GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece
Abstract
:1. Introduction
2. Study Area
3. Data
4. Statistical Method: Landslide Susceptibility Index (LSI)
- (a)
- Categorization of all landslide- conditioning factors. In this step, the natural breaks (jenks) categorization in five discrete classes was implemented for the factors with continuous values (elevation, PGA, MAP), except for slope factor whose categorization was executed in a manual way based on its presented values. For the categorical factors (landcover, lithology, and aspect) we preserved all the classes of the nominal scale.
- (b)
- Calculation of the landslide density in each class and of the area for each category using GIS-based overlay functions. In this stage, the calculation of LSI for all factor categories based on Equation (1) was implemented (Table 1).
- (c)
- Finally, the integrated landslide susceptibility map (Figure 2) was created by combining the LSI values of multiple factors by means of GIS overlay analysis, and the Equations (1) and (2). We classified this map into five discrete categories: “Very Low”, “Low”, “Moderate”, “High” and “Very High” landslide susceptibility according to the following classification methods: (a) equal interval; (b) standard deviation and (c) natural breaks (jenks).
Layers (Factors) | Categories (Classes) | Landslide Density | LSI |
---|---|---|---|
Land cover | Artificial surfaces | 0.09 | 2.04 |
Agricultural areas | 0.66 | 0.42 | |
Forest and semi-natural land | 0.25 | −0.79 | |
Lithology | Phyllites/Gneiss (metamorphic) | 0.07 | 0.16 |
Limestones—Marbles | 0.20 | −0.77 | |
Schists (metamorphic) | 0.01 | −0.51 | |
Neogene | 0.44 | 0.69 | |
Tertiary | 0.12 | −0.06 | |
Flysch | 0.09 | 0.06 | |
Cherts—Schists | 0.06 | 0.36 | |
MAP | <663 mm | 0.03 | −1.69 |
663–884 mm | 0.30 | 0.14 | |
885–1079 mm | 0.43 | 0.29 | |
1080–1295 mm | 0.19 | −0.03 | |
>1295 mm | 0.05 | −0.22 | |
PGA | <1.16 m/s2 | 0.02 | −0.14 |
1.16–1.88 m/s2 | 0.01 | −0.98 | |
1.89–2.53 m/s2 | 0.17 | −0.81 | |
2.54–3.11 m/s2 | 0.67 | 0.53 | |
>3.11 m/s2 | 0.13 | −0.28 | |
Elevation | <234 m | 0.36 | 0.17 |
234–524 m | 0.27 | 0.11 | |
525–851 m | 0.22 | −0.03 | |
852–1244 m | 0.14 | −0.13 | |
>1244 m | 0 | −2.60 | |
Slope | <5° | 0.31 | −0.16 |
5°–10° | 0.30 | 0.19 | |
11°–15° | 0.22 | 0.23 | |
16°–20° | 0.12 | 0.08 | |
>20° | 0.05 | −0.77 | |
Aspect | North | 0.31 | 0.31 |
East | 0.21 | −0.15 | |
South | 0.16 | −0.47 | |
West | 0.32 | 0.16 |
Factor | LSImin | LSImax | LSIrange | LSIst. dev |
---|---|---|---|---|
Land cover | −0.79 | 2.04 * | 2.83 | 1.42 |
Lithology | −0.77 | 0.69 | 1.47 | 0.50 |
MAP | −1.69 | 0.29 | 1.98 | 0.80 |
PGA | −0.98 | 0.53 | 1.51 | 0.60 |
Elevation | −2.60 | 0.17 | 2.77 | 1.18 |
Slope | −0.77 | 0.23 | 0.99 | 0.41 |
Aspect | −0.47 | 0.31 | 0.78 | 0.30 |
5. Results—Validation
ROC Analysis Results | Classification Method | ||
---|---|---|---|
Equal Interval | Standard Deviation | Natural Breaks (Jenks) | |
Accuracy | 64.3% | 62.9% | 65.7% |
Sensitivity | 54.3% | 72.9% | 81.4% |
Specificity | 74.3% | 52.9% | 50% |
Positive Cases Missed | 32 | 19 | 13 |
Negative Cases Missed | 18 | 33 | 35 |
AUC value | 0.709 | 0.742 | 0.752 |
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zillman, J. Report by the Director of Meteorology on the Bureau of Meteorology’s Forecasting and Warning Performance for the Sydney Hailstorm of 14 April 1999. Bureau of Meteorology: Melbourne, Australia, 1999. Available online: http://www.bom.gov.au/inside/services_policy/ storms/sydney_hail/hail_report.shtml (accessed on 28 April 2014).
- Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Can, T. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng. Geol. 2005, 81, 65–83. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Crozier, M.J.; Glade, T. Landslide Hazard and Risk: Issues, Concepts and Approach. In Landslide Risk Assessment; Glade, T., Anderson, M.G., Crozier, M.J., Eds.; John Wiley: New York, NY, USA, 2005; pp. 1–40. [Google Scholar]
- Santacana, N.; Baeza, B.; Corominas, J.; de Paz, A.; Marturia, J. A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees Spain). Nat. Hazards 2003, 30, 281–295. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Magliulo, P.; Lisio, A.; Russo, F.; Zelano, A. Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southern Italy. Nat. Hazards 2008, 47, 411–435. [Google Scholar] [CrossRef]
- Rahmani, M.; Hosieni, S.A.; Molla Aghajanzadeh, A.; Mashayekhan, A.; Moslemi Mahalleh, S.M. Landslide hazard zonation using the MCE method (Case study: Agh Mashhad, Mazandaran Province, Iran). Int. J. AgriSci. 2013, 3, 240–244. [Google Scholar]
- Ahmed, M.F.; Rogers, J.D.; Ismail, E.H. A regional level preliminary landslide susceptibility study of the upper Indus river basin. Eur. J. Remote Sens. 2014, 47, 343–373. [Google Scholar] [CrossRef]
- Rozos, D.; Bathrellos, G.D.; Skillodimou, H.D. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the Eastern Achaia County of Peloponnesus, Greece. Environ. Earth Sci. 2011, 63, 49–63. [Google Scholar]
- Papathanassiou, G.; Valkaniotis, I.; Ganas, A.; Pavlides, S. GIS-based statistical analysis of the spatial distribution, of earthquake-induced landslides in the island, of Lefkada, Ionian Islands, Greece. Landslides 2013, 10, 771–783. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
- He, Y.; Beighley, R.E. GIS-based regional landslide susceptibility mapping: A case study in southern California. Earth Surf. Process. Landf. 2008, 33, 380–393. [Google Scholar] [CrossRef]
- Pareek, N.; Sharma, M.L.; Arora, M.K. Impact of seismic factors on landslide susceptibility zonation: a case study in part of Indian Himalayas. Landslides 2010, 7, 191–201. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Rengers, N.; Soeters, R. Use of geomorphological information in indirect landslide susceptibility assessment. Nat. Hazards 2003, 30, 399–419. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H.; Maruib, H.; Takami, K. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar]
- Thiery, Y.; Malet, J.P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. A Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007, 92, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Listo, F.D.L.R.; Carvalho Vieira, B. Mapping of risk and susceptibility of shallow-landslide in the city of Sao Paulo, Brazil. Geomorphology 2012, 169–170, 30–44. [Google Scholar] [CrossRef]
- Ruff, M.; Czurda, K. Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 2008, 94, 314–324. [Google Scholar] [CrossRef]
- Pathak, S.; Poudel, R.K.; Kansakar, B.R. Application of Probabilistic Approach in Rock Slope Stability Analysis—An Experience from Nepal Disaster Mitigation of Debris Flows, Slope Failures and Landslides. In Proceedings of the INTERPRAEVENT International Symposium Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Niigata, Japan, 25–27 September 2006; pp. 797–802.
- Thiebes, B.; Bell, R.; Glade, T. Deterministic Landslide Susceptibility Analysis Using SINMAP—Case Study in the Swabian Alb Germany. In Proceedings of the Conference—Geomorphology for the Future, Obergurgl, Austria, 2–7 September 2007; pp. 177–184.
- Ferentinou, M.; Chalkias, C.; Sakellariou, M. Landslide Susceptibility Mapping in National Scale and Preliminary Risk Analysis Applying Computational Methods in a GIS Environment. In Proceedings of the 9th Panhellenic Geographical Conference, Athens, Greece, 5–7 November 2010; pp. 682–689.
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS supported landslide susceptibility modeling at regional scale: An expert-based fuzzy weighting method. ISPRS Int. J. Geo-Inf. 2014, 3, 523–539. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar]
- Demir, G.; Aytekin, M.; Akgün, A.; Ikizler, S.B.; Tatar, O. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat. Hazards 2013, 65, 1481–1506. [Google Scholar] [CrossRef]
- Mousavi, S.Z.; Kavian, A.; Soleimani, K.; Mousavi, S.R.; Shirzadi, A. GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat. Nat. Hazards Risk 2011, 2, 33–50. [Google Scholar]
- He, S.; Pan, P.; Dai, L.; Wang, H.; Liu, J. Application of kernelbased Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology 2002, 171–172, 30–41. [Google Scholar]
- Mezughi, T.H.; Akhir, J.M.; Rafek, A.G.; Abdullah, I. Landslide Susceptibility Assessment using Frequency Ratio Model Applied to an Area along the E-W Highway (Gerik-Jeli). Am. J. Environ. Sci. 2011, 7, 43–50. [Google Scholar]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Abay, A.; Barbieri, G. Landslide Susceptibility and Causative Factors Evaluation of the Landslide Area of Debresina, in the Southwestern Afar Escarpment, Ethiopia. J. Earth Sci. Eng. 2012, 2, 133–144. [Google Scholar]
- Mondal, S.; Maiti, R. Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. Int. J. Disaster Risk Sci. 2013, 4, 200–212. [Google Scholar] [CrossRef]
- Paulín, L.; Bursik, G.; Hubp, M.; Mejía, J.L.; Aceves Quesada, F.L.M.P. A GIS method for landslide inventory and susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, México. Nat. Hazards 2014, 71, 229–241. [Google Scholar] [CrossRef]
- Tien Bui, D.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413–1444. [Google Scholar] [CrossRef]
- Conforti, M.; Robustelli, G.; Muto, F.; Critelli, S. Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy). Nat. Hazards 2012, 61, 127–141. [Google Scholar] [CrossRef]
- Polykretis, C.; Ferentinou, M.; Chalkias, C. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bull. Eng. Geol. Environ. 2014. [Google Scholar] [CrossRef]
- Pnevmatikos, J.D.; Katsoulis, B.D. The changing rainfall regime in Greece and its impact on climatological means. Meteorol. Appl. 2006, 13, 331–345. [Google Scholar] [CrossRef]
- Stournaras, G.; Tsimpidis, G.; Tsoumanis, P.; Yannatos, G.; Guillande, R. Instability Phenomena in the Neogenne Deposits of Northern Peloponnese. Bull. Eng. Geol. Environ. 1998, 57, 65–68. [Google Scholar]
- Papathanassiou, G. Estimating slope failure potential in an earthquake prone area: A case study at Skolis Mountain, NW Peloponnesus, Greece. Bull. Eng. Geol. Environ. 2012, 71, 187–194. [Google Scholar]
- Koukis, G.; Tsiambaos, G.; Sabatakakis, N. Landslides Movements in Greece: Engineering Geological Characteristics and Environmental Consequences. In Proceedings of the International Symposium of Engineering geology and the Environment, Athens, Greece, 23–27 June 1997; Balkema: Athens, Greece, 1997; pp. 789–793. [Google Scholar]
- Papadopoulos, G.A.; Plessa, A. Magnitude-distance relations for earthquake-induced landslides in Greece. Eng. Geol. 2000, 58, 377–386. [Google Scholar] [CrossRef]
- Koukouvelas, I.K.; Doutsos, T. The Effects of Active Faults on the Generation of Landslides in NW Peloponnese, Greece. In Engineering Geology and the Environment; Marinos, P.G., Koukis, G.C., Tsiambaos, G.C., Stournaras, G.C., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 799–804. [Google Scholar]
- Koukouvelas, I. The Egion fault, earthquake-related and long-term deformation, Gulf of Corinth, Greece. J. Geodyn. 1998, 6, 501–513. [Google Scholar] [CrossRef]
- Dounias, G.; Fikiris, I.F.; Kollios, A.; Kabbadas, M.; Marinos, P. The Nemea Landslide. Trigger Mechanism—Remedial Measures. In Proceedings of the 5th Panellenic Conference of Geotechnics and Geoenvironmental Engineering, Xanthi, Greece, 31 May–2 June 2006.
- Sabatakakis, N.; Koukis, G.; Vassiliades, E.; Lainas, S. Landslide susceptibility zonation in Greece. Nat. Hazard. 2013, 65, 523–543. [Google Scholar] [CrossRef]
- Christoulas, S.; Kalteziotis, N.; Gassios, E.; Sabatakakis, N.; Tsiambaos, G. Instability Phenomena in Weathered Flysch in Greece. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Volume 1, pp. 103–108.
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation, Special Report; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Dikau, R.; Brunsden, D.; Schrott, L.; Ibsen, M. Landslide Recognition: Identification, Movement and Causes; Wiley: Chichester, UK, 1996. [Google Scholar]
- Fell, R. Landslide risk assessment and acceptable risk. Can. Geotech. J. 1994, 31, 261–272. [Google Scholar] [CrossRef]
- Hasekioǧullari, G.D.; Ercanoglu, M. A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Nat. Hazards 2012, 63, 1157–1179. [Google Scholar] [CrossRef]
- Das, O.; Sonmez, H.; Gokceoglu, C.; Nefeslioglu, H. A study on the effect of the ground acceleration on landslide susceptibility maps. Geophys. Res. Abstr. 2010, 12. EGU2010-5885-1. [Google Scholar]
- Heymann, Y.; Steenmans, C.; Croisille, G.; Bossard, M. CORINE Land Cover: Technical Guide; Office for Official Publications of the European Communities: Luxembourg City, Luxembourg, 1994. [Google Scholar]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 2008, 94, 1–9. [Google Scholar]
- Huade, G.; Wilson, J.L.; Makhnin, O. Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydrometeorol. 2005, 6, 1018–1031. [Google Scholar]
- Arjun, C.R.; Kumar, A. Artificial neural network-based estimation of peak ground acceleration. ISET J. Earthq. Technol. 2009, 46, 19–28. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. Preparation of a Landslide Susceptibility Map of Summit County, Ohio, USA, Using Numerical Models. In Proceedings of the 10th IAEG Congress, Nottingham, UK, 6–10 September 2006. Paper No. 660.
- Frattini, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010, 111, 62–72. [Google Scholar] [CrossRef]
- Donati, L.; Turrini, M.C. An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: Application to an area of the Apennines (Valnerina; Perugia, Italy). Eng. Geol. 2002, 63, 277–289. [Google Scholar] [CrossRef]
- Süzen, M.L.; Doyuran, V. Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Eng. Geol. 2004, 71, 303–321. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Rengers, N.; Terlien, M.T.J.; Soeters, R. Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geologische. Rundschau. 1997, 86, 404–414. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2009, 110, 11–20. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Soldati, M.; Notarnicola, C.; Savelli, D.; Schneiderbauer, S.; Strada, C. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology 2012, 151–152, 196–206. [Google Scholar]
- Schicker, R.; Moon, V. Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology 2012, 161–162, 40–57. [Google Scholar] [CrossRef]
- Reis, S.; Yalcin, A.; Atasoy, M.; Nisanci, R.; Bayrak, T.; Erduran, M.; Sancar, C.; Ekercin, S. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environ. Earth Sci. 2012, 66, 2063–2073. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences 2014, 4, 176-190. https://doi.org/10.3390/geosciences4030176
Chalkias C, Ferentinou M, Polykretis C. GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences. 2014; 4(3):176-190. https://doi.org/10.3390/geosciences4030176
Chicago/Turabian StyleChalkias, Christos, Maria Ferentinou, and Christos Polykretis. 2014. "GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece" Geosciences 4, no. 3: 176-190. https://doi.org/10.3390/geosciences4030176
APA StyleChalkias, C., Ferentinou, M., & Polykretis, C. (2014). GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences, 4(3), 176-190. https://doi.org/10.3390/geosciences4030176