A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints
Abstract
:1. Introduction
2. Regional and Local Geology
3. Materials and Methods
4. Results and Discussion
4.1. Petrology and Geochemistry of the Aisymi-Leptokarya Magmatic Rocks
4.2. Mineralization and Alteration
4.3. Mineral Chemistry
4.4. Bulk Ore Geochemistry
4.5. Genetic Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeng, Q.D.; Liu, J.M.; Qin, K.Z.; Fan, H.R.; Chu, S.X.; Wang, Y.B.; Zhou, L.L. Types, characteristics, and time-space distribution of molybdenum deposits in China. Int. Geol. Rev. 2013, 55, 1311–1358. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar] [CrossRef]
- Singer, D.A.; Berger, V.I.; Moring, B.C. Porphyry Copper Deposits of the World: Database, Map and Preliminary Analysis; USGS Open-File Report; The United States Geological Survey: Reston, WV, USA, 2002.
- Chen, Y.J.; Santosh, M.; Somreville, I.D.; Chen, H.Y. Indosinian tectonics and mineral systems in China: An introduction. Geol. J. 2014, 49, 331–337. [Google Scholar] [CrossRef]
- Selby, D.; Nesbitt, B.E.; Muehlenbachs, K.; Prochaska, W. Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenite deposit, British Columbia. Econ. Geol. 2000, 95, 183–202. [Google Scholar] [CrossRef]
- Wallace, S.R. SEG presidential address: The climax-type molybdenite deposits: What they are, where they are, and why they are. Econ. Geol. 1995, 90, 1359–1380. [Google Scholar]
- Mi, M.; Chen, Y.J.; Yang, Y.F.; Wang, P.; Li, F.L.; Wan, S.Q.; Xu, Y.L. Geochronology and geochemistry of the giant Qian’echong Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting. Gondwana Res. 2015, 27, 1217–1235. [Google Scholar] [CrossRef]
- Hu, S.X. Petrology of Metasomatic Rocks and Implications for Ore Exploration; Science Press: Beijing, China, 2002; Volume 264. (In Chinese) [Google Scholar]
- Khashgerel, B.E.; Rye, R.O.; Hedenquist, J.W.; Kavalieris, I. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu–Au system, South Gobi, Mongolia. Econ. Geol. 2006, 101, 503–522. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ni, P.; Fan, H.R.; Pirajno, F.; Lai, Y.; Su, W.C.; Zhang, H. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol. Sin. 2007, 23, 2085–2108, (In Chinese with English abstract). [Google Scholar]
- Arikas, K.; Voudouris, P. Hydrothermal alterations and mineralizations of magmatic rocks in the southeastern Rhodope massif. Acta Vulcanol. 1998, 10, 353–365. [Google Scholar]
- Melfos, V.; Vavelidis, M.; Christofides, G.; Seidel, E. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineral. Depos. 2002, 37, 648–668. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 59, 1030–1057. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Kartal, T.; Schleicher, H.; Moritz, R.; Ortelli, M. The Pagoni Rachi/Kirki Cu-Mo-Re-Au-Ag-Te deposit, northern Greece: Mineralogical and fluid inclusion constraints on the evolution of a telescoped porphyry-epithermal system. Can. Mineral. 2013, 51, 411–442. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Spry, P.G.; Bindi, L.; Moritz, R.; Ortelli, M.; Kartal, T. Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in northeastern Greece: Mode of occurrence, causes of enrichment, and implications for gold exploration. Minerals 2013, 3, 165–191. [Google Scholar] [CrossRef]
- Mavrogonatos, C.; Voudouris, P.; Spry, P.G.; Melfos, V.; Klemme, S.; Berndt, J.; Baker, T.; Moritz, R.; Bissig, T.; Monecke, T.; Zaccarini, F. Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece. Minerals 2018, 8, 479. [Google Scholar] [CrossRef]
- Galanopoulos, E.; Voudouris, P.; Mavrogonatos, K.; Melfos, V. A New Porphyry Mo Mineralization at Aisymi-Leptokarya, Southeastern Rhodope, NE Greece: Mineralogical and Geochemical Constraints. In Proceedings of the 8. Geochemistry Symposium, Antalya, Turkey, 2–6 May 2018. [Google Scholar]
- Bonev, N.; Spikings, R.; Moritz, R.; Marchev, P.; Collings, D. 40Ar/39Ar age constraints on the timing of Tertiary crustal extension and its temporal relation to ore-forming and magmatic processes in the Eastern Rhodope Massif, Bulgaria. Lithos 2013, 180–181, 256–270. [Google Scholar] [CrossRef]
- Kilias, A.; Falalakis, G.; Sfeikos, A.; Papadimitriou, E.; Vamvaka, A.; Gkarlaouni, C. The Thrace basin in the Rhodope province of NE Greece—A tertiary supradetachment basin and its geodynamic implications. Tectonophysics 2013, 90, 595–596. [Google Scholar] [CrossRef]
- Mposkos, E.; Baziotis, I.; Leontakianakos, G.; Harry, P.H. The metamorphic evolution of the high-pressure Kechros complex in East Rhodope (NE Greece): Implications from Na–Al-rich leucocratic rocks within antigorite serpentinites. Lithos 2013, 177, 17–33. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Arvanitides, N.D.; Zanas, I. Some preliminary geological aspects on the Makri unit (phyllite series); peri-Rhodopian zone. Geol. Rhod. 1989, 1, 34–42. [Google Scholar]
- Maratos, G.; Andronopoulos, B. Nouvelles données sur l’age desphyllites du Rhodope. Bull. Geol.Soc. Greece 1964, 6, 113–132. [Google Scholar]
- Innocenti, F.; Kolios, N.; Manetti, O.; Mazzuoli, R.; Peccerillo, G.; Rita, F.; Villari, L. Evolution and geodynamic significance of the Tertiary orogenic volcanism in northeastern Greece. Bull. Volcanol. 1984, 47, 25–37. [Google Scholar] [CrossRef]
- Del Moro, A.; Innocenti, F.; Kyriakopoulos, C.; Manetti, P.; Papadopoulos, P. Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. N. Jb. Min. Abh. 1988, 159, 113–135. [Google Scholar]
- Eleftheriadis, G.; Christofides, G.; Papadopoulos, P. Petrology and geochemistry of Leptokarya-Kirki plutonic intrusions in the NE Rhodope Massif, Thrace, Greece. Geol. Rhod. 1989, 280–289. [Google Scholar]
- Alfieris, D.; Arvanitidis, N.; Katirtzoglou, K. Petrology and geochemistry of acid dyke-rocks in the east Rhodope (Essimi) area. Geol. Rhod. 1989, 1, 268–279. [Google Scholar]
- Mavroudchiev, B.; Nedyalkov, R.; Eleftheriadis, G.; Soldatos, T.; Christofides, G. Tertiary plutonic rocks from East Rhodope in Bulgaria and Greece. Bull. Geol. Soc. Greece 1993, 28, 643–660. [Google Scholar]
- Perkins, R.; Cooper, F.; Condon, D.; Tattitch, B.; Naden, J. Post-collisional Cenozoic extension in the northern Aegean: The high-K to shoshonitic intrusive rocks of the Maronia Magmatic Corridor, northeastern Greece. Lithosphere 2018, 10, 582–601. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A. Source and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1985; Chapter 3. [Google Scholar]
- McDonough, W.F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Christofides, G.; Pecskay, Z.; Soldatos, T.; Eleftheriadis, G.; Koroneos, A. The Tertiary Evros volcanic rocks (Greece): Petrology, K/Ar geochronology and volcanism evolution. Geol. Carpathica 2004, 55, 397–409. [Google Scholar]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298. [Google Scholar]
- Menant, A.; Jolivet, L.; Tuduri, J.; Loiselet, C.; Bertrand, G.; Guillou-Frottier, L. 3D subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geol. Rev. 2018, 94, 118–135. [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal deposits-Products of remelting subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Taylor, R.D.; Hammarstrom, J.M.; Piatak, N.M.; Seal, R.R. Arc-Related Porphyry Molybdenum Deposit Model; Scientific Investigations Report 2010–5070–D; The Unated States Geological Survey: Reston, WV, USA, 2012.
- Simic, M. Metallogenic features of the Mackatica ore field—Bratislava, Slovakia. In Proceedings of the XVII Congress of Carpathian-Balkan Geological Association, Bratislava, Slovakia, 1–4 September 2002; Veda, Publishing House of the Slovak Academy of Sciences: Bratislava, Slovakia, 2002. [Google Scholar]
- Delibaş, O.; Moritz, R.; Chiaradia, M.; Selby, D.; Ulianov, A.; Revan, M.K. Post-collisional magmatism and ore-forming systems in the Menderes massif: New constraints from the Miocene porphyry Mo-Cu Pınarbaşı system, Gediz-Kütahya, western Turkey. Miner. Depos. 2017, 52, 1157–1178. [Google Scholar] [CrossRef]
- Van Leeuwen, T.M.; Taylor, R.; Coote, A.; Longstaffe, F.J. Porphyry molybdenum mineralization in a continental collision setting at Malala, northwest Sulawesi, Indonesia. J. Geochem. Explor. 1994, 50, 279–315. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Wang, P.; Li, N.; Yang, Y.-F.; Pirajno, F. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geol. Rev. 2017, 81, 405–430. [Google Scholar] [CrossRef]
- Westra, G.; Keith, S.B. Classification and genesis of stockwork molybdenum deposits. Econ. Geol. 1981, 76, 844–873. [Google Scholar] [CrossRef]
- Sinclair, W.D. Porphyry deposits. In Mineral Deposits of Canada—A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Special Publication No. 5; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 223–243. [Google Scholar]
- Candela, P.A. A Review of Shallow, Ore-related Granites: Textures, Volatiles, and Ore Metals. J. Petrol. 1997, 38, 1619–1633. [Google Scholar] [CrossRef] [Green Version]
- Symonds, R.; Rose, W.; Reed, M.; Lichte, F.; Finnegan, D. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi volcano, Indonesia. Geochim. Cosmochim. Acta 1987, 51, 2083–2101. [Google Scholar] [CrossRef]
- De Hoog, J.; van Bergen, M. Volatile-induced transport of HFSE, REE, Th and U in arc magmas: Evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia). Contrib. Miner. Petrol. 2000, 139, 485–502. [Google Scholar] [CrossRef]
- Williams-Jones, A.; Heinrich, C. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Yudovskaya, M.; Distler, V.; Chaplygin, I.; Mokhov, A.; Trubkin, N.; Gorbacheva, S. Gaseous transport and deposition of gold in magmatic fluid: Evidence from the active Kudryavy volcano, Kurile Islands. Miner. Depos. 2006, 40, 828–848. [Google Scholar] [CrossRef]
- Mazziotti-Tagliani, S.; Nicotra, E.; Viccaro, M.; Gianfagna, A. Halogen-dominant mineralization at Mt. Calvario dome (Mt. Etna) as a response of volatile flushing into the magma plumbing system. Mineral. Petrol. 2012, 106, 89–105. [Google Scholar] [CrossRef]
- Ferlito, C.; Viccaro, M.; Cristofolini, R. Volatile-rich magma injection into the feeding system during the 2001 eruption of Mt. Etna (Italy): Its role on explosive activity and change in rheology of lavas. Bull. Volcanol. 2009, 71, 1149–1158. [Google Scholar] [CrossRef]
- Pokrovski, G.; Borisova, Y.; Bychkov, A. Speciation and transport of metals and metalloids in geological vapors. Rev. Mineral. Geochem. 2013, 76, 165–218. [Google Scholar] [CrossRef]
Rock Type | Microgranite Porphyry | Monzodiorite | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | EG8 | EG10 | EG13 | EG15 | EG19 | EG20 | EG22 | EG23 | EG32 | EG9 | EG28 |
SiO2 | 78.6 | 83 | 79.2 | 80.6 | 80.5 | 82.8 | 76.3 | 72.5 | 82.9 | 58.2 | 55.8 |
TiO2 | 0.14 | 0.13 | 0.17 | 0.14 | 0.18 | 0.14 | 0.22 | 0.31 | 0.11 | 0.69 | 0.73 |
Al2O3 | 12.3 | 11.3 | 13.6 | 12.1 | 12.3 | 11.2 | 12.8 | 14.2 | 10.1 | 14.5 | 13.4 |
Fe2O3 | 0.27 | 0.18 | 0.15 | 0.23 | 0.35 | 0.24 | 0.33 | 1.11 | 1.16 | 5.71 | 8.62 |
MnO | bdl | bd | bd | bd | bd | bd | 0.01 | 0.02 | 0.06 | 0.22 | 0.59 |
MgO | 0.12 | 0.14 | 0.19 | 0.3 | 0.15 | 0.05 | 0.38 | 0.95 | 0.21 | 5.06 | 6.09 |
CaO | 0.03 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.46 | 0.84 | 0.07 | 6.44 | 7.17 |
Na2O | 0.12 | bd | 0.12 | 0.05 | 0.25 | 0.02 | 2.37 | 3.33 | bd | 2.88 | 2.3 |
K2O | 5.19 | 0.81 | 1.54 | 2.87 | 3.43 | 0.51 | 4.93 | 4.68 | 0.99 | 2.32 | 1.32 |
P2O5 | 0.01 | bd | bd | bd | 0.02 | 0.01 | bd | 0.1 | bd | 0.15 | 0.3 |
LOI | 2.48 | 3.82 | 4.1 | 2.61 | 1.76 | 4.16 | 1.31 | 1.34 | 3.74 | 2.83 | 3.24 |
Total | 99.51 | 99.43 | 99.14 | 99.06 | 99.03 | 99.19 | 99.26 | 99.56 | 99.4 | 99.55 | 99.7 |
Ba | 1351 | 91 | 187 | 299 | 776 | 146 | 1410 | 1067 | 188 | 750 | 417 |
Co | 0.4 | 0.6 | 0.3 | bd | 0.3 | 0.7 | 0.5 | 1.5 | 1.8 | 19 | 23.6 |
Cs | 4.1 | 3 | 3.6 | 10.3 | 1.5 | 3.4 | 0.5 | 1.4 | 4.2 | 2.2 | 9.6 |
Ga | 9.9 | 9.6 | 10.1 | 10.2 | 12.7 | 6.8 | 10.1 | 12.9 | 6 | 14.1 | 15.6 |
Hf | 2.8 | 2.2 | 2.8 | 2.9 | 3 | 2.5 | 3 | 3.6 | 2.1 | 1.7 | 2.9 |
Nb | 9.6 | 8 | 8.9 | 9.7 | 9.3 | 8.9 | 10.3 | 9.9 | 7.9 | 7.8 | 8.5 |
Rb | 141 | 44.8 | 76.1 | 130 | 123 | 24 | 134 | 116 | 56.6 | 60.7 | 54 |
Sn | 2 | 4 | 4 | 6 | 34 | 2 | 2 | 3 | 2 | 6 | 7 |
Sr | 81.5 | 12.7 | 28.3 | 7.4 | 13.7 | 23.1 | 227 | 235 | 19.5 | 309 | 445 |
Ta | 0.8 | 0.8 | 0.8 | 0.9 | 0.8 | 0.9 | 1.3 | 1.4 | 0.8 | 0.7 | 0.7 |
Th | 18.5 | 16.1 | 16 | 18.1 | 18 | 19 | 19.5 | 15.7 | 15 | 12.5 | 10.4 |
U | 8.1 | 4.2 | 4.8 | 5.6 | 4.3 | 12.2 | 6.8 | 7.3 | 14.7 | 4.8 | 3 |
V | 14 | 14 | 10 | 11 | 9 | 19 | 9 | 43 | 11 | 177 | 220 |
W | 1.7 | 2.9 | 1.9 | 4.9 | 6.1 | 2.3 | 0.5 | 0.9 | 1.8 | 2.8 | 0.9 |
Zr | 76.3 | 60.7 | 85.9 | 70 | 87 | 74.7 | 85.6 | 134 | 60.3 | 48 | 112.7 |
Y | 14.2 | 11.7 | 12 | 16.9 | 16.8 | 20.4 | 14.3 | 17.6 | 13.6 | 18.7 | 24.5 |
La | 22.3 | 19.6 | 25.3 | 28.8 | 28.1 | 27.1 | 25.6 | 15.5 | 22.3 | 24.9 | 24 |
Ce | 41.8 | 37.5 | 46.7 | 52.2 | 52.7 | 49.9 | 44.7 | 31.6 | 42.5 | 49 | 53.1 |
Pr | 4.08 | 3.41 | 4.44 | 5.22 | 5.3 | 4.82 | 4.47 | 3.64 | 4.18 | 5.13 | 5.96 |
Nd | 14.3 | 11.9 | 15.1 | 18.6 | 18.2 | 16.5 | 15.5 | 13.9 | 14.1 | 19.7 | 23.1 |
Sm | 2.3 | 2.1 | 2.48 | 2.97 | 3.52 | 2.83 | 2.66 | 3.08 | 2.4 | 3.72 | 4.77 |
Eu | 0.41 | 0.33 | 0.38 | 0.37 | 0.39 | 0.37 | 0.3 | 0.5 | 0.34 | 0.87 | 0.87 |
Gd | 2.05 | 1.86 | 2.21 | 2.53 | 2.83 | 2.68 | 2.24 | 2.72 | 2.07 | 3.66 | 4.81 |
Tb | 0.32 | 0.3 | 0.3 | 0.38 | 0.45 | 0.42 | 0.36 | 0.46 | 0.34 | 0.54 | 0.71 |
Dy | 2.1 | 2.11 | 2.01 | 2.47 | 2.95 | 2.81 | 2.32 | 3.04 | 2.24 | 3.23 | 4.25 |
Ho | 0.44 | 0.41 | 0.4 | 0.53 | 0.52 | 0.62 | 0.48 | 0.64 | 0.47 | 0.66 | 0.92 |
Er | 1.37 | 1.32 | 1.35 | 1.71 | 1.68 | 2.19 | 1.65 | 1.9 | 1.29 | 1.82 | 2.68 |
Tm | 0.25 | 0.22 | 0.22 | 0.26 | 0.26 | 0.3 | 0.24 | 0.28 | 0.24 | 0.28 | 0.4 |
Yb | 1.92 | 1.56 | 1.61 | 1.91 | 1.79 | 2.28 | 2 | 1.96 | 1.67 | 1.73 | 2.45 |
Lu | 0.26 | 0.24 | 0.26 | 0.29 | 0.31 | 0.35 | 0.31 | 0.31 | 0.27 | 0.28 | 0.34 |
Mo | 1 | 56.9 | 2.3 | 4.2 | 20.9 | 0.9 | bd | 0.1 | 2.9 | 1.1 | 1.1 |
Cu | 8.2 | 12.2 | 15.5 | 2.6 | 5.8 | 2.7 | 3.7 | 3.9 | 4.5 | 89.1 | 2.9 |
Pb | 32.9 | 13.1 | 97.1 | 9.9 | 7.9 | 11.7 | 2.7 | 5.3 | 20.7 | 12.3 | 4.4 |
Zn | 249 | 6 | 6 | 4 | 4 | 3 | 17 | 402 | 72 | 120 | 157 |
Ni | 0.7 | 2.8 | 1.5 | 0.2 | 0.1 | 0.8 | 0.4 | 13.2 | 3.1 | 42.6 | 73.5 |
As | 2 | 4.4 | 1.8 | 0.8 | 1.1 | 1.2 | bd | bd | 1 | 2.9 | 0.6 |
Cd | 1.6 | bd | bd | bd | bd | bd | 0.1 | 0.5 | 0.4 | 0.5 | bd |
Sc | 0.5 | 0.4 | 0.6 | 0.3 | 0.3 | 0.5 | 0.6 | 1.9 | 0.6 | 4.3 | 3.7 |
Sample | Lithology | Alteration | Qz | K-fs | Pl | Hbl | Bt | Chl | Ser |
---|---|---|---|---|---|---|---|---|---|
EG06 | Microgranite porphyry | potassic | + | + | |||||
EG08 | potassic | + | + | ||||||
EG15 | potassic/phyllic | + | + | + | |||||
EG16 | potassic/phyllic | + | + | + | |||||
EG21 | potassic/phyllic | + | + | ||||||
EG9 | Monzodiorite | propylitic | + | + | + | + | + | + | |
EG28 | potassic/sodic | + | + | + |
Sample | EG16 (n = 64) | EG3 (n = 10) | |||||||
wt.% | Min | Max | Mean | 1σ | wt.% | Min | Max | Mean | 1σ |
Mo | 58.8 | 60.8 | 59.9 | 0.34 | Mo | 58.6 | 60.3 | 59.8 | 0.39 |
W | bdl | 0.08 | 0.01 | 0.02 | W | bdl | 0.07 | 0.01 | 0.02 |
Re | bdl | 0.14 | 0.02 | 0.03 | Re | bdl | 0.31 | 0.08 | 0.07 |
Sn | bdl | 0.02 | 0.002 | 0.01 | Sn | bdl | 0.01 | 0.000 | 0.001 |
Se | bdl | 0.04 | 0.004 | 0.01 | Se | bdl | 0.03 | 0.003 | 0.01 |
S | 39.6 | 40.9 | 40.2 | 0.29 | S | 39.6 | 40.8 | 40.1 | 0.34 |
Total | 99.1 | 100.5 | 100.2 | 0.30 | Total | 99.4 | 100.4 | 100.1 | 0.27 |
apfu | 3 | ||||||||
Min | Max | Mean | 1σ | Min | Max | Mean | 1σ | ||
Mo | 0.982 | 1.018 | 0.996 | 0.007 | Mo | 0.973 | 1.010 | 0.997 | 0.009 |
W | - | 0.001 | - | - | W | - | 0.001 | 0.000 | 0.000 |
Re | - | 0.001 | - | - | Re | - | 0.003 | 0.001 | 0.001 |
Sn | - | - | - | - | Sn | - | - | - | - |
Se | - | 0.001 | - | - | Se | - | 0.001 | - | - |
S | 1.98 | 2.02 | 2.00 | 0.007 | S | 1.988 | 2.027 | 2.002 | 0.009 |
Sample EG1 | Galena (n = 8) | Sphalerite (n = 12) | |||||||
wt.% | Min | Max | Mean | 1σ | wt.% | Min | Max | Mean | 1σ |
Pb | 86.6 | 87.1 | 86.8 | 0.19 | Fe | 0.51 | 1.00 | 0.79 | 0.16 |
Se | 0.01 | 0.02 | 0.01 | 0.004 | Zn | 65.4 | 67.2 | 66.3 | 0.54 |
Sb | 0.02 | 0.05 | 0.03 | 0.01 | S | 32.5 | 33.3 | 32.9 | 0.24 |
S | 13.2 | 13.6 | 13.4 | 0.14 | Total | 99.5 | 100.5 | 100.1 | 0.37 |
Total | 100.0 | 100.5 | 100.3 | 0.175 | |||||
apfu | 2 | ||||||||
Min | Max | Mean | 1σ | Min | Max | Mean | 1σ | ||
Pb | 0.993 | 1.008 | 1.001 | 0.006 | Fe | 0.009 | 0.017 | 0.013 | 0.003 |
Se | 0.000 | 0.000 | 0.000 | 0.000 | Zn | 0.973 | 1.000 | 0.986 | 0.008 |
Sb | 0.000 | 0.001 | 0.000 | 0.000 | S | 0.988 | 1.010 | 1.000 | 0.006 |
S | 0.991 | 1.007 | 0.998 | 0.006 |
Sample | EG2 | EG3 | EG6 | EG14 | EG16b | EG27 | EG29 | EG31 | EG1 | EG11 | EG25 |
---|---|---|---|---|---|---|---|---|---|---|---|
Porphyry-Style Veins | Base Metal Veins | ||||||||||
Au | 4.1 | 0.8 | 5.3 | 5.9 | 1.1 | 1.3 | 7.9 | 7.1 | <0.5 | 4.6 | 23.5 |
Ag | 1.2 | 0.5 | 0.9 | 0.2 | <0.1 | 0.7 | 1 | 1.3 | 3.9 | 8.6 | 7.9 |
Mo | 38.6 | 182 | 114 | 65.3 | 150 | 215 | 96.3 | 20.3 | 20.2 | 0.5 | 1.2 |
Se | 1 | 29 | 2.2 | 0.8 | <0.5 | 0.5 | <0.5 | <0.5 | 4.6 | 4.5 | <0.5 |
Te | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 3 | <1 | 3 |
Bi | 2.3 | 1.4 | 8.2 | 4.8 | 0.7 | 0.8 | 1.1 | 0.8 | 3.4 | 16.4 | 0.8 |
Sn | 6 | 13 | 5 | 13 | 2 | 3 | 14 | 2 | 6 | 17 | 1 |
Sb | 1.7 | 1.2 | 1.4 | 0.4 | 0.3 | 0.1 | 1.1 | 10.6 | 6.1 | 0.3 | 9.8 |
Pb | 94.5 | 16.6 | 28.7 | 18.4 | 8.7 | 10.8 | 31.5 | 25.1 | >10,000 | 5258 | 996 |
Zn | 58 | 10 | 4 | 38 | 6 | 9 | 2 | 10 | >10,000 | 789 | 71 |
Cu | 9.8 | 3.2 | 1 | 6.8 | 3.3 | 18.3 | 2 | 49.2 | 277 | 379 | 23.5 |
As | 1.6 | <0.5 | 18.7 | 45.6 | 2.7 | 6.2 | 20 | 24.8 | 13.7 | 40.4 | 31.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanopoulos, E.; Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Hart, C.; Melfos, V.; Zaccarini, F.; Alfieris, D. A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints. Geosciences 2018, 8, 435. https://doi.org/10.3390/geosciences8120435
Galanopoulos E, Voudouris P, Mavrogonatos C, Spry PG, Hart C, Melfos V, Zaccarini F, Alfieris D. A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints. Geosciences. 2018; 8(12):435. https://doi.org/10.3390/geosciences8120435
Chicago/Turabian StyleGalanopoulos, Evangelos, Panagiotis Voudouris, Constantinos Mavrogonatos, Paul G. Spry, Craig Hart, Vasilios Melfos, Federica Zaccarini, and Dimitrios Alfieris. 2018. "A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints" Geosciences 8, no. 12: 435. https://doi.org/10.3390/geosciences8120435
APA StyleGalanopoulos, E., Voudouris, P., Mavrogonatos, C., Spry, P. G., Hart, C., Melfos, V., Zaccarini, F., & Alfieris, D. (2018). A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints. Geosciences, 8(12), 435. https://doi.org/10.3390/geosciences8120435