Decomposition of Gasoline Hydrocarbons by Natural Microorganisms in Japanese Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Method and Analytical Conditions
3. Results and Discussion
3.1. Effects of Adsorption
3.2. Decomposition Rate
3.3. Persistence of Hydrocarbons
3.4. Microbial Activity
4. Concluding Remarks
- Aromatic hydrocarbons are easier adsorbed by organic matter in soil than aliphatic hydrocarbons. Hydrocarbons with higher carbon numbers are more adsorptive than hydrocarbons with lower carbon numbers.
- Decomposition properties are dependent on types of hydrocarbon. Straight chain hydrocarbons decompose faster than branched hydrocarbons.
- Compared with unsaturated monocyclic hydrocarbons, saturated monocyclic hydrocarbons are relatively difficult to decompose.
- Microbial activity depends on sites because different sites have different soil conditions. Higher microbial activity consumes oxygen more quickly. Aerobic decomposition may be accelerated by continuous injection of oxygen at appropriate concentrations.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- USEPA. Musts for USTs, a Summary of the Regulations for Underground Storage Tank Systems. EPA/530/UST-88/008; 1990. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=2000DA8S.PDF (accessed on 28 November 2017).
- USEPA. 40 CFR Parts 280 and 281 Revising Underground Storage Tank Regulations—Revisions to Existing Requirements and New Requirements for Secondary Containment and Operator Training. Final Rule, Federal Register; 2015. Available online: https://www.gpo.gov/fdsys/pkg/FR-2015-07-15/pdf/2015-15914.pdf (accessed on 23 November 2017).
- Ministry of Economy, Trade and Industry. Changes in the Numbers of Dealers of Volatile Oils and Gas Stations. 2017. Available online: http://www.meti.go.jp/press/2017/07/20170704007/20170704007-1.pdf (accessed on 28 November 2017). (In Japanese)
- Fire and Disaster Management Agency (FDMA). Uses an Existing Storage Tank under the Ground against Leakage. 2010. Available online: http://www.fdma.go.jp/html/data/tuchi2207/pdf/220708_ki144.pdf (accessed on 28 November 2017). (In Japanese)
- National Research Council. Natural Attenuation for Groundwater Remediation; The National Academies Press: Washington, DC, USA, 2000. Available online: https://toxics.usgs.gov/highlights/nat_attenuation.html (accessed on 28 November 2017).
- USGS. Natural Attenuation Strategy for Groundwater Cleanup Focuses on Demonstrating Cause and Effect. 2001. Available online: https://toxics.usgs.gov/pubs/eos-v82-n5-2001-natural/ (accessed on 23 November 2017).
- USEPA. A Citizen’s Guide to Monitored Natural Attenuation. 2012. Available online: https://www.epa.gov/sites/production/files/2015-04/documents/a_citizens_guide_to_monitored_natural_attenuation.pdf (accessed on 23 November 2017).
- Hattori, N.; Inoue, Y.; Tsuru, Y.; Katayama, A. Microbiology community structure changing in petroleum polluted groundwater under natural attenuation. In Proceedings of the Japan Society of Civil Engineers Annual meeting, Tokyo, Japan, 7–9 September 2005; Japan Society of Civil Engineers: Tokyo, Japan, 2005. Available online: http://library.jsce.or.jp/jsce/open/00035/2005/60-7/60-7-0059.pdf (accessed on 28 November 2017). (In Japanese).
- Takahata, Y.; Kasai, Y.; Hoaki, T.; Watanabe, K. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation. Appl. Microbiol. Biotechnol. 2006, 73, 713–722. [Google Scholar] [CrossRef] [PubMed]
- USEPA OSWER. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. 1999. Available online: https://www.epa.gov/sites/production/files/2014-02/documents/d9200.4-17.pdf (accessed on 28 November 2017).
- Perry, J.J. Microbial metabolism of cyclic alkanes. In Petroleum Microbiology, 1st ed.; Atlas, R.M., Ed.; Macmillan Publishing Co.: New York, NY, USA, 1984; pp. 61–98, ISBN-13: 978-0029490006. [Google Scholar]
- Jobson, A.; Cook, F.D.; Westlake, D.W.S. Microbial utilization of crude oil. Appl. Microbiol. 1972, 23, 1082–1089. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC380511/pdf/applmicro00047-0068.pdf (accessed on 28 November 2017). [PubMed]
- Atlas, R.M. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 1981, 45, 180–209. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC281502/pdf/microrev00009-0186.pdf (accessed on 28 November 2017). [PubMed]
- Bartha, R.; Bossert, I. The treatment and disposal of petroleum wastes. In Petroleum Microbiology, 1st ed.; Atlas, R.M., Ed.; Macmillan Publishing Co.: New York, NY, USA, 1984; pp. 553–578, ISBN-13: 978-0029490006. [Google Scholar]
- Leahy, J.G.; Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 1990, 54, 305–315. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372779/ (accessed on 27 December 2017). [PubMed]
- Olajire, A.A.; Essien, J.P. Aerobic degradation of petroleum components by microbial consortia. J. Pet. Environ. Biotechnol. 2014, 5, 1–22. Available online: http://dx.doi.org/10.4172/2157-7463.1000195 (accessed on 27 December 2017). [CrossRef]
- Yoshikawa, M.; Zhang, M.; Toyota, K. Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes Environ. 2017, 32, 188–200. Available online: https://www.jstage.jst.go.jp/browse/jsme2 (accessed on 27 December 2017). [CrossRef] [PubMed]
- Salminen, J.M.; Tuomi, P.M.; Suortti, A.M.; Jorgensen, K.S. Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 2004, 15, 29–39. Available online: https://doi.org/10.1023/B:BIOD.0000009954.21526.e8 (accessed on 27 December 2017). [CrossRef] [PubMed]
- Zytner, R.G. Sorption of benzene, toluene, ethylbenzene and xylenes to various media. J. Hazard. Mater. 1994, 38, 113–126. [Google Scholar] [CrossRef]
- Brookman, G.T.; Flanagan, M.; Kebe, J.O. Literature Survey: Hydrocarbon Solubilities and Attenuation Mechanisms; American Petroleum Institute: Washington, DC, USA, 1985. [Google Scholar]
- Nishiwaki, J.; Kawabe, Y.; Sakamoto, Y.; Komai, T.; Zhang, M. Volatilization properties of gasoline components in soils. Environ. Earth Sci. 2011, 63, 87–95. Available online: https://link.springer.com/content/pdf/10.1007%2Fs12665-010-0671-7.pdf (accessed on 28 November 2017). [CrossRef]
- Huesemann, M.H. Guidelines for land-treating petroleum hydrocarbon contaminated soils. J. Soil Contam. 1994, 3, 299–318. Available online: http://www.tandfonline.com/doi/pdf/10.1080/15320389409383471 (accessed on 28 November 2017). [CrossRef]
- Tang, J.; Carroquino, M.J.; Robertson, B.K.; Alexander, M. Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in soil. Environ. Sci. Technol. 1998, 32, 3586–3590. Available online: http://pubs.acs.org/doi/pdf/10.1021/es9803512 (accessed on 28 November 2017). [CrossRef]
- Kennicutt, M.C., II. The effect of biodegradation on crude oil bulk and molecular composition. Oil Chem. Pollut. 1988, 4, 89–112. [Google Scholar] [CrossRef]
- Singer, M.E.; Finnerty, W.R. Microbial metabolism of straight-chain and branched alkanes. In Petroleum Microbiology, 1st ed.; Atlas, R.M., Ed.; Macmillan Publishing Co.: New York, NY, USA, 1984; pp. 1–59. [Google Scholar]
- Atlas, R.M.; Bartha, R. Hydrocarbon biodegradation and oil spill bioremediation. Adv. Microb. Ecol. 1992, 12, 287–338. [Google Scholar]
Type | Component | Carbon Number | Compositional Formula | Structure |
---|---|---|---|---|
Aliphatic hydrocarbons | n-Hexane | 6 | C6H14 | Straight chain |
n-Heptane | 7 | C6H14 | Straight chain | |
n-Octane | 8 | C6H14 | Straight chain | |
Iso-Octane | 8 | C6H14 | Branched chain | |
n-Nonane | 9 | C6H14 | Straight chain | |
Aromatic hydrocarbons | Methylcyclohexane | 7 | C6H14 | Monocyclic |
Toluene | 7 | C6H14 | Monocyclic | |
Ethylbenzene | 8 | C6H14 | Monocyclic | |
p-Xylene | 8 | C6H14 | Monocyclic | |
o-Xylene | 8 | C6H14 | Monocyclic |
Test No. | Soil Type | Weight (g) | Water Content (%) |
---|---|---|---|
1 | Surface soil | 9.22 | 34 |
2 | Subsurface soil | 9.37 | 33 |
3 | Polluted soil | 8.39 | 16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishiwaki, J.; Kawabe, Y.; Komai, T.; Zhang, M. Decomposition of Gasoline Hydrocarbons by Natural Microorganisms in Japanese Soils. Geosciences 2018, 8, 35. https://doi.org/10.3390/geosciences8020035
Nishiwaki J, Kawabe Y, Komai T, Zhang M. Decomposition of Gasoline Hydrocarbons by Natural Microorganisms in Japanese Soils. Geosciences. 2018; 8(2):35. https://doi.org/10.3390/geosciences8020035
Chicago/Turabian StyleNishiwaki, Junko, Yoshishige Kawabe, Takeshi Komai, and Ming Zhang. 2018. "Decomposition of Gasoline Hydrocarbons by Natural Microorganisms in Japanese Soils" Geosciences 8, no. 2: 35. https://doi.org/10.3390/geosciences8020035
APA StyleNishiwaki, J., Kawabe, Y., Komai, T., & Zhang, M. (2018). Decomposition of Gasoline Hydrocarbons by Natural Microorganisms in Japanese Soils. Geosciences, 8(2), 35. https://doi.org/10.3390/geosciences8020035