Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Monitoring Devices
2.2. Vertical Profile and Soil Properties
- The hydraulic retention curve was determined (soil moisture as a function of pressure head);
- The saturated hydraulic conductivity (Ksat) was estimated through 9 constant head permeability tests (Table 1). The measures concerning the layer between −15 cm and −20 cm were discarded due to their abnormally large values and large standard deviation. For the same reason the first measure of each sample was discarded;
- The composition of the soil was determined through a laser diffraction particle sizing technique (Figure 2). The soil was mainly composed of sand (70%–80%). A strong gradient of porosity can be observed over the first 15 cm, which is probably related to the richness of organic matter in this soil layer (Figure 2C).
2.3. Numerical Models
2.3.1. Potential and Actual Evapotranspiration
2.3.2. Vadose Zone Model
2.4. Numerical Simulations
2.5. Strategies Investigated for the Model Calibration
3. Results
3.1. Parameters
3.2. Simulation Quality Estimation
3.3. Pressure Head
3.4. Drained Flux
3.5. Water Saturation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Guo, L.; Lin, H. Critical Zone Research and Observatories: Current Status and Future Perspectives. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Javaux, M.; Couvreur, V.; Vanderborght, J.; Vereecken, H. Root Water Uptake: From Three-Dimensional Biophysical Processes to Macroscopic Modeling Approaches. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Llorens, P.; Domingo, F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 2007, 335, 37–54. [Google Scholar] [CrossRef]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Porporato, A.; Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res. 1999, 35, 3709–3722. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Putti, M.; Meyerhoff, S.; Delfs, J.-O.; Ferguson, I.M.; Ivanov, V.; Kim, J.; Kolditz, O.; Kollet, S.J.; Kumar, M. Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 2014, 50, 1531–1549. [Google Scholar] [CrossRef] [Green Version]
- Kollet, S.; Sulis, M.; Maxwell, R.M.; Paniconi, C.; Putti, M.; Bertoldi, G.; Coon, E.T.; Cordano, E.; Endrizzi, S.; Kikinzon, E. The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 2017, 53, 867–890. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J. Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR) Soil Moisture Retrieval Errors. Geosciences 2016, 6, 19. [Google Scholar] [CrossRef]
- Pérez Hoyos, C.I.; Krakauer, Y.N.; Khanbilvardi, R.; Armstrong, A.R. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies. Geosciences 2016, 6, 17. [Google Scholar] [CrossRef]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.; Small, E.E.; Zreda, M.; et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Romano, N. Soil moisture at local scale: Measurements and simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Susha Lekshmi, S.U.; Singh, D.N.; Shojaei Baghini, M. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Assouline, S.; Or, D. Conceptual and Parametric Representation of Soil Hydraulic Properties: A Review. Vadose Zone J. 2013, 12, 1–20. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Bowman, B.T.; Brunke, R.R.; Drury, C.F.; Tan, C.S. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2000, 64, 478–484. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Rawls, W.J.; Giménez, D. Comparison of soil water retention at field and laboratory scales. Soil Sci. Soc. Am. J. 2001, 65, 460–462. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Stauffer, P.H.; Wöhling, T.; Robinson, B.A.; Vesselinov, V.V. Inverse Modeling of Subsurface Flow and Transport Properties: A Review with New Developments. Vadose Zone J. 2008, 7, 843–864. [Google Scholar] [CrossRef]
- Jacques, D.; Šimůnek, J.; Timmerman, A.; Feyen, J. Calibration of Richards’ and convection–dispersion equations to field-scale water flow and solute transport under rainfall conditions. J. Hydrol. 2002, 259, 15–31. [Google Scholar] [CrossRef]
- Ritter, A.; Hupet, F.; Muñoz-Carpena, R.; Lambot, S.; Vanclooster, M. Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods. Agric. Water Manag. 2003, 59, 77–96. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R.; Regalado, C.M.; Vanclooster, M.; Lambot, S. Analysis of alternative measurement strategies for the inverse optimization of the hydraulic properties of a volcanic soil. J. Hydrol. 2004, 295, 124–139. [Google Scholar] [CrossRef]
- Ireson, A.M.; Wheater, H.S.; Butler, A.P.; Mathias, S.A.; Finch, J.; Cooper, J.D. Hydrological processes in the Chalk unsaturated zone—Insights from an intensive field monitoring programme. J. Hydrol. 2006, 330, 29–43. [Google Scholar] [CrossRef]
- Wollschläger, U.; Pfaff, T.; Roth, K. Field-scale apparent hydraulic parameterisation obtained from TDR time series and inverse modelling. Hydrol. Earth Syst. Sci. 2009, 13, 1953–1966. [Google Scholar] [CrossRef]
- Scharnagl, B.; Vrugt, J.A.; Vereecken, H.; Herbst, M. Inverse modelling of in situ soil water dynamics: Investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol. Earth Syst. Sci. 2011, 15, 3043–3059. [Google Scholar] [CrossRef]
- Andreasen, M.; Andreasen, L.A.; Jensen, K.H.; Sonnenborg, T.O.; Bircher, S. Estimation of Regional Groundwater Recharge Using Data from a Distributed Soil Moisture Network. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Mathias, S.A.; Sorensen, J.P.R.; Butler, A.P. Soil moisture data as a constraint for groundwater recharge estimation. J. Hydrol. 2017, 552, 258–266. [Google Scholar] [CrossRef]
- Thoma, M.J.; Barrash, W.; Cardiff, M.; Bradford, J.; Mead, J. Estimating Unsaturated Hydraulic Functions for Coarse Sediment from a Field-Scale Infiltration Experiment. Vadose Zone J. 2014, 13, 1–17. [Google Scholar] [CrossRef]
- Seki, K.; Ackerer, P.; Lehmann, F. Sequential estimation of hydraulic parameters in layered soil using limited data. Geoderma 2015, 247–248, 117–128. [Google Scholar] [CrossRef]
- Singh, S.K.; Ibbitt, R.; Srinivasan, M.S.; Shankar, U. Inter-comparison of experimental catchment data and hydrological modelling. J. Hydrol. 2017, 550, 1–11. [Google Scholar] [CrossRef]
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial–temporal variability. J. Hydrol. 2012, 422–423, 63–75. [Google Scholar] [CrossRef]
- Hawke, R.; McConchie, J. In situ measurement of soil moisture and pore-water pressures in an ‘incipient’ landslide: Lake Tutira, New Zealand. J. Environ. Manag. 2011, 92, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Ackerer, J.; Chabaux, F.; Van der Woerd, J.; Viville, D.; Pelt, E.; Kali, E.; Lerouge, C.; Ackerer, P.; di Chiara Roupert, R.; Négrel, P. Regolith evolution on the millennial timescale from combined U–Th–Ra isotopes and in situ cosmogenic 10Be analysis in a weathering profile (Strengbach catchment, France). Earth Planet. Sci. Lett. 2016, 453, 33–43. [Google Scholar] [CrossRef]
- Weill, S.; Delay, F.; Pan, Y.; Ackerer, P. A low-dimensional subsurface model for saturated and unsaturated flow processes: Ability to address heterogeneity. Comput. Geosci. 2017, 21, 301–314. [Google Scholar] [CrossRef]
- Gangloff, S.; Stille, P.; Schmitt, A.-D.; Chabaux, F. Factors controlling the chemical composition of colloidal and dissolved fractions in soil solutions and the mobility of trace elements in soils. Geochim. Cosmochim. Acta 2016, 189, 37–57. [Google Scholar] [CrossRef]
- Beaulieu, E.; Lucas, Y.; Viville, D.; Chabaux, F.; Ackerer, P.; Goddéris, Y.; Pierret, M.-C. Hydrological and vegetation response to climate change in a forested mountainous catchment. Model. Earth Syst. Environ. 2016, 2, 191. [Google Scholar] [CrossRef]
- Pierret, M.C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F. Chemical and U–Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France). Hydrol. Earth Syst. Sci. 2014, 18, 3969–3985. [Google Scholar] [CrossRef] [Green Version]
- Campbell Scientific. Instruction Manual: Models 253-L and 257-L Soil Matric Potential Sensors; Révision: 9/13; Campbell Scientific, Inc.: Logan, UT, USA, 2013. [Google Scholar]
- Shock, C.C.; Barnum, J.M.; Seddigh, M. Calibration of Watermark Soil Moisture Sensors for Irrigation Management. In Proceedings of the International Irrigation Show; Irrigation Association: San Diego, CA, USA, 1998; pp. 139–146. [Google Scholar]
- McCann, I.R.; Kincaid, D.C.; Wang, D. Operational Characteristics of the Watermark Model 200 Soil Water Potential Sensor for Irrigation Management. Appl. Eng. Agric. 1992, 8, 603–609. [Google Scholar] [CrossRef]
- Jassas, H.; Kanoua, W.; Merkel, B. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) Using the Surface Energy Balance Algorithm for Land (SEBAL) and Water Balance. Geosciences 2015, 5, 141–159. [Google Scholar] [CrossRef]
- Ghebreyesus, T.D.; Temimi, M.; Fares, A.; Bayabil, K.H. A Multi-Satellite Approach for Water Storage Monitoring in an Arid Watershed. Geosciences 2016, 6, 33. [Google Scholar] [CrossRef]
- Biron, P. Le Cycle de l’eau en Forêt de Moyenne Montagne: Flux de Sève et Bilans Hydriques Stationnels (Bassins Versant du Strengbach à Aubure, Hautes-Vosges). Ph.D. Thesis, Université de Strasbourg, Strasbourg, France, 1994. [Google Scholar]
- Brochet, P.; Gerbier, N. L’évapotranspiration: Aspect Agrométéorologique, Evaluation Pratique de L’évapotranspiration Potentielle; S.M.M. Climatologie: Paris, France, 1968; Available online: http://cda.portail-omvs.org/sites/cda.portail-omvs.org/files/sites/default/files/fichiers_joint/11014_ocr.pdf (accessed on 10 January 2018).
- Granier, A.; Bréda, N.; Biron, P.; Villette, S. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Lehmann, F.; Ackerer, P. Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media. Transp. Porous Media 1998, 31, 275–292. [Google Scholar] [CrossRef]
- Belfort, B.; Carrayrou, J.; Lehmann, F. Implementation of Richardson extrapolation in an efficient adaptive time stepping method: Applications to reactive transport and unsaturated flow in porous media. Transp. Porous Media 2007, 69, 123–138. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Feddes, R.A. Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 2000, 233, 72–85. [Google Scholar] [CrossRef]
- Lehmann, F.; Ackerer, P. Determining Soil Hydraulic Properties by Inverse Method in One-Dimensional Unsaturated Flow. J. Environ. Qual. 1997, 26, 76–81. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Riva, M.; Panzeri, M.; Guadagnini, A.; Neuman, S.P. Role of model selection criteria in geostatistical inverse estimation of statistical data- and model-parameters. Water Resour. Res. 2011, 47, 667–671. [Google Scholar] [CrossRef]
- Ye, M.; Meyer, P.D.; Neuman, S.P. On model selection criteria in multimodel analysis. Water Resour. Res. 2008, 44, 380–384. [Google Scholar] [CrossRef]
- Walter, É.; Pronzato, L. Identification of Parametric Models from Experimental Data; Communications and control engineering; Springer: London, UK, 1997; ISBN 978-3-540-76119-8. [Google Scholar]
- Beydoun, H.; Lehmann, F. Expériences de drainage et estimation de paramètres en milieu poreux non saturé. Comptes Rendus Geosci. 2006, 338, 180–187. [Google Scholar] [CrossRef]
- Durner, W.; Iden, S.C. Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation. Water Resour. Res. 2011, 47, 427–438. [Google Scholar] [CrossRef]
- Varble, J.L.; Chávez, J.L. Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado. Agric. Water Manag. 2011, 101, 93–106. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Agüera, T.; Valdez, L.C.; Fernández, M.D. Evaluation of the Watermark sensor for use with drip irrigated vegetable crops. Irrig. Sci. 2006, 24, 185–202. [Google Scholar] [CrossRef]
- Dane, J.H.; Hruska, S. In-Situ Determination of Soil Hydraulic Properties during Drainage. Soil Sci. Soc. Am. J. 1983, 47, 619–624. [Google Scholar] [CrossRef]
- Romano, N.; Santini, A. Determining soil hydraulic functions from evaporation experiments by a parameter estimation Approach: Experimental verifications and numerical studies. Water Resour. Res. 1999, 35, 3343–3359. [Google Scholar] [CrossRef]
- Iden, S.C.; Durner, W. Free-form estimation of the unsaturated soil hydraulic properties by inverse modeling using global optimization. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Prasad, K.S.H.; Ojha, C.S.P.; Chandramouli, P.N.; Madramootoo, C.A. Estimation of Unsaturated Hydraulic Parameters from Infiltration and Internal Drainage Experiments. J. Irrig. Drain. Eng. 2010, 136, 766–773. [Google Scholar] [CrossRef]
- Mertens, J.; Stenger, R.; Barkle, G.F. Multiobjective Inverse Modeling for Soil Parameter Estimation and Model Verification. Vadose Zone J. 2006, 5, 917–933. [Google Scholar] [CrossRef]
- Schwärzel, K.; Šimůnek, J.; Stoffregen, H.; Wessolek, G.; van Genuchten, M.T. Estimation of the Unsaturated Hydraulic Conductivity of Peat Soils: Laboratory versus Field Data. Vadose Zone J. 2006, 5, 628–640. [Google Scholar] [CrossRef]
- Wöhling, T.; Vrugt, J.A. Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
Layer | Retention Curve Fit | ROSETTA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ksat (cm/day) | θr (-) | θs (-) | α (1/cm) | n (-) | Ksat (cm/day) | θr (-) | θs (-) | α (1/cm) | n (-) | |
1 | 805 | 0.2 | 0.5 | 0.08 | 1.60 | 202 | 0.04 | 0.48 | 0.034 | 1.46 |
2 | 843 | 0.2 | 0.5 | 0.10 | 1.40 | 213 | 0.04 | 0.41 | 0.041 | 1.92 |
3 | 1616 | 0.0 | 0.5 | 0.40 | 1.15 | 262 | 0.04 | 0.42 | 0.041 | 1.96 |
Layer | Ksat (cm/day) | θr (-) | θs (-) | α (1/cm) | n (-) |
---|---|---|---|---|---|
1 | 211.989 | 0.044 | 0.510 | 0.014 | 1.067 |
2 | 605.222 | 0.043 | 0.410 | 0.182 | 1.285 |
3 | 3.095 | 0.043 | 0.420 | 0.041 | 1.975 |
Calibration Period | Data Frequency | Layer | Ksat (cm/day) | * SE (±) | α (1/cm) | * SE (±) | n (-) | * SE (±) |
---|---|---|---|---|---|---|---|---|
2012 | hourly | 1 | 1463 | 366 | 0.018 | 0.002 | 1.040 | 0.001 |
2012 | hourly | 2 | 865 | 455 | 0.106 | 0.017 | 2.976 | 0.202 |
2012 | hourly | 3 | 6 | 7 | 0.075 | 0.022 | 2.661 | 1.107 |
2012 | daily | 1 | 168 | 65 | 0.012 | 0.002 | 1.039 | 0.004 |
2012 | daily | 2 | 3321 | 4836 | 0.180 | 0.077 | 2.617 | 0.549 |
2012 | daily | 3 | 1 | 3 | 0.043 | 0.028 | 2.335 | 3.265 |
2012 | weekly | 1 | 1144 | 36220 | 0.003 | 0.001 | 1.031 | 0.007 |
2012 | weekly | 2 | 337 | 436 | 0.213 | 0.060 | 1.465 | 0.114 |
2012 | weekly | 3 | 3 | 7 | 0.041 | 0.022 | 2.631 | 6.437 |
2015 | hourly | 1 | 275 | 9 | 0.0111 | 0.0002 | 1.083 | 0.001 |
2015 | hourly | 2 | 4970 | 392 | 0.1353 | 0.0023 | 1.580 | 0.008 |
2015 | hourly | 3 | 148 | 142 | 0.0307 | 0.0015 | 1.713 | 0.009 |
2015 | daily | 1 | 117 | 83 | 0.0050 | 0.0004 | 1.119 | 0.004 |
2015 | daily | 2 | 2394 | 787 | 0.1193 | 0.0103 | 1.737 | 0.053 |
2015 | daily | 3 | 730 | 665 | 0.0649 | 0.0147 | 1.532 | 0.026 |
2015 | weekly | 1 | 153 | 72 | 0.0105 | 0.0021 | 1.077 | 0.010 |
2015 | weekly | 2 | 4589 | 3016 | 0.1210 | 0.0149 | 1.576 | 0.062 |
2015 | weekly | 3 | 973 | 1405 | 0.0482 | 0.0153 | 1.836 | 0.082 |
Calibration Period | Data Frequency | Number of Data | Objective Function | 1 RMSE | 2 AIC | 3 BIC |
---|---|---|---|---|---|---|
2012 | hourly | 8568 | 1.71 × 107 | 44.7 | 28,299.4 | 28,316.8 |
2012 | daily | 357 | 1.20 × 106 | 57.9 | 1276.6 | 1281.6 |
2012 | weekly | 51 | 1.03 × 105 | 44.9 | 186.5 | 183.8 |
2015 | hourly | 19,659 | 4.00 × 108 | 143 | 84,721.9 | 84,742.5 |
2015 | daily | 822 | 1.75 × 107 | 146 | 3574.8 | 3583.0 |
2015 | weekly | 117 | 2.34 × 106 | 142 | 521.3 | 521.9 |
Direct Simulation | 1 MBE | 2 RMSE | 3 ME |
---|---|---|---|
2012 hourly calibration | −13.82 | 201.42 | −0.38 |
2012 daily calibration | −37.83 | 140.80 | 0.33 |
2012 weekly calibration | 94.81 | 903.92 | −26.76 |
2015 hourly calibration | 50.79 | 135.72 | 0.37 |
2015 daily calibration | 28.51 | 130.46 | 0.42 |
2015 weekly calibration | 52.31 | 136.36 | 0.37 |
ROSETTA parameters | 5.83 | 163.05 | 0.10 |
Laboratory parameters | −52.34 | 178.75 | −0.09 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belfort, B.; Toloni, I.; Ackerer, P.; Cotel, S.; Viville, D.; Lehmann, F. Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration. Geosciences 2018, 8, 72. https://doi.org/10.3390/geosciences8020072
Belfort B, Toloni I, Ackerer P, Cotel S, Viville D, Lehmann F. Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration. Geosciences. 2018; 8(2):72. https://doi.org/10.3390/geosciences8020072
Chicago/Turabian StyleBelfort, Benjamin, Ivan Toloni, Philippe Ackerer, Solenn Cotel, Daniel Viville, and François Lehmann. 2018. "Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration" Geosciences 8, no. 2: 72. https://doi.org/10.3390/geosciences8020072
APA StyleBelfort, B., Toloni, I., Ackerer, P., Cotel, S., Viville, D., & Lehmann, F. (2018). Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration. Geosciences, 8(2), 72. https://doi.org/10.3390/geosciences8020072