A Hybrid Empirical Green’s Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System
Abstract
:1. Introduction
2. Method
3. Data
4. Simulation of the M = 3.2 Mainshock
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGarr, A.; Bekins, B.; Burkardt, N.; Dewey, J.; Earle, P.; Ellsworth, W.; Ge, S.; Hickman, S.; Holland, A.; Majer, E. Coping with earthquakes induced by fluid injection. Science 2015, 347, 830–831. [Google Scholar] [CrossRef] [PubMed]
- Gibowicz, S.J.; Lasocki, S. Seismicity induced by mining: Ten years later. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 44, pp. 39–181. [Google Scholar]
- Ellsworth, W.L. Injection-induced earthquakes. Science 2013, 341, 142. [Google Scholar] [CrossRef] [PubMed]
- DBEIS. Guidance on Fracking: Developing Shale Gas in the UK. Department for Business, Energy & Industrial Strategy. Available online: https://www.gov.uk/government/publications/about-shale-gas-and-hydraulic-fracturing-fracking (accessed on 1 June 2017).
- Andrews, I. The Carboniferous Bowland Shale Gas Study: Geology and Resource Estimation; British Geological Survey for Department of Energy and Climate Change: London, UK, 2013.
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef]
- Edwards, B.; Kraft, T.; Cauzzi, C.; Kästli, P.; Wiemer, S. Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophys. J. Int. 2017, 201, 1020–1037. [Google Scholar] [CrossRef]
- Giardini, D. Geothermal quake risks must be faced. Nature 2009, 462, 848–849. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.; Eisner, L.; Styles, P.; Turner, P. Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe. Geophys. Res. Lett. 2014, 41, 8308–8314. [Google Scholar] [CrossRef]
- Verdon, J.P. Significance for secure CO2 storage of earthquakes induced by fluid injection. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Keranen, K.M.; Savage, H.M.; Abers, G.A.; Cochran, E.S. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology 2013, 41, 699–702. [Google Scholar] [CrossRef]
- Keranen, K.M.; Weingarten, M.; Abers, G.A.; Bekins, B.A.; Ge, S. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 2014, 345, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.M.; Eaton, D.W.; Ghofrani, H.; Walker, D.; Cheadle, B.; Schultz, R.; Shcherbakov, R.; Tiampo, K.; Gu, J.; Harrington, R.M. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 2016, 87, 631–647. [Google Scholar] [CrossRef]
- Grigoli, F.; Cesca, S.; Priolo, E.; Rinaldi, A.P.; Clinton, J.F.; Stabile, T.A.; Dost, B.; Fernandez, M.G.; Wiemer, S.; Dahm, T. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev. Geophys. 2017, 55, 310–340. [Google Scholar] [CrossRef]
- OGA. Traffic Light Monitoring Scheme to Mitigate Induced Seismicity. Oil and Gas Authority. Available online: https://www.ogauthority.co.uk/media/3696/traffic-light-system-doc-for-website_may-2017.pdf (accessed on 1 June 2017).
- Bommer, J.J.; Oates, S.; Cepeda, J.M.; Lindholm, C.; Bird, J.; Torres, R.; Marroquin, G.; Rivas, J. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng. Geol. 2006, 83, 287–306. [Google Scholar] [CrossRef]
- Bommer, J.J. Predicting and Monitoring Ground Motions Induced by Hydraulic Fracturing. Report Commissioned by the Oil and Gas Authority. Available online: https://www.ogauthority.co.uk/media/3693/pgv-thresholds-for-control-of-induced-seismic-hazard_v5.pdf (accessed on 1 June 2017).
- Bommer, J.J.; Stafford, P.J.; Edwards, B.; Dost, B.; van Dedem, E.; Rodriguez-Marek, A.; Kruiver, P.; van Elk, J.; Doornhof, D.; Ntinalexis, M. Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, The Netherlands. Earthq. Spectra 2017, 33, 481–498. [Google Scholar] [CrossRef]
- Poggi, V.; Edwards, B.; Fäh, D. Development of hazard-and amplification-consistent elastic design spectra. Soil Dyn. Earthq. Eng. 2018. [Google Scholar] [CrossRef]
- Butcher, A.; Luckett, R.; Verdon, J.P.; Kendall, J.M.; Baptie, B.; Wookey, J. Local magnitude discrepancies for near-event receivers: Implications for the UK traffic-light scheme. Bull. Seismol. Soc. Am. 2017, 107, 532–541. [Google Scholar] [CrossRef]
- Douglas, J.; Edwards, B. Recent and future developments in earthquake ground motion estimation. Earth-Sci. Rev. 2016, 160, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, S.H. Earthquake aftershocks as Green’s functions. Geophys. Res. Lett. 1978, 5, 1–4. [Google Scholar] [CrossRef]
- Hutchings, L.; Viegas, G. Application of empirical Green’s functions in earthquake source, wave propagation and strong ground motion studies. In Earthquake Research and Analysis-New Frontiers in Seismology; InTech: London, UK, 2012. [Google Scholar]
- Pavic, R.; Koller, M.G.; Bard, P.-Y.; Lacave-Lachet, C. Ground motion prediction with the empirical Green’s function technique: An assessment of uncertainties and confidence level. J. Seismol. 2000, 4, 59–77. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology: Theory and Methods; W. H. Freeman: San Francisco, CA, USA, 1980. [Google Scholar]
- Brune, J.N. Tectonic stress and spectra of seismic shear waves from earthquakes. J. Geophys. Res. 1970, 75, 4997–5009. [Google Scholar] [CrossRef]
- Boatwright, J. A dynamic model for far-field acceleration. Bull. Seismol. Soc. Am. 1982, 72, 1049–1068. [Google Scholar]
- Madariaga, R. High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophys. J. Int. 1977, 51, 625–651. [Google Scholar] [CrossRef]
- Sato, T.; Hirasawa, T. Body wave spectra from propagating shear cracks. J. Phys. Earth 1973, 21, 415–431. [Google Scholar] [CrossRef]
- Bouchon, M. A simple method to calculate Green’s functions for elastic layered media. Bull. Seismol. Soc. Am. 1981, 71, 959–971. [Google Scholar]
- Hanks, T.C.; Mcguire, R.K. The character of high-frequency strong ground motion. Bull. Seismol. Soc. Am. 1981, 71, 2071–2095. [Google Scholar]
- Edwards, B.; Rietbrock, A.; Bommer, J.J.; Baptie, B. The acquisition of source, path, and site effects from microearthquake recordings using q tomography: Application to the United Kingdom. Bull. Seismol. Soc. Am. 2008, 98, 1915–1935. [Google Scholar] [CrossRef]
- Boore, D.M.; Joyner, W.B.; Wennerberg, L. Fitting the stochastic omega(-2) source model to observed response spectra in western North America—Trade-offs between delta-sigma and kappa. Bull. Seismol. Soc. Am. 1992, 82, 1956–1963. [Google Scholar]
- Bachmann, C.; Wiemer, S.; Goertz-Allmann, B.; Woessner, J. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Baltay, A.; Ide, S.; Prieto, G.; Beroza, G. Variability in earthquake stress drop and apparent stress. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Baltay, A.S.; Hanks, T.C.; Beroza, G.C. Stable stress-drop measurements and their variability: Implications for ground-motion prediction. Bull. Seismol. Soc. Am. 2013, 103, 211–222. [Google Scholar] [CrossRef]
- Calderoni, G.; Rovelli, A.; Singh, S.K. Stress drop and source scaling of the 2009 April l’Aquila earthquakes. Geophys. J. Int. 2012, 192, 260–274. [Google Scholar] [CrossRef]
- Clerc, F.; Harrington, R.M.; Liu, Y.; Gu, Y.J. Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake, Alberta. Geophys. Res. Lett. 2016, 43, 6942–6951. [Google Scholar] [CrossRef]
- Goebel, T.; Hauksson, E.; Shearer, P.; Ampuero, J. Stress-drop heterogeneity within tectonically complex regions: A case study of San Gorgonio Pass, southern California. Geophys. J. Int. 2015, 202, 514–528. [Google Scholar] [CrossRef]
- Frankel, A. Simulating strong motions of large earthquakes using recordings of small earthquakes: The Loma Prieta mainshock as a test case. Bull. Seismol. Soc. Am. 1995, 85, 1144–1160. [Google Scholar]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. Moment magnitude scale. J. Geophys. Res. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Allmann, B.P.; Shearer, P.M. Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Goertz-Allmann, B.P.; Edwards, B. Constraints on crustal attenuation and three-dimensional spatial distribution of stress drop in Switzerland. Geophys. J. Int. 2013, 196, 493–509. [Google Scholar] [CrossRef]
- Edwards, B.; Fäh, D. A stochastic ground-motion model for Switzerland. Bull. Seismol. Soc. Am. 2013, 103, 78–98. [Google Scholar] [CrossRef]
- Boore, D.M. Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 2003, 160, 635–676. [Google Scholar] [CrossRef]
- Nigam, N.C.; Jennings, P.C. Calculation of response spectra from strong-motion earthquake records. Bull. Seismol. Soc. Am. 1969, 59, 909–922. [Google Scholar]
- Baer, M.; Deichmann, N.; Braunmiller, J.; Clinton, J.; Husen, S.; Fah, D.; Giardini, D.; Kastli, P.; Kradolfer, U.; Wienier, S. Earthquakes in Switzerland and surrounding regions during 2006. Swiss J. Geosci. 2007, 100, 517–528. [Google Scholar] [CrossRef]
- Deichmann, N.; Baer, M.; Clinton, J.; Husen, S.; Fah, D.; Giardini, D.; Kastli, P.; Kradolfer, U.; Wiemer, S. Earthquakes in Switzerland and surrounding regions during 2007. Swiss J. Geosci. 2008, 101, 659–667. [Google Scholar] [CrossRef]
- Deichmann, N.; Giardini, D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol. Res. Lett. 2009, 80, 784–798. [Google Scholar] [CrossRef]
- Deichmann, N.; Kraft, T.; Evans, K.F. Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics 2014, 52, 84–97. [Google Scholar] [CrossRef]
- Kraft, T.; Deichmann, N. High-precision relocation and focal mechanism of the injection-induced seismicity at the Basel EGS. Geothermics 2014, 52, 59–73. [Google Scholar] [CrossRef]
- Goertz-Allmann, B.P.; Edwards, B.; Bethmann, F.; Deichmann, N.; Clinton, J.; Fäh, D.; Giardini, D. A new empirical magnitude scaling relation for Switzerland. Bull. Seismol. Soc. Am. 2011, 101, 3088–3095. [Google Scholar] [CrossRef]
- Edwards, B.; Fäh, D. Measurements of stress parameter and site attenuation from recordings of moderate to large earthquakes in Europe and the Middle East. Geophys. J. Int. 2013, 194, 1190–1202. [Google Scholar] [CrossRef]
- Douglas, J.; Edwards, B.; Convertito, V.; Sharma, N.; Tramelli, A.; Kraaijpoel, D.; Cabrera, B.M.; Maercklin, N.; Troise, C. Predicting ground motion from induced earthquakes in geothermal areas. Bull. Seismol. Soc. Am. 2013, 103, 1875–1897. [Google Scholar] [CrossRef]
- Cauzzi, C.; Edwards, B.; Fäh, D.; Clinton, J.; Wiemer, S.; Kästli, P.; Cua, G.; Giardini, D. New predictive equations and site amplification estimates for the next-generation Swiss shakemaps. Geophys. J. Int. 2015, 200, 421–438. [Google Scholar] [CrossRef]
- Edwards, B.; Douglas, J. Selecting ground-motion models developed for induced seismicity in geothermal areas. Geophys. J. Int. 2013, 195, 1314–1322. [Google Scholar] [CrossRef]
- Kane, D.L.; Shearer, P.M.; Goertz-Allmann, B.P.; Vernon, F.L. Rupture directivity of small earthquakes at Parkfield. J. Geophys. Res. Solid Earth 2013, 118, 212–221. [Google Scholar] [CrossRef]
- Deichmann, N. Local magnitude, a moment revisited. Bull. Seismol. Soc. Am. 2006, 96, 1267–1277. [Google Scholar] [CrossRef]
- Mignan, A.; Broccardo, M.; Wiemer, S.; Giardini, D. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, B.; Staudenmaier, N.; Cauzzi, C.; Wiemer, S. A Hybrid Empirical Green’s Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System. Geosciences 2018, 8, 180. https://doi.org/10.3390/geosciences8050180
Edwards B, Staudenmaier N, Cauzzi C, Wiemer S. A Hybrid Empirical Green’s Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System. Geosciences. 2018; 8(5):180. https://doi.org/10.3390/geosciences8050180
Chicago/Turabian StyleEdwards, Benjamin, Nadine Staudenmaier, Carlo Cauzzi, and Stefan Wiemer. 2018. "A Hybrid Empirical Green’s Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System" Geosciences 8, no. 5: 180. https://doi.org/10.3390/geosciences8050180
APA StyleEdwards, B., Staudenmaier, N., Cauzzi, C., & Wiemer, S. (2018). A Hybrid Empirical Green’s Function Technique for Predicting Ground Motion from Induced Seismicity: Application to the Basel Enhanced Geothermal System. Geosciences, 8(5), 180. https://doi.org/10.3390/geosciences8050180