When Proterozoic Crusts Became Thick: New Insights from Magma Petrology
Abstract
:1. Introduction
2. Material and Methods
2.1. Database & Statistical Analysis
2.2. Composition of Primary Magmas
2.3. Thermometers for Magmatic Systems
3. Results
3.1. Composition of Magma and Minerals through Geological Times
3.2. Composition of Magma and Minerals as a Proxy for Crustal Thickness
3.3. Composition of Magma through Geodynamic Environments
3.4. Probing Crust in the Past through Magma Evolution
4. Discussion
4.1. Chemical Differentiation of Primary Magma Controlled by Temperature
4.2. Chemical Differentiation of Primary Magma Controlled by Pressure and Temperature
4.3. Chemical Differentiation of Primary Magma Controlled by Geodynamic Settings?
4.4. Chemical Differentiation of Primary Magma in the Past
4.5. Geodynamic Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korenaga, J. Archean geodynamics and the thermal evolution of Earth. In Archean Geodynamics and Environments; Benn, K., Mareschal, J.-C., Condie, K., Eds.; American Geophysical Union: Washington, DC, USA, 2006; Volume 164, pp. 7–32. [Google Scholar]
- Johnson, T.E.; Brown, M.; Kaus, B.J.P.; Van Tongeren, J.A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 2014, 7, 47–52. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; 312p. [Google Scholar]
- Herzberg, C.; Rudnick, R. Formation of cratonic mantle: An integrated thermal and petrological model. Lithos 2012, 4, 14–19. [Google Scholar]
- Rey, P.F.; Houseman, G. Lithospheric scale gravitational flow: The impact of body forces on orogenic processes from Archaean to Phanerozoic. Geol. Soc. Lond. Spec. Publ. 2006, 253, 153–167. [Google Scholar] [CrossRef]
- Chardon, D.; Gapais, D.; Cagnard, F. Flow of ultra-hot orogens: A view from the Precambrian, clues for the Phanerozoic. Tectonophysics 2009, 477, 105–118. [Google Scholar] [CrossRef]
- Tang, M.; Chen, K.; Rudnick, R.L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 2016, 351, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Durrheim, R.J.; Mooney, W.D. Archean and Proterozoic crustal evolution: Evidence from crustal seismology. Geology 1991, 19, 606–609. [Google Scholar] [CrossRef]
- Mooney, W.D.; Laske, G.; Masters, T.G. CRUST 5.1: A global crustal model at 5° × 5°. J. Geophys. Res. 1998, 103, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Wever, T. Comment and reply on “Archean and Proterozoic crustal evolution: Evidence from crustal seismology”. Geology 1992, 20, 664–665. [Google Scholar] [CrossRef]
- Cook, F.A.; Erdmer, P. A 1800 km crossection of the lithosphere through the northwestern North American plate: Lessons from 4.0 billion years of Earth history. Can. J. Earth Sci. 2005, 42, 1295–1311. [Google Scholar] [CrossRef]
- Stankiewicz, J.; de Wit, M. 3.5 billion years of reshaped Moho, southern Africa. Tectonophysics 2013, 609, 675–689. [Google Scholar] [CrossRef]
- Mantle, G.W.; Collins, W.J. Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology 2008, 38, 87–90. [Google Scholar] [CrossRef]
- Zellmer, G. Some first-order observations on magma transfer from mantle wedge to upper crust at volcanic arcs. Geol. Soc. Lond. Spec. Publ. 2008, 304, 15–31. [Google Scholar] [CrossRef]
- Chiaradia, M. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci. 2014, 7, 43–46. [Google Scholar] [CrossRef]
- Chapman, J.; Ducea, N.; DeCelles, P.G.; Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 2015, 43, 919–922. [Google Scholar] [CrossRef]
- Profeta, L.; Ducea, M.N.; Chapman, J.B.; Paterson, S.R.; Gonzales, S.M.H.; Kirsch, M.; Petrescu, L.; DeCelles, P.G. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Dhuime, B.; Wuestefeld, A.; Hawkesworth, C.J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 2015, 8, 552–555. [Google Scholar] [CrossRef]
- Turner, S.J.; Langmuir, C.H. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth Planet. Sci. Lett. 2015, 422, 182–193. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 1988, 90, 349–370. [Google Scholar] [CrossRef]
- Hildreth, W.; Moorbath, S. Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 1988, 98, 455–489. [Google Scholar] [CrossRef]
- Müntener, O.; Kelemen, P.B.; Grove, T.L. The role of H2O during crystalliza-tion of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contrib. Mineral. Petrol. 2001, 141, 643–658. [Google Scholar] [CrossRef]
- Annen, C.; Blundy, J.; Sparks, R. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. J. Petrol. 2006, 47, 505–539. [Google Scholar] [CrossRef]
- Lee, C.-T.; Bachmann, O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 2014, 393, 266–274. [Google Scholar] [CrossRef]
- Turner, S.J.; Langmuir, C.H.; Katz, R.F.; Dungan, M.A.; Escrig, S. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure. Nat. Geosci. 2016, 9, 772–776. [Google Scholar] [CrossRef]
- Herzberg, C.; Condie, K.; Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 2010, 292, 79–88. [Google Scholar] [CrossRef]
- Condie, K.C.; Aster, R.C.; van Hunen, J. A great thermal divergence in the mantle beginning 2.5 Ga. geochemical constraints from greenstones basalt. Geosci. Front. 2016, 7, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Ganne, J.; Feng, X. Primary magmas and mantle temperatures through time. Geochem. Geophys. Geosyst. 2017. [Google Scholar] [CrossRef]
- Ganne, J.; Feng, X.; Rey, P.; de Andrade, V. Statistical Petrology Reveals a Link Between Supercontinents Cycle and Mantle Global Climate. Am. Mineral. 2017, 101, 2768–2773. [Google Scholar] [CrossRef]
- Palin, R.M.; Dyck, B. Metamorphic consequences of secular changes in oceanic crust composition and implications for uniformitarianism in the geological record. Geosci. Front. 2018, 9, 1009–1019. [Google Scholar] [CrossRef]
- Ganne, J.; Schellart, W.; Rosenbaum, G.; Feng, X.; de Andrade, V. Probing crustal thickness evolution and geodynamic processes in the past from magma records: An integrated approach. GSA Spec. Pap. 2016. [Google Scholar] [CrossRef]
- Li, C.; Arndt, N.T.; Tang, Q.; Ripley, E.M. Trace element indiscrimination diagrams. Lithos 2015, 232, 76–83. [Google Scholar] [CrossRef]
- De Wit, M.J.; Ashwal, L.D. Greenstone Belts; Oxford University Press: Oxford, UK; Clarendon, TX, USA, 1997; 809p. [Google Scholar]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; 653p. [Google Scholar]
- Keller, C.B.; Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 2012, 485, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Herzberg, C.; Asimow, P.D. PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 2015, 16, 563–578. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, C.; Asimow, P.D. Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Farmer, M.J.; Lee, C.-T.A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth Planet. Sci. Lett. 2017, 470, 96–107. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Ashwal, L.D. Anorthosites Minerals and Rocks; Springer: Berlin, Germany, 1996; p. 422. [Google Scholar]
- Brown, M.D. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth first adopt a plate tectonics mode of behavior? In When Did Plate Tectonics Begin on Planet Earth? Condie, K.C., Pease, V., Eds.; GSA Special Issue; Geological Society of America: Boulder, CO, USA, 2008; Volume 440, pp. 97–128. [Google Scholar]
- Nandedkar, R.H.; Ulmer, P.; Müntener, O. Fractional crystallization of primi-tive, hydrous arc magmas: An experimental study at 0.7GPa. Contrib. Mineral. Petrol. 2014, 167, 1–27. [Google Scholar] [CrossRef]
- Cashman, K.V.; Sparks, S.J.; Blundy, J.D. Vertically extensive and unstable system: A unified view of igneous processes. Science 2017, 355, 6331. [Google Scholar] [CrossRef] [PubMed]
- Ganne, J.; Bachmann, O.; Feng, X. Deep into magma plumbing systems: Interrogating the crystal cargo of volcanic deposits. Geology 2018. [Google Scholar] [CrossRef]
- Putirka, K.D. Down the Crater: Where Magmas are Stored and Why They Erupt. Elements 2017, 13, 11–16. [Google Scholar] [CrossRef]
- Herzberg, C. Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle. J. Petrol. 2004, 12, 2389–2405. [Google Scholar] [CrossRef]
- Ganne, J.; Feng, X. Magmatism: A crustal and geodynamic perspective. J. Struct. Geol. 2018. [Google Scholar] [CrossRef]
- Priestley, K.; McKenzie, D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett. 2013, 381, 78–91. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Ducea, M.; Kapp, P.; Zandt, G. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2009, 2, 251–257. [Google Scholar] [CrossRef]
- Jaupart, C.; Mareschal, J.-C. 6.05 Heat Flow and Thermal Structure of the Lithosphere. Treatise Geophys. 2014, 6, 217–253. [Google Scholar] [CrossRef]
- Collins, W.J.; Belousova, A.E.; Kemp, A.I.S.; Murphy, J.B. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat. Geosci. 2011, 4, 333–336. [Google Scholar] [CrossRef]
- Putirka, K.; Jean, M.; Sharma, R.; Torrez, G.; Carlson, C. Cenozoic volcanism in the Sierra Nevada, and a new model for lithosphere degradation. Geosphere 2012, 8, 265–291. [Google Scholar] [CrossRef]
- McKenzie, D.; Daly, M.C.; Priestley, K. The lithospheric structure of Pangea. Geology 2015, 4, 783–786. [Google Scholar] [CrossRef]
- Tassara, A.; Echaurren, A. Anatomy of the Andean subduction zone: Three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 2012, 189, 161–168. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Mooney, W.D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. 2001, 106, 16387–16414. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-T.A.; Thurner, S.; Paterson, S.; Cao, W. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 2015, 425, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Condie, K.C.; Kröner, A. When did plate tectonics begin? Evidence from the geologic record. In When Did Plate Tectonics Begin on Planet Earth? Condie, K.C., Pease, V., Eds.; GSA Special Issue; Geological Society of America: Boulder, CO, USA, 2008; Volume 440, pp. 281–294. [Google Scholar]
- Ganne, J.; De Andrade, V.; Weinberg, R.F.; Vidal, O.; Dubacq, B.; Kagambega, N.; Naba, S.; Baratoux, L.; Jessell, M.; Allibon, J. Modern-style plate subduction preserved in the Palaeoproterozoic West African Craton. Nat. Geosci. 2012, 5, 60–65. [Google Scholar] [CrossRef]
- Laurent, O.; Martin, H.; Moyen, J.F.; Doucelance, R. The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Roberts, N.M.W. The boring billion?—Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci. Front. 2013, 4, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Ernst, W.G. Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res. 2009, 15, 243–253. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J. Earth’s middle age. Geology 2014, 42, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Cawood, A.P.; Kröner, A.; Pisarevky, S. Precambrian plate tectonics: Criteria and evidence. GSA Today 2006, 16, 4–11. [Google Scholar] [CrossRef]
- Emslie, R.F. Proterozoic anorthosite massifs. In The Deep Proterozoic Crust in the North Atlantic Provinces NATO ASI C158; Tobi, A.C., Touret, J.L., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1985; pp. 39–60. [Google Scholar]
- Longhi, J.; Fram, M.S.; Auwera, J.V.; Montieth, J.N. Pressure effects, kinetics, and rheology of anorthositic and related magmas. Am. Mineral. 1993, 78, 1016–1030. [Google Scholar]
- Longhi, J.; Vander Auwera, J.; Fram, M.S.; Duchesne, J.C. Some phase equilibrium constraints on the origin of Proterozoic (Massif) anorthosites and related rocks. J. Petrol. 1999, 40, 339–362. [Google Scholar] [CrossRef]
- Duchesne, J.C.; Liégeois, J.P.; Auwera, J.V.; Longhi, J. The crustal tongue melting model and the origin of massive anorthosites. Terra Nova 1999, 11, 100–105. [Google Scholar] [CrossRef]
- Namur, O.; Charlier, B.; Pirard, C.; Hermann, J.; Liégeois, J.P.; Vander Auwera, J. Anorthosite formation by plagioclase flotation in ferrobasalt and implications for the lunar crust. Geochim. Cosmochim. Acta 2011, 75, 4998–5018. [Google Scholar] [CrossRef]
- Tappe, S.; Smart, K.; Torsvik, T.; Massuyeau, M.; de Wit, M. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 2018, 484, 1–14. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganne, J.; Feng, X.; McFarlane, H.; Macouin, M.; Rousse, S.; Naba, S.; Traoré, A.; Hodel, F. When Proterozoic Crusts Became Thick: New Insights from Magma Petrology. Geosciences 2018, 8, 428. https://doi.org/10.3390/geosciences8120428
Ganne J, Feng X, McFarlane H, Macouin M, Rousse S, Naba S, Traoré A, Hodel F. When Proterozoic Crusts Became Thick: New Insights from Magma Petrology. Geosciences. 2018; 8(12):428. https://doi.org/10.3390/geosciences8120428
Chicago/Turabian StyleGanne, Jérôme, Xiaojun Feng, Helen McFarlane, Mélina Macouin, Sonia Rousse, Seta Naba, Abraham Traoré, and Florent Hodel. 2018. "When Proterozoic Crusts Became Thick: New Insights from Magma Petrology" Geosciences 8, no. 12: 428. https://doi.org/10.3390/geosciences8120428
APA StyleGanne, J., Feng, X., McFarlane, H., Macouin, M., Rousse, S., Naba, S., Traoré, A., & Hodel, F. (2018). When Proterozoic Crusts Became Thick: New Insights from Magma Petrology. Geosciences, 8(12), 428. https://doi.org/10.3390/geosciences8120428