Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration
Abstract
:1. Introduction
2. Spectral Sensing for Mineral Exploration—A Journey
2.1. AMIRA P243—Remote Sensing for Gold in Western Australia Project
2.1.1. Background
2.1.2. Spectral-Mineral Regolith Characterization
2.1.3. Post P243 Developments
2.2. AMIRA P382 Project—Mineral Mapping with Spectrally Processed Geoscan Mk II Scanner Data
2.2.1. Background
2.2.2. Updating Geology-Regolith Maps
2.2.3. Project Postscript
2.3. MIRACO2LAS Project—Airborne, Active Hyperspectral TIR Profiling
2.3.1. Background
2.3.2. Garnet Chemistry Alteration Footprints
2.3.3. Project Postscript
2.4. Airborne Hyperspectral VNIR–SWIR–TIR Profiling Integrated with Geophysics
2.4.1. Background
2.4.2. Pyroxene Mapping in Ultramafic Rocks
2.4.3. Project Postscript
2.5. AMIRA P435 Project—Mineral Mapping with Field Spectrometry
2.5.1. Background
2.5.2. Proximal Mine White Mica Alteration Footprint—Fresh Rock
2.5.3. Project Postscript
2.6. Airborne Hyperspectral Imaging of the Kalgoorlie Superpit
2.6.1. Background
2.6.2. Remote Sensing White Mica Alteration Footprints—Fresh Rock
2.6.3. Project Postscript
2.7. MERIWA M322 Project—Panorama VMS System
2.7.1. Background
2.7.2. VMS Alteration Architecture Using White Mica Information
2.7.3. Project Postscript
2.8. SEBASS Airborne Passive Hyperspectral TIR Imaging—Yerington Nevada Porphyry–Skarn System
2.8.1. Background
2.8.2. Garnet-Skarn Fe–Al Composition
2.8.3. Project Postscript
2.9. MERIWA M370—Regolith, Geology and Alteration Mineral Maps from New Generation Airborne and Satellite Remote Sensing Technologies
2.9.1. Background
2.9.2. Mapping Transported Versus In Situ Materials
2.9.3. Persistence of Primary Minerals through the Regolith
2.9.4. Scalable White Mica Alteration Patterns through Regolith Cover
2.9.5. Project Postscript
2.10. North Queensland Airborne Hyperspectral Mineral Mapping Project
2.10.1. Background
2.10.2. Mineral System Mapping and Analysis
2.10.3. Project Postscript
2.11. Broken Hill Airborne Hyperspectral Mineral Mapping Project
2.11.1. Background
2.11.2. Regional-Scale Retrogression Related Alteration and Base Metal Mineralization
(muscovite) (sillimanite) (quartz)
(muscovite) (kaolinite)
2.11.3. Prospect-Scale Retrograde White Mica Composition
2.11.4. Geological and Exploration Implications
2.12. Western Australian Centre of Excellence for 3D Mineral Mapping (C3DMM)
2.12.1. Background
2.12.2. Rocklea Inlier Iron Ore—Hyperspectral 3D Mineralogy
2.12.3. ASTER Geoscience Maps—Vegetation Cover Challenge
2.12.4. Mount Turner Queensland—3D Multi-Spectral Mineral Products from Hyperspectral Data
3. Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Buckingham, W.F.; Sommer, S.E. Mineralogical characterisation of rock surfaces formed by hydrothermal alteration and weathering—Application to Remote Sensing. Econ. Geol. 1983, 78, 664–674. [Google Scholar] [CrossRef]
- Huntington, J.F.; Cudahy, T.J.; Yang, K.; Scott, K.M.; Mason, P.; Gray, D.J.; Berman, M.; Bischoff, L.; Reston, M.S.; Mauger, A.J.; et al. Mineral Mapping with Field Spectroscopy for Exploration; AMIRA Project P435—CSIRO Exploration and Mining Report 419R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1999; Available online: ftp://ftp.csiro.au/arrc/AMIRA%20P435%20Project%20Reports/Emr419r%20Final.pdf (accessed on 13 September 2016).
- Henry, R.L. The transmission of powdered films in the infrared. J. Opt. Soc. Am. 1948, 38, 775–789. [Google Scholar] [CrossRef]
- Launer, P.J. Regularities in the infrared absorption spectra of silicate minerals. Am. Mineral. 1952, 37, 764–784. [Google Scholar]
- Hapke, B.W. A theoretical photometric function for the lunar surface. J. Geophys. Res. 1963, 68, 4571–4585. [Google Scholar] [CrossRef]
- Lyon, R.J.P.; Burns, E.A. Analysis of rocks and minerals by reflected infrared radiation. Econ. Geol. 1963, 58, 274–284. [Google Scholar] [CrossRef]
- Lyon, R.J.P. Analysis of rocks by spectral infrared emission (8 to 25 microns). Econ. Geol. 1965, 60, 715–736. [Google Scholar] [CrossRef]
- Conel, J.E. Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectra emission from condensed particulate mediums. J. Geophys. Res. 1969, 74, 1614–1634. [Google Scholar] [CrossRef]
- Hunt, G.R.; Vincent, R.K. The behaviour of spectral features in the infrared emission from particulate surfaces of various grain sizes. J. Geophys. Res. 1968, 73, 6039–6046. [Google Scholar] [CrossRef]
- Vincent, R.K.; Hunt, G.R. Infrared reflectance from mat surfaces. Appl. Opt. 1968, 7, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks. III. Oxides and hydroxides. Mod. Geol. 1971, 2, 195–205. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks. VI. Additional silicates. Mod. Geol. 1973, 4, 85–106. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W. Visible and near-infrared spectra of minerals and rocks. I. Silicate minerals. Mod. Geol. 1970, 1, 283–300. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W. Visible and near infrared spectra of minerals and rocks: III. Silicates. Mod. Geol. 1971, 1, 283–300. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W. Visible and near-infrared spectra of minerals and rocks. WI. Sedimentary rocks. Mod. Geol. 1976, 5, 211–217. [Google Scholar]
- Clark, R.N. Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically absorbed water. J. Geophys. Res. 1983, 88, 10635–10644. [Google Scholar] [CrossRef]
- Clark, R.N. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley and Sons: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Salisbury, J.W.; Walter, L.S. Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J. Geophys. Res. 1989, 94, 9192–9202. [Google Scholar] [CrossRef]
- Rivard, B.; Arvidson, R.E.; Duncan, I.J.; Sultan, M.; Kaliouby, B.E. Varnish, sediment and rock controls on spectral reflectance of outcrops in arid regions. Geology 1992, 20, 295–298. [Google Scholar] [CrossRef]
- Ninomiya, Y. Quantitative estimation of SiO2 content in igneous rocks using thermal infrared spectra with a neural network approach. IEEE Trans. Geosci. Remote Sens. 1995, 33, 684–691. [Google Scholar] [CrossRef]
- Rowan, L.C.; Wetlaufer, P.H.; Goetz, A.F.H.; Billingsley, F.C.; Stewart, J.H. Discrimination of Rock Types and Altered Areas in Nevada by Use of ERTS Images; U.S. Geological Survey Professional Paper 883; U.S. Geological Survey: Washington, DC, USA, 1974.
- Rowan, L.C.; Goetz, A.F.H.; Ashely, R.P. Discrimination of hydrothermally altered rocks in visible and near infrared multispectral images. Geophysics 1977, 42, 522–535. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Rowan, L.C.; Kingston, M.J. Mineral identification from orbit: Initial results from the Shuttle Multispectral Infrared Radiometer. Science 1982, 218, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M.J.; Brown, D.; Lepley, L.; Sadowski, R. Remote sensing for porphyry copper deposits in southern Arizona. Econ. Geol. 1983, 78, 591–604. [Google Scholar] [CrossRef]
- Kahle, A.B.; Goetz, A.F.H. Mineralogic information from a new airborne thermal infrared multispectral scanner. Science 1983, 222, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Townsend, T.E. Discrimination of iron alteration minerals in visible and near infrared reflectance data. J. Geophys. Res. 1987, 92, 1441–1454. [Google Scholar] [CrossRef]
- Drury, S.A. Image Interpretation in Geology; Allen and Unwin: London, UK, 1987. [Google Scholar]
- Kruse, F.A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermal altered rocks in the Northern Grapevine Mountains, Nevada and California. Remote Sens. Environ. 1988, 24, 31–51. [Google Scholar] [CrossRef]
- Vane, G.; Green, R.O.; Chrien, T.G.; Enmark, H.T.; Hansen, E.G.; Porter, W.M. The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 127–143. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.; Cudahy, T.J. Detecting lithology with Advanced Space-borne Thermal Emission and Reflectance Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens. Environ. 2005, 99, 127–139. [Google Scholar] [CrossRef]
- Hewson, R.D.; Cudahy, T.J. Chapter 13: Issues affecting geological mapping with ASTER data: A case study of the Mount Fitton area, South Australia. In Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS; Ramachandran, B., Justice, C., Abrams, M., Eds.; Springer: New York, NY, USA, 2010; pp. 273–300. [Google Scholar]
- AMIRA. Available online: http://www.amira.com.au (accessed on 29 September 2016).
- MRIWA. Available online: http://www.mriwa.wa.gov.au (accessed on 29 September 2016).
- Auscope. Available online: http://www.auscope.org.au/ncris (accessed on 29 September 2016).
- Anand, R.R.; Paine, M. Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Aust. J. Earth Sci. 2002, 49, 3–162. [Google Scholar] [CrossRef]
- UNCOVER. Searching the Deep Earth: A Vision for Exploration Geoscience in Australia. Available online: http://www.uncoverminerals.org.au (accessed on 20 September 2016).
- Gabell, A.R.; Cudahy, T.J.; Gozzard, J.R.; Hunter, W.M.; Munday, T.J.; Tapley, I.J. Remote sensing for Gold Exploration in Western Australia—Final Report; AMIRA Project P243—Remote Sensing for Gold Exploration Geoscience Restricted Report 329R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1992. [Google Scholar]
- Green, A.A.; Craig, M.D. Analysis of aircraft spectrometer data with logarithmic residuals. In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, 8–10 April 1985; JPL Publication: Pasadena, CA, USA, 1985; pp. 85–41, 111–119. [Google Scholar]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. I. Decorrelation and HIS contrast stretch. Remote Sens. Environ. 1986, 20, 209–235. [Google Scholar] [CrossRef]
- Cudahy, T.J. Improved Lithological and Structural Mapping Using Landsat Thematic Mapper and NS001 Remotely Sensed Data in the Laverton Region, Western Australia; AMIRA Project P243—Exploration Geoscience Restricted Investigation Report 61R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1989. [Google Scholar]
- Cudahy, T.J. The Spectral Characteristics over the 0.4 to 2.5 Micrometre Wavelength Region of Rocks and Soils from the Lawlers Area, Western Australia; AMIRA P243 Project—CSIRO Division of Minerals and Geochemistry, Restricted Investigation Report MG61R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1988. [Google Scholar]
- Cudahy, T.J. A Model for the Development of the Regolith of the Yilgarn Craton Incorporating Selected Spectral Information; CSIRO Exploration Geoscience Restricted Investigation Report 243R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1992. [Google Scholar]
- Tardy, Y.; Nahon, D. Geochemistry of laterites stability of Al-goethite, Al-hematite and Fe-kaolinite in bauxites and ferricrete: An approach to the mechanism of concretion formation. Am. J. Sci. 1985, 285, 865–903. [Google Scholar] [CrossRef]
- Clout, J.M.F.; Cleghorn, J.H.; Eaton, P.C. Geology of the Kalgoorlie Goldfield. In Geology of the Mineral Deposits of Australia and Papua New Guinea; Hughes, F.E., Ed.; Australian Institute of Mining and Metallurgy: Carlton South, Australia, 1990; pp. 411–431. [Google Scholar]
- Cudahy, T.J. PIMA-II Spectral Characteristics of Natural Kaolins; CSIRO Exploration and Mining Report 420R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1997. [Google Scholar]
- Petit, S.; Decarreau, A. Hydrothermal (200 °C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Miner. 1990, 25, 181–196. [Google Scholar] [CrossRef]
- Mestdagh, M.M.; Vielvoye, L.; Herbillon, A.J. Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner. 1991, 15, 1–12. [Google Scholar] [CrossRef]
- Cudahy, T.J.; Gray, D.J.; Phillips, R.N.; Wildman, J. Pilot Spectral Study of the Bronzewing Gold Deposit, Western Australia; CSIRO Exploration and Mining Restricted Investigation Report 124R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1995. [Google Scholar]
- Honey, F.R.; Daniels, J.L. Rock discrimination and alteration mapping for mineral exploration using the Carr Boyd Geoscan airborne multi-spectral scanner. In Proceedings of the 5th Thematic Conference on Geologic Remote Sensing, ERIM, Reno, NV, USA, 29 September–2 October 1986; pp. 267–278.
- Lyon, R.J.P.; Honey, F.R. Direct mineral identification (DMI) with Geoscan MKII advanced multi-spectral scanner (AMSS). In Proceedings of the Imaging Spectroscopy of the Terrestrial Environment, Orlando, FL, USA, 16–17 April 1990; Volume 1298, pp. 50–61.
- Huntington, J.F.; Cudahy, T.J.; Craig, M.D.; Mason, P. Mineral Mapping with Spectrally Processed Geoscan Mk II Scanner Data, Olary District, South Australia; CSIRO/AMIRA Project P382—CSIRO Exploration and Mining Report 45R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1994. [Google Scholar]
- Cudahy, T.J.; Huntington, J.F.; Boardman, J. Mineral Mapping with Spectrally Processed Geoscan Mk II Scanner Data. Final Report; AMIRA Project P382—CSIRO Exploration and Mining Restricted Investigation Report 170R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1995. [Google Scholar]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Whitbourn, L.B.; Phillips, R.N.; James, G.; O’Brien, M.T. An airborne multiline CO2 laser system for remote sensing of minerals. J. Mod. Opt. 1990, 37, 1865–1872. [Google Scholar] [CrossRef]
- Cudahy, T.J.; Whitbourn, L.B.; Connor, P.; Mason, P.; Phillips, R.N. Mapping surface mineralogy and scattering behaviour using backscattered reflectance from a hyperspectral mid-infrared airborne CO2 laser system (MIRACO2LAS). IEEE Trans. Geosci. Remote Sens. 1999, 37, 2019–2034. [Google Scholar] [CrossRef]
- Willis, I.L. Plate 1: Stratigraphic Interpretation (distribution of metamorphic suites) in the Broken Hill Block, Willyama Complex, N.S.W. In Rocks of the Broken Hill Block: Their Classification, Nature, Stratigraphic Distribution and Origin; Stevens, B.P.J., Stroud, W.J., Eds.; Department of Mineral Resources, Geological Survey of New South Wales: Maitland, Australia, 1983; Volume 21, Part 1. [Google Scholar]
- Boardman, J.W. Automatic spectral unmixing of AVIRIS data using convex geometry concepts. In Proceedings of the 4th Annual Airborne Geoscience Workshop, Washington, DC, USA, 25–29 October 1993; p. 11.
- Solomon, M.; Walshe, J.L.; Eastoe, C.J. Experiments on convection and their relevance to the genesis of massive sulphide deposits. Aust. J. Earth Sci. 1987, 34, 311–323. [Google Scholar] [CrossRef]
- Binns, R.A.; Barriga, F.J.A.S.; Miller, D.J. Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. Proc. ODP Sci. Results 2007, 193, 1–17. [Google Scholar]
- Hewson, R.; Hausknecht, P.; Cudahy, T.; Batty, S.; Stamoulis, V.; Mauger, A. Geophysically integrated profiling airborne mineral mapping—Mount Fitton. MESA J. 2001, 23, 16–19. [Google Scholar]
- Hausknecht, P.; Cudahy, T.J.; Jurza, P.; Yajima, T. The airborne ARGUS line-profiling system: Integrated hyperspectral VNIR-SWIR-TIR spectrometry with magnetics and radiometrics—Geological case history, Panorama, Pilbara, Western Australia. In Proceedings of the 12th Australasian Remote Sensing and Photogrammetry Conference, Fremantle, Australia, 18–22 October 2004.
- Hoatson, D.M.; Keays, R.R. Formation of Platiniferous Sulfide Horizons by Crystal Fractionation and Magma Mixing in the Munni Munni Layered Intrusion West Pilbara Block Western Australia. Econ. Geol. 1989, 84, 1775–1804. [Google Scholar] [CrossRef]
- Rivard, B.; CSIRO Visiting Scientist from University of Alberta, Edmonton, AB, Canada. Personal communication, 2002.
- Hausknecht, P.; Fugro Airborne Services, Perth, Australia. Personal communication, 2002.
- Huntington, J.F.; Whitbourn, L.B.; Laukamp, C.; Schodlock, M.; Yang, K.; Haest, M.; Quigley, M.; Mason, P.; Green, A.A. Probing Australia’s Subsurface with New 1, 2 and 3D Hyperspectral Logging Technologies for “Whole-of-Mine-Life” Mineralogical Characterisation; Australian Institute of Geoscientists, Exploration Technologies: Perth, Australia, 2011; pp. 40–47. [Google Scholar]
- Cudahy, T.J. Geometry of the Spectral-Mineralogical Alteration Halo at Birthday South, Fimiston Gold Deposit, Western Australia; CSIRO Exploration and Mining Report 421R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1997. [Google Scholar]
- Duke, E.F. Near infrared spectra of muscovite, Tschermak substitution and metamorphic reaction progress: Implications for remote sensing. Geology 1994, 22, 621–624. [Google Scholar] [CrossRef]
- Scott, K.; Yang, K. Spectral Reflectance Studies of White Micas; CSIRO Exploration and Mining Restricted Investigation Report 439R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1997. [Google Scholar]
- Hussey, M.; De Beers, Perth, Australia. Personal communication, 1998.
- Bateman, R.; KCGM, Kalgoorlie, Australia. Personal communication, 1998.
- Cocks, T.; Jenssen, R.; Stewart, A.; Wilson, I.; Shields, T. The HyMap™ airborne hyperspectral sensor: The system, calibration and performance. In Proceedings of the 1st EARSEL Workshop on Imaging Spectrometry, Zurich, Switzerland, 6–8 October 1998; pp. 37–42.
- Cudahy, T.J.; Okada, K.; Ueda, K.; Brauhart, C.; Morant, P.; Huston, D.; Cocks, T.; Wilson, J.; Mason, P.; Huntington, J.F. Mapping the Panorama VMS-Style Alteration and Host Rock Mineralogy, Pilbara Block, Using Airborne Hyperspectral VNIR-SWIR Data; MERIWA Report No. 205—CSIRO Exploration and Mining Report 661R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 1999. [Google Scholar]
- Brauhart, C.W.; Groves, D.I.; Morant, P. Regional alteration systems associated with volcanogenic massive sulphide mineralization at Panorama, Pilbara, Western Australia. Econ. Geol. 1998, 93, 292–302. [Google Scholar] [CrossRef]
- Huston, D.L.; Kamprad, J.; Brauhart, C. Definition of High Temperature Alteration Zones with PIMA: An Example from the Panorama VHMS District, Central Pilbara Block; AGSO Research Newsletter 30; Australian Geological Survey Organisation (AGSO): Canberra, Australia, 1999. [Google Scholar]
- Young, C. Footwall Alteration at the Sulphur Springs Zn-Cu Volcanic-Hosted Massive Sulphide (VMS) Prospect, East Pilbara, Western Australia. Honours Thesis, University of Western Australia, Crawley, Australia, 1997. [Google Scholar]
- Laukamp, C.; Caccetta, M.; Chia, J.; Cudahy, T.J.; Gessner, K.; Haest, M.; Liu, Y.C.; Ong, C.; Rodger, A. Uses, abuses and opportunities for hyperspectral technologies and derived geoscience information. In Proceedings of the Geo-Computing 2010, Australian Institute of Geoscientists, Brisbane, Australia, 29 September–1 October 2010; pp. 73–76.
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 48–62.
- Drieberg, S.L.; Hagemann, S.G.; Huston, D.L.; Landis, G.; Ryan, C.G.; Van Achterbergh, E.; Vennemann, T. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia. Econ. Geol. 2012, 108, 79–110. [Google Scholar] [CrossRef]
- Cudahy, T.J.; Hewson, R.D.; Huntington, J.F.; Quigley, M.A.; Barry, P.S. The performance of the satellite-borne Hyperion Hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton, South Australia. In Proceedings of the IEEE 2001 International Conference on Geoscience and Remote Sensing, Sydney, Australia, 9–13 July 2001.
- Cudahy, T.J.; Rodger, A.R.; Barry, P.S.; Mason, P.; Quigley, M.A.; Folkman, M.A.; Pearlman, J. Assessment of the stability of the Hyperion SWIR module for hyperspectral mineral mapping using multi-date images from Mount Fitton, Australia. In Proceedings of the IEEE 2002 International Conference on Geoscience and Remote Sensing, Toronto, ON, Canada, 24–28 June 2002.
- Cudahy, T.J.; Okada, K.; Brauhart, C. Targeting VMS-style Zn mineralisation at Panorama, Australia, using airborne hyperspectral VNIR-SWIR HYMAP™ data. In Proceedings of the 14th International Conference on Applied Geologic Remote Sensing, Las Vegas, NV, USA, 6–8 November 2000; pp. 395–402.
- Ruitenbeek, F.J.A.; van Cudahy, T.J.; Hale, M.; van der Meer, F.D. Tracing fluid pathways in fossil hydrothermal systems with near infrared spectroscopy. Geology 2005, 33, 587–600. [Google Scholar] [CrossRef]
- Ruitenbeek, F.J.A.; van Debba, P.; van der Meer, F.D.; Cudahy, T.J.; van der Meijde, M.; Hale, M. Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sens. Environ. 2006, 102, 211–222. [Google Scholar] [CrossRef]
- Luong, L.; Cudahy, T.J.; Hausknecht, P. A comparison of HyMap™ and ARGUS hyperspectral airborne systems, using white mica mineral mapping at the Panorama VMS deposits, Western Australia. In Proceedings of the 12th Australasian Remote Sensing and Photogrammetry Conference, Fremantle, Australia, 18–22 October 2004.
- Cudahy, T.J.; Barry, P.S. Earth magmatic-seawater hydrothermal alteration revealed through satellite-borne Hyperion imagery at Panorama, Western Australia. In Proceedings of the 2002 IEEE International Conference on Geoscience and Remote Sensing, Toronto, ON, Canada, 24–28 June 2002.
- Cudahy, T.J.; Quigley, M. Panorama. In Evaluation of the EO-1 Hyperion hyperSpectral Instrument and Its Applications at Australian Validation Sites 2001–2003; Jupp, D.L.B., Datt, B., Eds.; CSIRO Earth Observation Report No. 2004/6; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2004; pp. 150–160. [Google Scholar]
- Rodger, A.R.; Cudahy, T.J. Vegetation Corrected Continuum Depths at 2.20 µm: An Approach for Hyperspectral Sensors. Remote Sens. Environ. 2009, 113, 2243–2257. [Google Scholar] [CrossRef]
- Hackwell, J.A.; Warren, D.W.; Bongiovi, R.P.; Hansel, S.J.; Hayhurst, T.L.; Mabry, D.J.; Sivjee, M.G.; Skinner, J.W. LWIR/MWIR Imaging Hyperspectral sensor for airborne and ground-based remote sensing. Proc. SPIE 1996, 2819, 102–107. [Google Scholar]
- Einaudi, M.T. Petrogenesis of the copper-bearing skarn at the Mason Valley Mine, Yerington district, Nevada. Econ. Geol. 1977, 72, 769–795. [Google Scholar] [CrossRef]
- Dilles, J.H.; Einaudi, M.T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—A 6-km vertical reconstruction. Econ. Geol. 1992, 87, 1963–2001. [Google Scholar] [CrossRef]
- Windeler, D.S. Garnet-pyroxene alteration mapping in the Ludwig skarn (Yerington, Nevada) with Geoscan airborne multispectral data. Photogramm. Eng. Remote Sens. 1993, 59, 1277–1286. [Google Scholar]
- Windeler, D.S.; Lyon, R.J.P. Discriminating dolomitization of marble in the Ludwig skarn near Yerington, Nevada using high-resolution airborne infrared imagery. Photogramm. Eng. Remote Sens. 1991, 57, 1171–1177. [Google Scholar]
- Cudahy, T.J.; Wilson, J.; Hewson, R.D.; Okada, K.; Linton, P.; Harris, P.; Sears, M.; Hackwell, J.A. Mapping variations in plagioclase feldspar mineralogy using airborne hyperspectral VNIR-SWIR-TIR imaging data. In Proceedings of the IEEE 2001 International Conference on Geoscience and Remote Sensing, Sydney, Australia, 9–13 July 2001.
- Cudahy, T.J.; Okada, K.; Yamato, Y.; Maekawa, M.; Hackwell, J.A.; Huntington, J.F. Mapping Skarn and Porphyry Alteration Mineralogy at Yerington, Nevada, Using Airborne Hyperspectral TIR SEBASS Data; CSIRO Exploration and Mining Report 734R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2000. [Google Scholar]
- Cudahy, T.J.; Okada, K.; Yamato, Y.; Huntington, J.F.; Hackwell, J.A. Mapping skarn alteration mineralogy at Yerington, Nevada, using airborne hyperspectral TIR SEBASS imaging data. In Proceedings of the 14th International Conference on Applied Geologic Remote Sensing, Las Vegas, NV, USA, 6–8 November 2000; pp. 70–79.
- Dilles, J.D.; Einaudi, M.T.; Profett, J.R.; Barton, M.D. Overview of the Yerington Porphyry Copper District: Magmatic to non-magmatic sources of fluids: Their flow paths and alteration effects on rocks and Cu-Mo-Fe-Au ores. Econ. Geol. 2000, 32, 55–66. [Google Scholar]
- Cudahy, T.J.; Okada, K.; Megasu, K.; Hewson, R.D. VNIR-SWIR-TIR Spectral-Mineral Characterization and Assessment of Satellite-Borne ASTER and Hyperion Data from the Candelaria, Iron Oxide Cu-Au Deposit, Chile; CSIRO Exploration and Mining Report 1123R; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2003. [Google Scholar]
- Cudahy, T.J.; Caccetta, M.; Cornelius, A.; Hewson, R.D.; Wells, M.; Skwarnecki, M.; Halley, S.; Hausknecht, P.; Mason, P.; Quigley, M. Regolith Geology and Alteration Mineral Maps from New Generation Airborne and Satellite Remote Sensing Technologies and Explanatory Notes for the Kalgoorlie-Kanowna 1:100,000 Scale Map Sheet, Remote Sensing Mineral Maps; MERIWA Report No. 252; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2005; pp. 1–114. [Google Scholar]
- Skwarnecki, M. Regolith-Landform Mapping and Hyperspectral Data for the Kalgoorlie-Kanowna Area; Geological Survey of Western Australia Record 2005/7; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2005. [Google Scholar]
- GeoView. 1:100,000 Scale Geology. Available online: http://warims.dmp.wa.gov.au/GeoView/Viewer.html?Viewer=GeoVIEW (accessed on 6 October 2016).
- Mikucki, E.J.; Roberts, F.I. Metamorphic Petrography of the Kalgoorlie Region Eastern Goldfields Granite-Greenstone Terrane METPET Database; Geological Survey of Western Australia: Perth, Australiia, 2003.
- Walshe, J.; CSIRO Mineral Resources, Perth, Australia. Personal communication, 2005.
- Neumayr, P.; Walshe, J.; Hagemann, S.; Petersen, K.; Roache, A.; Frikken, P.; Horn, L.; Halley, S. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia: Vectors to high-grade ore bodies in Archaean gold deposits. Min. Depos. 2008, 43, 363–371. [Google Scholar] [CrossRef]
- Blewett, R. Archaean Gold Mineral Systems in the Western Yilgran Craton. In AUSGEO News; December 2010. Available online: http://www.ga.gov.au/webtemp/image_cache/GA18909.pdf (accessed on 6 October 2016). [Google Scholar]
- Cudahy, T.J.; Hewson, R.D.; Barnes, S.; Groenewald, B. Mapping non-magnetic talc-bearing ultramafic rocks in the Kalgoorlie region using airborne hyperspectral data. In Proceedings of the Australian Earth Science Convention, Melbourne, Australia, 2–8 July 2006.
- Cudahy, T.J.; Jones, M.; Thomas, M.; Laukamp, C.; Caccetta, M.; Hewson, R.D.; Rodger, A.R.; Verrall, M. Next Generation Mineral Mapping: Queensland Airborne HyMap™ and Satellite ASTER Surveys 2006–2008; CSIRO Exploration and Mining Open File Report P2007/364; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2008. [Google Scholar]
- Wyborn, L.A.; Heinrich, C.A.; Jacques, A.L. Australian Proterozoic Mineral Systems: Essential ingredients and mappable criteria. In Proceedings of the AUSIMM Annual Conference, Darwin, Australia, 5–9 August 1994; Available online: https://www.researchgate.net/profile/Lai_Wyborn/publication/263884864_Australian_Proterozoic_mineral_systems_essential_ingredients_and_mappable_criteria/links/54b48ef00cf28ebe92e47fe9.pdf (accessed on 27 September 2016).
- McCuaig, T.C.; Hronsky, J. The Mineral System Concept: The Key to Exploration Targeting; Special Publication 18; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2014; pp. 153–175. [Google Scholar]
- Foster, D.R.W.; Austin, J.R. The 1800–1610 Ma stratigraphic and magmatic history of the Eastern Succession, Mount Isa Inlier, and correlations with adjacent Paleoproterozoic terranes. Precambrian Res. 2008, 163, 7–30. [Google Scholar] [CrossRef]
- MinesOnlineMaps, Queensland Government. 1:100,000 Scale Geology. Available online: https://www.business.qld.gov.au/industry/mining/mining-online-services/minesonlinemaps (accessed on 7 October 2016).
- Geophysical Archive Data Delivery System. Geoscience Australia. Available online: http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse (accessed on 27 September 2016).
- Rotherham, J.F. A metasomatic origin for the iron-oxide Au-Cu Starr ore bodies. Eastern Fold Belt, Mount Isa Inlier. Miner. Depos. 1997, 32, 205–218. [Google Scholar] [CrossRef]
- Cudahy, T.J.; Jones, M.; Thomas, M.; Laukamp, C.; Caccetta, M.; Hewson, R.D.; Verrall, M.; Hackett, A.; Rodger, A. Mineral Mapping Queensland: IOCG Mineral System Case History, Starra, Mount Isa Inlier. In Proceedings of the PACRIM Conference, Jupiters Casino, Australia, 24–26 November 2008; Available online: https://www.ausimm.com.au/publications/epublication.aspx?ID=4787 (accessed on 21 September 2016).
- Ivanhoe Australia’s Merlin Project. Australian Stock Exchange Market Release 21 April 2009. Available online: http://www.asx.com.au/asxpdf/20090421/pdf/31h4x7hqwh7v5g.pdf (accessed on 7 October 2016).
- Taylor, G.R.; Hansford, P.; Stevens, B.P.J.; Robson, D. HyMap™ of Broken Hill—Imaging spectrometry for rock and mineral abundance mapping. Explor. Geophys. 2005, 36, 397–400. [Google Scholar] [CrossRef]
- Barnes, R.G. Types of mineralization in the Broken Hill Block and their relationship to stratigraphy. In A Guide to the Stratigraphy and Mineralization of the Broken Hill Block, New South Wales—Record 20; Stevens, B.P.J., Ed.; Geological Survey of New South Wales: Maitland, Australia, 1980; pp. 33–70. [Google Scholar]
- Binns, R.A. Zones of progressive regional metamorphism in the Willyama Complex, Broken Hill district, New South Wales. J. Geol. Soc. Aust. 1964, 11, 283–330. [Google Scholar] [CrossRef]
- Fitzherbert, J.A.; Downes, P.M. A concise geological history of the Broken Hill region. Geol. Surv. N. S. W. Q. Notes 2015, 143, 29–43. [Google Scholar]
- Raimondo, T.; Clark, C.; Hand, M.; Cliff, J.; Anczkiewicz, R. A. simple mechanism for mid-crustal shear zones to record surface-derived fluid signatures. Geology 2013, 41, 711–714. [Google Scholar] [CrossRef]
- Clark, C.; Hand, M.; Faure, K.; Schmidt Mumm, A. Up-temperature flow of surface-derived fluids in mid-crust: The role of pre-orogenic burial of hydrated rocks. J. Metamorph. Petrol. 2006, 24, 367–387. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, configuration, and Break-up history of Rodinia: A Synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Fitzherbert, J.A.; Downes, P.M.; Colquhoun, G.P.; Blevin, P.L.; Forster, D.B. Broken Hill Special 1:250,000 Metallogenic Map, 1st ed.Geological Survey of New South Wales: Maitland, Australia, 2015.
- Australian Geoscience Information Network—Geoscience Portal. Layer: Boreholes/NVCL. Drill Hole ID: DD95TH05. Available online: http://portal.geoscience.gov.au/gmap.html (accessed on 23 September 2016).
- Fitzherbert, J.A. Refined peak and retrograde metamorphic isograds for Broken Hill and Eurowie blocks, NSW. Geol. Surv. N. S. W. Q. Notes 2015, 143, 1–27. [Google Scholar]
- De Segonzac, G.D. The transformation of clay minerals during diagenesis and low grade metamorphism: A review. Sedimentology 1970, 15, 281–346. [Google Scholar] [CrossRef]
- Green, N.L.; Usdansky, S.I. Towards a practical plagioclase-muscovite thermometer. Am. Mineral. 1986, 71, 1109–1117. [Google Scholar]
- Rodger, A. SODA: A new method of in-scene atmospheric water vapor estimation and post-flight spectral recalibration for hyperspectral sensors—Application to the HyMap sensor at two locations. Remote Sens. Environ. 2010, 115, 536–547. [Google Scholar] [CrossRef]
- Caccetta, M.; Collings, S.; Cudahy, T.J. A calibration method for continental scale mapping using ASTER imagery. Remote Sens. Environ. 2012, 139, 306–317. [Google Scholar] [CrossRef]
- Cudahy, T.; Caccetta, M.; Thomas, M.; Hewson, R.D.; Abrams, M.; Kato, M.; Kashimura, O.; Ninomiya, Y.; Yamaguchi, Y.; Collings, S.; et al. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion. Nat. Sci. Rep. 2016, 6, 23702. [Google Scholar] [CrossRef] [PubMed]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative mineralogy from visible to shortwave infrared spectroscopic data—I. Validation of mineral abundance and composition products of the Rocklea Dome channel iron deposit in Western Australia. Econ. Geol. 2012, 107, 209–228. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative mineralogy from visible to shortwave infrared spectroscopic data—II. 3D mineralogical characterisation of the Rocklea Dome channel iron deposit, Western Australia. Econ. Geol. 2012, 107, 229–249. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.J.; Rodger, A.; Laukamp, C.; Martens, C.; Caccetta, M. Unmixing vegetation from airborne visible-near to shortwave infrared spectroscopy-based mineral maps over the Rocklea Dome (Western Australia), with a focus on iron rich palaeochannels. Remote Sens. Environ. 2013, 129, 17–31. [Google Scholar] [CrossRef]
- Cudahy, T.J. Australian ASTER Geoscience Product Notes; CSIRO Report, EP-30-07-12-44; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2012; Available online: https://data.csiro.au/dap/landingpage?pid=csiro%3A6182 (accessed on 28 September 2016).
- De Caritat, P.; Cooper, M. National Geochemical Survey of Australia: The Geochemical Atlas of Australia; Geoscience Australia Record 2011/20; Geoscience Australia: Symonston, Australia, 2011. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_71973 (accessed on 17 November 2016).
- Kennett, B.L.N.; Blewett, R.S. Lithospheric framework of Australia. Episodes 2012, 35, 9–22. [Google Scholar]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, G.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Scarth, P.F.; McVicar, T.R.; Renzullo, L.J.; Malthus, T.J.; Stewart, J.B.; Rickards, J.E.; Trevithick, R. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [Google Scholar] [CrossRef]
- Rossiter, A.G. Stream-sediment sampling near two porphyry copper prospects, Georgetown, Queensland. BMR J. Aust. Geol. Geophys. 1979, 4, 163–165. [Google Scholar]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.; Dudek, K.B.; Livo, K.E. Surface Materials Map of Afghanistan: Carbonates, Phyllosilicates, Sulfates, Altered Minerals and Other Materials: U.S. Geological Survey Scientific Investigations Map 3152–A, One Sheet, Scale 1:1,100,000. 2011. Available online: http://pubs.usgs.gov/sim/3152/A/ (accessed on 9 October 2016). [Google Scholar]
- Auscope National Virtual Core Library (NVCL). Available online: http://www.auscope.org.au/nvcl/ (accessed on 9 October 2016).
- Robert, F.; Brommecker, R.; Bourne, B.T.; Dobak, P.J.; McEwan, C.J.; Rowe, R.R.; Zhou, X. Models and exploration methods for major gold deposit types. In Proceedings of the Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; pp. 691–711. Available online: https://www.911metallurgist.com/blog/wp-content/uploads/2015/10/Models-and-Exploration-Methods-for-Major-Gold-Deposit-Type.pdf (accessed on 8 November 2016).
- Holliday, J.R.; Cook, D.R. Advances in geological models and exploration methods for copper ± gold porphyry deposits. In Proceedings of the Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; pp. 791–809. Available online: https://www.911metallurgist.com/blog/wp-content/uploads/2015/10/Advances-in-Geological-Models-and-Exploration-Methods-for-Copper-Gold-Porphyry-Deposits.pdf (accessed on 8 November 2016).
- Harris, A.C.; Carey, R.; Holliday, J.R.; MacCorquodale, F. High-resolution VNIR-SWIR core logging: A revolutionary new tool for exploration, mining and research. In Proceedings of the Society of Exploration Geology (SEG) 2015 Conference, Hobart, Australia, 27–30 September 2015; Available online: https://www.segweb.org/SEG/_Events/Conference_Website_Archives/2015/Conference_Proceedings/files/topics/..%5Cpdf%5COral-Presentations%5CAbstracts%5CHarris.pdf (accessed on 8 November 2016).
- Halley, S.; Dilles, J.H.; Tosdal, R.M. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Newslett. 2015, 100, 1–29. [Google Scholar]
- Gingerich, J.; Peshko, M.; Ross, D. Enhancing the effectiveness and success rate of exploration. In Proceedings of the AMIRA 4th Biennial Exploration Managers’ Conference “Globalisation of Exploration R&D”, Melbourne, Australia, 27 March 2001.
- Hussey, M.; De Beers, Perth, Australia. Personal communication, 2008.
- Iwasaki, A.; Oyama, E. Correction of stray light and filter scratch blurring for ASTER imagery. IEEE Trans. Geosci. Remote. Sens. 2005, 43, 2763–2768. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithological mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Hauff, P. An Overview of VIS-NIR-SWIR Field Spectroscopy as Applied to Precious Metals Exploration; Spectral International Inc.: Arvada, CO, USA; Available online: http://www.spectral-international.com/files/50329239.pdf (accessed on 8 November 2016).
- Roache, T.J.; Walshe, J.L.; Huntngton, J.F.; Quigley, M.A.; Yang, K.; Bil, B.W.; Blake, K.L.; Hyvärinen, T. Epidote-clinozoisite as a hyperspectral toll in exploration for Archaea gold. Aust. J. Earth Sci. 2011, 58, 813–822. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Chang, Z.; Cooke, D.R.; Baker, M.J.; Wilkinson, C.C.; Inglis, S.; Chen, H.; Gemmell, J.B. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J. Geochem. Explor. 2015, 152, 10–26. [Google Scholar] [CrossRef]
- Guides for Mineral Exploration (GMEX). AusSpec International. Available online: http://www.ausspec.com/GMEX.htm (accessed on 8 November 2016).
- Vearncombe, J. Value in Exploration: A Geologists’ Perspective on (Gold) Data, Perceptions and Messages; Australian Institute of Mining and Metallurgy and Australian Institute of Geoscientists: Perth, Australia, 2013; Available online: https://www.aig.org.au/wp-content/uploads/2013/05/Vearncombe-AusIMM_AIG-talk.pdf (accessed on 11 November 2016).
- Brown, L.; Vearncombe, J.R. Critical analysis of successful gold exploration methods. Appl. Earth Sci. Trans. Inst. Min. Miner. Metall. B 2014, 123, 18–24. [Google Scholar] [CrossRef]
- Werner, D. Hyperspectral Harbingers. Space Daily News. 15 August 2016. Available online: https://www.spacenewsmag.com/feature/hyperspectral-harbingers/ (accessed on 10 November 2016).
- Mandi, D.; Huemmerich, K.; Crum, G.; Ly, V.; Handy, M.; Ong, L. Hyperspectral Cubesat Constalletion for Rapid Natural Hazard Response. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150023589.pdf (accessed on 10 November 2016).
- IBM Watson. Available online: http://www.ibm.com/watson/ (accessed on 12 November 2016).
- ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance Download. Land Processes Distributed Active Archive Centre (LPDAAC). Available online: https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/ast_l1t (accessed on 12 November 2016).
- ASTER Data Download, METI AIST Data Archive System (MASDAS). Available online: https://gbank.gsj.jp/madas/map/ (accessed on 12 November 2016).
- Group on Earth Observations (GEO) Strategic Plan 2016–2025: Community Activity CA-06: EO Data and Mineral Resources. Available online: http://www.earthobservations.org/activity.php?id=6 (accessed on 9 October 2016).
- Wilford, J.R. New Regolith Mapping Approaches for Old Australian Landscapes. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2013. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/85930/9/01front.pdf (accessed on 12 November 2016). [Google Scholar]
- Herrmann, W.; Blake, M.; Doyle, M.; Huston, D.; Kamprad, J. Application of PIMA and FTIR spectrometry to VHMS alteration studies. In AMIRA P439 Project Final Report, Studies of VHMS-Related Alteration: Geochemical and Mineralogical Vectors to Ore; University of Tasmania: Hobart, Australia, 1998; pp. 13–88. Available online: http://www.codes.utas.edu.au/reports/AMIRA_Reports/P439/P439_06_Vol_3_May_1998.pdf (accessed on 12 November 2016).
- Wang, R.; Cudahy, T.J.; Laukamp, C.; Walshe, J.L.; Bath, A.; Mei, Y.; Young, C.; Roache, T.J.; Jenkins, A.; Roberts, M.; et al. White mica as a hyperspectral tool in exploration for Sunrise Dam and Kanowna Belle gold deposits, Western Australia. Econ. Geol. 2016, in press. [Google Scholar]
- Abweny, M.S.; van Ruitenbeek, F.J.A.; de Smeth, J.B.; Woldai, T.; van der Meer, F.D.; Cudahy, T.; Zegers, T.; Blom, J.K.; Thuss, B. Short-wavelength infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton. J. Afr. Earth Sci. 2016, 117, 124–134. [Google Scholar] [CrossRef]
- Wickam, S.M.; Janardhan, A.S.; Stern, R.J. Regional carbonate alteration of the crust by mantle-derived magmatic fluids, Tamil Nadu, South India. J. Geol. 1994, 102, 379–398. [Google Scholar] [CrossRef]
- Frezzotti, M.; Touret, J.L.R. CO2, carbonate-rich melt, and brines in the mantle. Geosci. Front. 2014, 5, 697–710. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cudahy, T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences 2016, 6, 52. https://doi.org/10.3390/geosciences6040052
Cudahy T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences. 2016; 6(4):52. https://doi.org/10.3390/geosciences6040052
Chicago/Turabian StyleCudahy, Thomas. 2016. "Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration" Geosciences 6, no. 4: 52. https://doi.org/10.3390/geosciences6040052
APA StyleCudahy, T. (2016). Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences, 6(4), 52. https://doi.org/10.3390/geosciences6040052