hills volcano, Montserrat (1995–2003): What happens when pyroclastic flows enter the ocean? Geology 2006, 34, 549–552. [Google Scholar] [CrossRef]
- Trofimovs, J.; Sparks, R.S.J.; Talling, P.J. Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufrière Hills volcano, Montserrat, West Indies. Sedimentology 2008, 55, 617–634. [Google Scholar] [CrossRef]
- Valloni, R.; Cipriani, N.; Morelli, C. Petrostratigraphic Record of the Apennine Foredeep Basins, Italy. Boll. Della Soc. Geol. Ital. 2002, 121, 455–465. [Google Scholar]
- Peccerillo, A. Plio-Quaternary magmatism in Italy. J. Int. Geosci. 2003, 26, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Stalder, N.F.; Fellin, M.G.; Caracciolo, L.; Guillong, M.; Winkler, W.; Milli, S.; Moscatelli, M.; Critelli, S. Dispersal pathways in the early Messinian Adriatic foreland and provenance of the Laga Formation (Central Apennines, Italy). Sediment. Geol. 2018, 375, 289–308. [Google Scholar] [CrossRef]
- Di Vincenzo, G.; Vezzoni, S.; Dini, A.; Rocchi, S. Timescale of a magmatic-hydrothermal system revealed by 40Ar—39Ar geochronology: The Mio-Pliocene Campiglia Marittima system (Tuscany, Italy). Sci. Report. 2022, 12, 7128. [Google Scholar] [CrossRef]
- Selli, R. Il bacino del Metauro. Descrizione geologica, risorse minerarie, idrogeologia. G. Geol. 1954, 24, 1–268. [Google Scholar]
- Mutti, E.; Nilsen, T.H.; Ricci Lucchi, F. Outer fan depositional lobes of the Laga Formation (upper Miocene and lower Pliocene), east-central Italy. In Sedimentation in Submarine Canyons, Fans and Trenches; Stanley, D.J., Kelling, G., Eds.; Dowden, Hutchinson & Ross: Stroudsburg, PA, USA, 1978; pp. 210–223. [Google Scholar]
SiO2 (wt%) | TiO2 (wt%) | Al2O3 (wt%) | FeO (wt%) | MnO (wt%) | MgO (wt%) | CaO (wt%) | Na2O (wt%) | K2O (wt%) | P2O5 (wt%) | Total (wt%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
VL-01 | 77.70 | 0.12 | 13.60 | 1.11 | 0.05 | 0.07 | 0.79 | 4.29 | 2.27 | 0.01 | 96.15 |
VL-02 | 77.37 | 0.08 | 13.55 | 1.07 | 0.00 | 0.06 | 0.78 | 4.60 | 2.48 | 0.01 | 96.36 |
VL-03 | 77.28 | 0.11 | 13.58 | 1.18 | 0.02 | 0.09 | 0.76 | 4.57 | 2.42 | 0.00 | 96.96 |
VL-04 | 76.75 | 0.12 | 13.90 | 1.38 | 0.02 | 0.07 | 0.84 | 4.48 | 2.43 | 0.00 | 96.33 |
VL-05 | 76.70 | 0.09 | 14.03 | 1.38 | 0.03 | 0.08 | 0.84 | 4.31 | 2.52 | 0.02 | 95.94 |
VL-06 | 76.74 | 0.11 | 13.98 | 1.34 | 0.02 | 0.07 | 0.84 | 4.41 | 2.44 | 0.05 | 96.12 |
VL-07 | 78.11 | 0.06 | 13.46 | 1.12 | 0.02 | 0.04 | 0.78 | 4.23 | 2.19 | 0.00 | 95.76 |
VL-08 | 77.82 | 0.11 | 13.44 | 1.22 | 0.07 | 0.06 | 0.79 | 4.46 | 2.06 | 0.00 | 96.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, M.; Arzilli, F.; Bosio, G.; Morgavi, D.; Di Celma, C.N. Deep-Water Volcaniclastic Layers in the Late Messinian Apennines Foreland Basin Unravel the First Calc-Alkaline Rhyolitic Eruption in the Central Italy Magmatic System. Geosciences 2025, 15, 330. https://doi.org/10.3390/geosciences15090330
Principi M, Arzilli F, Bosio G, Morgavi D, Di Celma CN. Deep-Water Volcaniclastic Layers in the Late Messinian Apennines Foreland Basin Unravel the First Calc-Alkaline Rhyolitic Eruption in the Central Italy Magmatic System. Geosciences. 2025; 15(9):330. https://doi.org/10.3390/geosciences15090330
Chicago/Turabian StylePrincipi, Michela, Fabio Arzilli, Giulia Bosio, Daniele Morgavi, and Claudio N. Di Celma. 2025. "Deep-Water Volcaniclastic Layers in the Late Messinian Apennines Foreland Basin Unravel the First Calc-Alkaline Rhyolitic Eruption in the Central Italy Magmatic System" Geosciences 15, no. 9: 330. https://doi.org/10.3390/geosciences15090330
APA StylePrincipi, M., Arzilli, F., Bosio, G., Morgavi, D., & Di Celma, C. N. (2025). Deep-Water Volcaniclastic Layers in the Late Messinian Apennines Foreland Basin Unravel the First Calc-Alkaline Rhyolitic Eruption in the Central Italy Magmatic System. Geosciences, 15(9), 330. https://doi.org/10.3390/geosciences15090330