Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Thin Section Preparation
2.3. Analytical Procedure
2.4. Calculation of Total Weight
2.5. Statistical Analysis
3. Results
3.1. Estimates of Total Weight
3.2. Quantitavie Analysis Results Using Dynamic Analysis of Micro-PIXE
4. Discussion
4.1. Dynamic Analysis of 2D Tree Barks Concentrations of Hg
4.2. Total Hg Weight Distribution Based on Tree Height
4.3. THg Weight Distribution Based on Location
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zolnikov, T.R. Science of the Total environment limitations in small artisanal gold mining addressed by educational components paired with alternative mining methods. Sci. Total Environ. 2012, 419, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Reichelt-Brushett, A.J.; Stone, J.; Howe, P.; Thomas, B.; Clark, M.; Male, Y.; Nanlohy, A.; Butcher, P. Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety. Environ. Res. 2017, 152, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.; Appleton, J.D.; Lister, R.; Smith, B.; Chitamweba, D.; Mkumbo, O.; Machiwa, J.F.; Tesha, A.L.; Beinhoff, C. Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Sci. Total Environ. 2005, 343, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, W.F.; Engstrom, D.R.; Mason, R.P.; Nater, E.A. The case for atmospheric mercury contamination in remote areas. Environ. Sci. Technol. 1998, 32, 1–7. [Google Scholar] [CrossRef]
- Rasmussen, P.E. Current methods of estimating atmospheric mercury fluxes in remote areas. Environ. Sci. Technol. 1994, 28, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, O.S.; Awokunmi, E.E.; Oshin, O.O. Appraisal of heavy metals pollution in the stream sedi- ments from okemesi-ijero area, southwestern nigeria: In-Sight from geochemical fractionations and multivariate analysis techniques. J. Phys. Sci. Environ. Stud. 2017, 3, 36–47. [Google Scholar]
- Ubeid, K.F. Assessment of Heavy Metals Pollution in Tide and Shelf Zone Sediments along the Southern Part of Gaza Strip Coast, Palestine. IUG J. Nat. Stud. 2017, 25, 51–55. [Google Scholar]
- Vtorova, V.N. Substantiation of methods and objects of observations over chemical composition of plants during monitoring of forest ecosystem. Inf. Bull. Probl. III Counc. Mutual Econ. Help 1987, 1, 1–2. [Google Scholar]
- Vtorova, V.N. Quantitative evalution of the chemical similarity of needles of Picea schrenkiana with other spruce species in natural and artificial growth conditions. Biol. Bull. Acad. Sci. USSR 1991, 17, 245–253. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 1984; Volume 315. [Google Scholar]
- Geagea, M.L.; Stille, P.; Millet, M.; Perrone, T. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Sci. Total Environ. 2007, 373, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Catinon, M.; Ayrault, S.; Clocchiatti, R.; Boudouma, O.; Asta, J.; Tissut, M.; Ravanel, P. The anthropogenic atmospheric elements fraction: A new interpretation of elemental deposits on tree barks. Atmos. Environ. 2009, 43, 1124–1130. [Google Scholar] [CrossRef]
- Olajire, A.A.; Ayodele, E.T. Study of atmospheric pollution levels by trace elements analysis of tree bark and leaves. Bull. Chem. Soc. Ethiop. 2003, 17, 11–17. [Google Scholar] [CrossRef]
- Markert, B. Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Plant Ecol. 1992, 103, 1–30. [Google Scholar]
- Markert, B. Plants as Biomonitors for Heavy metal Pollution of the Terrestrial Environment; Wiley-Balckwell: Hoboken, NJ, USA, 1994. [Google Scholar]
- Ryan, C.G.; Cousens, D.R.; Sie, S.H.; Griffin, W.L.; Suter, G.F.; Clayton, E. Quantitative pixe microanalysis of geological matemal using the CSIRO proton microprobe. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1990, 47, 55–71. [Google Scholar] [CrossRef]
- Folkmann, F.; Borggreen, J.; Kjeldgaard, A. Sensitivity in trace-element analysis by p, α and 16O induced X-rays. Nucl. Instrum. Methods 1974, 119, 117–123. [Google Scholar] [CrossRef]
- Siegele, R.; Kachenko, A.G.; Bhatia, N.P.; Wang, Y.D.; Ionescu, M.; Singh, B.; Baker, A.J.M.; Cohen, D.D. Localisation of trace metals in metal-accumulating plants using μ-PIXE. X-Ray Spectrom. 2008, 37, 133–136. [Google Scholar] [CrossRef]
- Sera, K.; Yanagisawa, T.; Tsunoda, H.; Futatsugawa, S.; Hatakeyama, S.; Saitoh, Y.; Suzuki, S.; Orihara, H. Bio-PIXE at the Takizawa facility (Bio-PIXE with a baby cyclotron). Int. J. PIXE 1992, 2, 325–330. [Google Scholar] [CrossRef]
- Prasetia, H.; Sakakibara, M.; Sueoka, Y.; Sera, K. Pteris cretica as a Potential Biomarker and Hyperaccumulator in an Abandoned Mine Site, Southwest Japan. Environments 2016, 3, 15. [Google Scholar] [CrossRef]
- Reuter, W.; Lurio, A.; Cardone, F.; Ziegler, J.F. Quantitative analysis of complex targets by proton-induced X-rays. J. Appl. Phys. 1975, 46, 3194–3202. [Google Scholar] [CrossRef]
- Johansson, S.A.E.; Johansson, T.B. Analytical application of particle induced X-ray emission. Nucl. Instrum. Methods 1976, 137, 473–516. [Google Scholar] [CrossRef]
- Campbell, J.L.; Maxwell, J.A.; Teesdale, W.J.; Wang, J.-X.; Cabri, L.J. Micro-PIXE as a complement to electron probe microanalysis in mineralogy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1990, 44, 347–356. [Google Scholar] [CrossRef]
- Ryan, C.G. Quantitative trace element imaging using PIXE and the nuclear microprobe. Int. J. Imaging Syst. Technol. 2000, 11, 219–230. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakakibara, M.; Belton, D.; Suzuki, T. Quantitative micro-PIXE analysis of heavy-metal-rich framboidal pyrite. J. Mineral. Petrol. Sci. 2008, 103, 131–134. [Google Scholar] [CrossRef]
- Nečemer, M.; Kump, P.; Ščančar, J.; Jaćimović, R.; Simčič, J.; Pelicon, P.; Budnar, M.; Jeran, Z.; Pongrac, P.; Regvar, M.; et al. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1240–1247. [Google Scholar] [CrossRef]
- Krämer, U.; Grime, G.W.; Smith, J.A.C.; Hawes, C.R.; Baker, A.J.M. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1997, 130, 346–350. [Google Scholar] [CrossRef]
- Ryan, C.G.; Jamieson, D.N.; Churms, C.L.; Pilcher, J.V. A new method for on-line true-elemental imaging using PIXE and the proton microprobe. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1995, 104, 157–165. [Google Scholar] [CrossRef]
- Kachenko, A.G.; Bhatia, N.P.; Singh, B.; Siegele, R. Arsenic hyperaccumulation and localization in the pinnule and stipe tissues of the gold-dust fern (Pityrogramma calomelanos (L.) Link var. austroamericana (Domin) Farw.) using quantitative micro-PIXE spectroscopy. Plant Soil 2007, 300, 207–219. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press LCC: Boca Raton, FL, USA, 2011. [Google Scholar]
- Turnau, K.; Przybyłowicz, W.J.; Mesjasz-Przybyłowicz, J. Heavy metal distribution in Suillus luteus mycorrhizas—As revealed by micro-PIXE analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2001, 181, 649–658. [Google Scholar] [CrossRef]
- Vogel-Mikus, K.; Regvar, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W.J.; Simcic, J.; Pelicon, P.; Budnar, M. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol. 2008, 179, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Bhowmik, N.; Bandopadhyay, B.; Sharma, A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 2004, 52, 199–223. [Google Scholar] [CrossRef]
- Siwik, E.I.H.; Campbell, L.M.; Mierle, G. Distribution and trends of mercury in deciduous tree cores. Environ. Pollut. 2010, 158, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, C.; Wang, Y.; Doronila, A.; Gregory, D.; Baker, A.J.M.; Siegele, R.; Kolev, S.D. Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-PIXE spectrometry. Int. J. Phytorem. 2014, 16, 1170–1182. [Google Scholar] [CrossRef] [PubMed]
Samples | T(Hg) (µg-DW) ± SD | T(Pb) (µg-DW) ± SD | T(Co) (µg-DW) ± SD | T(Mn) (µg-DW) ± SD |
---|---|---|---|---|
Mgg1 1 m | 3.78 ± 3.60 | 15.8 ± 4.42 | 6.38 ± 6.80 | 109 ± 6.96 |
Mgg1 2 m | 6.13 ± 3.51 | 31.6 ± 6.05 | ND | 145 ± 9.55 |
Mgg1 3 m | ND | 11.9 ± 4.38 | ND | 313 ± 23.1 |
Mgg2 1 m | 4.86 ± 13.2 | 106 ± 37.4 | ND | 1376 ± 88.3 |
Mgg2 2 m | 2.26 ± 6.77 | 59.7 ± 11.9 | ND | 664 ± 39.4 |
Mgg2 3 m | 9.33 ± 4.98 | 20.6 ± 5.73 | 8.69 ± 6.42 | 136 ± 9.24 |
Mgg3 1 m | 6.07 ± 4.95 | 26.7 ± 9.21 | 6.51 ± 3.13 | 322 ± 22.6 |
Mgg3 2 m | ND | 12.4 ± 3.82 | 0.17 ± 0.61 | 43.8 ± 2.56 |
Mgg3 3 m | ND | 14.3 ± 5.03 | 5.58 ± 3.68 | 50.8 ± 3.41 |
Mgg4 1 m | ND | 21.6 ± 8.60 | ND | 37.0 ± 3.80 |
Mgg4 2 m | 9.77 ± 4.04 | 26.5 ± 4.92 | 20.9 ± 6.35 | 56.1 ± 3.37 |
Mgg4 3 m | ND | 77.9 ± 17.4 | ND | 47.7 ± 4.50 |
Mgg5 1 m | 4.34 ± 7.54 | 36.7 ± 11.5 | 4.97 ± 5.32 | 51.7 ± 3.65 |
Mgg5 2 m | ND | 9.94 ± 3.17 | ND | 96.0 ± 5.62 |
Mgg5 3 m | ND | ND | 8.58 ± 5.04 | 58.6 ± 4.16 |
Samples | T(As) (µg-DW) ± SD | T(Zn) (µg-DW) ± SD | T(Fe) (µg-DW) ± SD | T(Ni) (µg-DW) ± SD |
---|---|---|---|---|
Mgg1 1 m | ND | 14.6 ± 5.68 | 300 ± 17.9 | 4.18 ± 1.22 |
Mgg1 2 m | 8.64 ± 1.57 | 38.1 ± 3.06 | 618 ± 37.3 | 2.33 ± 1.55 |
Mgg1 3 m | ND | 33.0 ± 3.57 | 162 ± 16.9 | 3.28 ± 2.23 |
Mgg2 1 m | 81.3 ± 10.8 | 131 ± 9.95 | 4028 ± 257 | 5.52 ± 3.48 |
Mgg2 2 m | 4.41 ± 3.02 | 30.8 ± 2.89 | 442 ± 29.3 | 6.51 ± 2.05 |
Mgg2 3 m | ND | 20.1 ± 1.85 | 130 ± 10.4 | 4.42 ± 1.23 |
Mgg3 1 m | 12.1 ± 2.45 | 21.9 ± 2.57 | 3946 ± 268 | 7.07 ± 1.94 |
Mgg3 2 m | ND | 8.19 ± 0.74 | 244 ± 12.9 | 1.70 ± 0.51 |
Mgg3 3 m | ND | 12.3 ± 1.08 | 230 ± 14.3 | 1.68 ± 0.63 |
Mgg4 1 m | ND | 37.5 ± 3.24 | 292 ± 20.8 | 8.26 ± 1.75 |
Mgg4 2 m | ND | 90.9 ± 4.80 | 1006 ± 49.4 | 19.1 ± 1.50 |
Mgg4 3 m | ND | 27.2 ± 2.59 | 314 ± 21.2 | 1.40 ± 1.54 |
Mgg5 1 m | ND | 12.9 ± 1.31 | 220 ± 13.7 | 2.51 ± 0.91 |
Mgg5 2 m | ND | 9.97 ± 1.14 | 955 ± 52.1 | 6.31 ± 3.93 |
Mgg5 3 m | ND | 5.90 ± 0.92 | 125 ± 8.77 | 1.33 ± 0.84 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasetia, H.; Sakakibara, M.; Omori, K.; Laird, J.S.; Sera, K.; Kurniawan, I.A. Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia. Geosciences 2018, 8, 31. https://doi.org/10.3390/geosciences8010031
Prasetia H, Sakakibara M, Omori K, Laird JS, Sera K, Kurniawan IA. Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia. Geosciences. 2018; 8(1):31. https://doi.org/10.3390/geosciences8010031
Chicago/Turabian StylePrasetia, Hendra, Masayuki Sakakibara, Koji Omori, Jamie S. Laird, Koichiro Sera, and Idham A. Kurniawan. 2018. "Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia" Geosciences 8, no. 1: 31. https://doi.org/10.3390/geosciences8010031
APA StylePrasetia, H., Sakakibara, M., Omori, K., Laird, J. S., Sera, K., & Kurniawan, I. A. (2018). Mangifera indica as Bioindicator of Mercury Atmospheric Contamination in an ASGM Area in North Gorontalo Regency, Indonesia. Geosciences, 8(1), 31. https://doi.org/10.3390/geosciences8010031