Intrusion of Saline Water into a Coastal Aquifer Containing Palaeogroundwater in the Viimsi Peninsula in Estonia
Abstract
:1. Introduction
2. Geology and Hydrogeological Setting
3. Material and Methods
4. Results and Discussion
4.1. Mixing
4.2. Spatial Distribution and the Origin of Radium in Groundwater
4.3. Secondary U Deposits as the Source of 226Ra
4.4. Future Prospects
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ferguson, G.; Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Chang. 2012, 2, 342–345. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; van den Bohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 5, 3–26. [Google Scholar] [CrossRef]
- Wetzel, M.; Kühn, M. Salinization of freshwater aquifers due to subsurface fluid injection quantified by species transport simulations. Energy Procedia 2016, 97, 411–418. [Google Scholar] [CrossRef]
- Colombani, N.; Osti, A.; Volta, G.; Mastrocicco, M. Impact of climate change on salinization of coastal water resources. Water Resour. Manag. 2016, 30, 2483–2496. [Google Scholar] [CrossRef]
- Delfs, J.-O.; Nordbeck, J.; Bauer, S. Upward brine migration resulting from pressure increases in a layered subsurface system. Env. Earth Sci. 2016, 75, 1441. [Google Scholar] [CrossRef]
- Vallejos, A.; Sola, F.; Yechieli, Y.; Pulido-Bosch, A. Influence of the paleogeographic evolution on the groundwater salinity in a coastal aquifer. Cabo De Gata Aquiferse Spain J. Hydrol. 2018, 557, 55–66. [Google Scholar]
- Edmunds, W.M. Paleowater in European coastal aquifers—The goals and main conclusions of the PALAEAUX project. In Paleowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene; Edmunds, W.M., Milne, C.J., Eds.; Geological Society London Special Publications: London, UK, 2001; pp. 1–16. [Google Scholar]
- Cary, L.; Petelet-Giraud, E.; Bertrand, G.; Kloppmann, W.; Aquilina, L.; Martins, V.; Hirata, R.; Montenegro, S.; Pauwels, H.; Chatton, E.; et al. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach. Sci. Total Environ. 2015, 530–531, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Daniele, L.; Vallejos, A.; Corbellá, M.; Molina, L.; Pulido-Bosch, A. Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: The case of Aguadulce (SE Spain). Appl. Geochem. 2013, 29, 43–54. [Google Scholar] [CrossRef]
- Mollema, P.; Antonellini, M.; Dinelli, E.; Gabbianelli, G.; Greggio, N.; Stuyfzand, P. Hydrochemical and physical processes influencing salinization and freshening in mediterranean low-lying coastal environments. Appl. Geochem. 2013, 34, 207–221. [Google Scholar] [CrossRef]
- Carreira, P.M.; Marques, J.M.; Nunes, D. Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): Natural vs. human interference—A review and reinterpretation. Appl. Geochem. 2014, 41, 163–175. [Google Scholar] [CrossRef]
- Valocchi, A.J.; Street, R.L.; Roberts, P.V. Transport of ion-exchanging solutes in groundwater: Chromatographic theory and field simulation. Water Resour. Res. 1981, 17, 1517–1527. [Google Scholar] [CrossRef]
- Appelo, C.A.J. Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour. Res. 1994, 30, 2793–2805. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Willemsen, A. Geochemical calculations and observations on salt water intrusions. I: A combined geochemical/mixing cell model. J. Hydrol. 1987, 94, 313–330. [Google Scholar] [CrossRef]
- Van der Kemp, W.; Appelo, C.A.J.; Walraevens, K. Inverse chemical modeling and radiocarbon dating of palaeogroundwaters: The Tertiary Ledo-Paniselian aquifer in Flanders, Belgium. Water Resour. Res. 2000, 36, 1277–1287. [Google Scholar] [CrossRef]
- Martinez, D.E.; Bocanegra, E.M. Hydrochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol. J. 2002, 10, 393–408. [Google Scholar] [CrossRef]
- Giménez, F.E. Dynamic of sea water interface using hydrochemical facies evolution diagram. Ground Water 2010, 48, 212–216. [Google Scholar] [CrossRef]
- Raidla, V.; Kirsimäe, K.; Vaikmäe, R.; Jõeleht, A.; Karro, E.; Marandi, A.; Savitskaja, L. Geochemical evolution of groundwater in the Cambrian–Vendian aquifer system of the Baltic Basin. Chem. Geol. 2009, 258, 219–231. [Google Scholar] [CrossRef]
- Raidla, V.; Kern, Z.; Pärn, J.; Babre, A.; Erg, K.; Ivask, J.; Kalvāns, A.; Kohán, B.; Lelgus, M.; Martma, T.; et al. A δ18O isoscape for the shallow groundwater in the Baltic Artesian Basin. J. Hydrol. 2016, 542, 254–267. [Google Scholar] [CrossRef]
- Vaikmäe, R.; Vallner, L.; Loosli, H.H.; Blaser, P.C.; Juillard-Tardent, M. Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. In Palaeowaters of Coastal Europe: Evolution of Groundwater since the late Pleistocene; Edmunds, W.M., Milne, C.J., Eds.; Geological Society: London, UK, 2001; Volume 189, pp. 17–27. [Google Scholar]
- Raidla, V.; Kirsimäe, K.; Vaikmäe, R.; Kaup, E.; Martma, T. Carbon isotope systematics of the Cambrian–Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of groundwater. Appl. Geochem. 2012, 27, 2042–2052. [Google Scholar] [CrossRef]
- Perens, R.; Savitski, L.; Savva, V.; Jaštšuk, S.; Häelm, M. Delineation of Groundwater Bodies and Description of Their Boundaries and Hydrogeological Conceptual Models; Geological Survey of Estonia: Tallinn, Estonia, 2012. (In Estonian) [Google Scholar]
- Erg, K.; Truu, M.; Kebbinau, K.; Lelgus, M.; Tarros, S. Report of Estonian Environmental Monitoring. Monitoring of Groundwater Bodies in 2016 of State Environmental Programme; Geological Survey of Estonia: Tallinn, Estonia, 2017. (In Estonia) [Google Scholar]
- Suursoo, S.; Hill, L.; Raidla, V.; Kiisk, M.; Jantsikene, A.; Nilb, N.; Czuppon, G.; Putk, K.; Munter, R.; Koch, R.; et al. Temporal changes in radiological and chemical composition of Cambrian-Vendian groundwater in conditions of intensive water consumption. Sci. Total Environ. 2017, 601–602, 679–690. [Google Scholar] [CrossRef]
- Savitskaja, L.; Viigand, A. Report of Microcomponent and Isotope Composition Research in Cm–V Aquifer Groundwater for Estimating Drinking Water Quality in North Estonia; Geological Survey of Estonia: Tallinn, Estonia, 1994. (In Estonian) [Google Scholar]
- Mokrik, R.; Karro, E.; Savitskaja, L.; Drevaliene, G. The origin of barium in the Cambrian-Vendian aquifer system, North Estonia. Est. J. Earth Sci. 2009, 58, 193–208. [Google Scholar] [CrossRef]
- Forte, M.; Bagnato, L.; Caldognetto, E.; Risica, S.; Trotti, F.; Rusconi, R. Radium isotopes in Estonian groundwater: Measurements, analytical correlations, population dose and a proposal for a monitoring stradegy. J. Radiat. Prot. 2010, 30, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Vinson, D.S.; Vengosh, A.; Hirschfeld, D.; Dwyer, G.S. Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem. Geol. 2009, 260, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Vengosh, A.; Hirschfeld, D.; Vinson, D.; Dwyer, G.; Raanan, H.; Rimawi, O.; Al-Zoubi, A.; Akkawi, E.; Marie, A.; Haquin, G.; et al. High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ. Sci. Technol. 2009, 43, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Szabo, Z.; DePaul, V.T.; Fischer, J.M.; Kraemer, T.F.; Jacobsen, E. Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Appl. Geochem. 2012, 27, 729–752. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, D.; Riese, A.C. The thermodynamic properties of radium. Geochim. Cosmochim. Acta 1985, 49, 1593–1601. [Google Scholar] [CrossRef]
- Kraemer, T.F.; Reid, D.F. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region. Chem. Geol. 1984, 2, 153–174. [Google Scholar] [CrossRef]
- Sturchio, N.C.; Banner, J.L.; Binz, C.M.; Heraty, L.B.; Musgrove, M. Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Appl. Geochem. 2001, 16, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Swarzenski, P.W.; Baskaran, M.; Rosenbauer, R.J.; Edwards, B.D.; Land, M. A combined radio- and stable-isotopic study of a California coastal aquifer system. Water 2013, 5, 480–504. [Google Scholar] [CrossRef]
- Sherif, M.I.; Linb, J.; Poghosyan, A.; Abouelmagd, A.; Sultan, M.I.; Sturchio, N.C. Geological and hydrogeochemical controls on radium isotopes in groundwater of the Sinai Peninsula, Egypt. Sci. Total Environ. 2018, 613–614, 877–885. [Google Scholar] [CrossRef]
- Porcelli, D.; Swarzenski, P.W. The behavior of U- and Th-series nuclides in groundwater. Rev. Mineral. Geochem. 2003, 52, 317–361. [Google Scholar] [CrossRef]
- Vaaramaa, K.; Lehto, J.; Ervanne, H. Soluble and Particle-Bound 234,238U, 226Ra and 210Po in ground waters. Radiochim. Acta 2003, 91, 21–27. [Google Scholar] [CrossRef]
- Vinson, D.S.; Tagma, T.; Bouchaou, L.; Dwyer, G.; Warner, N.R. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers. Appl. Geochem. 2013, 38, 161–175. [Google Scholar] [CrossRef]
- Perens, R.; Vallner, L. Water-bearing formation. In Geology and Mineral Resources of Estonia; Raukas, A., Teedumäe, A., Eds.; Estonian Academy Publishers: Tallinn, Estonia, 1997; pp. 137–145. [Google Scholar]
- Puura, V.; Vaher, R.; Klein, V.; Koppelmaa, H.; Niin, M.; Vanamb, V.; Kirs, J. Zoning and stratification of the rock complexes of the cristaline basement. In The Crystalline Basement of Estonian Territory; Viiding, H., Ed.; Nauka: Moscow, Russia, 1983; pp. 15–45. (In Russian) [Google Scholar]
- Kirs, J.; Puura, V.; Soesoo, A.; Klein, V.; Konsa, M.; Koppelmaa, H.; Niin, M.; Urtson, K. The crystalline basement of Estonia: Rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Est. J. Earth Sci. 2009, 58, 219–228. [Google Scholar] [CrossRef]
- Karro, E.; Marandi, A.; Vaikmäe, R. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia. Hydrogeol. J. 2004, 12, 424–435. [Google Scholar] [CrossRef]
- Savitskaja, L.; Jaštšuk, S. Determination of Radionuclides Concentrations in Groundwater from Cambrian-Vendian Aquifer System and Assessment of Its Conformity to the Norms set by EU Drinking Water Directive 98/83/EC; Geological Survey of Estonia: Tallinn, Estonia, 2001. (In Estonian) [Google Scholar]
- Suursoo, S.; Kiisk, M.; Al-Malahmeh, A.; Jantsikene, A.; Lumiste, L. 226Ra measurement by lsc as a tool to assess the efficiency of a water treatment technology for removing radionuclides from groundwater. Appl. Radiat. Isot. 2014, 93, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Aeschbach-Hertig, W.; Solomon, D.K. Noble gas thermometry in groundwater hydrology. In The Noble Gases as Geochemical Tracers; Burnard, P., Ed.; Springer: Berlin, Germany, 2013; pp. 81–122. [Google Scholar]
- Yezhova, M.; Polyakov, V.; Tkachenko, A.; Savitski, L.; Belkina, V. Palaeowaters of North Estonia and their influence on changes of resources and the quality of fresh groundwaters of large coastal water supplies. Geologija 1996, 19, 37–40. [Google Scholar]
- Savitski, L.; Viigand, A.; Belkina, V.; Jashtshuk, S. The Estimation of Groundwater Resources in Tallinn. Seeking Groundwater Supplies for Tallinn and Its Vicinity; Geological Survey of Estonia: Tallinn, Estonia, 1993. (In Estonian) [Google Scholar]
- Raidla, V.; Kirsimäe, K.; Ivask, J.; Kaup, E.; Knöller, K.; Marandi, A.; Martma, T.; Vaikmäe, R. Sulphur isotope composition of dissolved sulphate in the Cambrian-Vendian aquifer system in the northern part of the Baltic Artesian Basin. Chem. Geol. 2014, 383, 147–154. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Feistel, R.; Weinreben, S.; Wolf, H.; Seitz, S.; Spitzer, P.; Adel, B.; Nausch, G.; Schneider, B.; Wright, D.G. Density and Absolute Salinity of the Baltic Sea 2006–2009. Ocean Sci. 2010, 6, 3–24. [Google Scholar] [CrossRef]
- Arhangelski, B.N.; Fedorova, A.M. Cambrian–Vendian aquifer system. In Hydrogeology in U.S.S.R. XXX; Arhangelski, B.N., Ed.; Nedra: Moscow, Russia, 1966; pp. 170–192. (In Russian) [Google Scholar]
- Petersell, V.; Kivisilla, J.; Pukkonen, E.; Põldvere, A.; Täht, K. Evaluation of Ore Events and Mineralization Points in Estonian Bedrock and Crystalline Basement; Geological Survey of Estonia: Tallinn, Estonia, 1991. (In Russian) [Google Scholar]
- Raudsep, R. Mineral resources, mineral occurrences. In Geology and Mineral Resources of Estonia; Raukas, A., Teedumäe, A., Eds.; Estonian Academy Publishers: Tallinn, Estonia, 1997; pp. 369–372. [Google Scholar]
- Raidla, V.; Kirsimäe, K.; Bityukova, L.; Jõeleht, A.; Shogenova, A.; Šliaupa, S. Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the northern Baltic Sedimentary Basin. Geol. Q. 2006, 50, 11–22. [Google Scholar]
- Liivamägi, S.; Somelar, P.; Mahaney, W.C.; Kirs, J.; Vircava, I.; Kirsimäe, K. Late Neoproterozoic Baltic paleosol: Intense weathering at high latitude? Geology 2014, 42, 323–326. [Google Scholar] [CrossRef]
- Liivamägi, S.; Somelar, P.; Vircava, I.; Mahaney, W.C.; Kirs, J.; Kirsimäe, K. Petrology, mineralogy and geochemical climofunctions of the Neoproterozoic Baltic paleosol. Precambrian Res. 2015, 256, 170–188. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Szabo, Z.; Jurgens, B.C. Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA. Appl. Geochem. 2018, 89, 34–48. [Google Scholar] [CrossRef]
- Swarzenski, P.W. U/Th series radionuclides as tracers of coastal groundwater. Chem. Rev. 2007, 107, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, D. Aqueous Environmental Geochemistry, 1st ed.; Prentice Hall: New Jersey, NJ, USA, 1997. [Google Scholar]
- King, P.T.; Michel, J.; Moore, W.S. Ground water geochemistry of 228Ra, 226Ra and 222Rn. Geochim. Cosmochim. Acta 1982, 46, 1173–1182. [Google Scholar] [CrossRef]
- Chau, N.D.; Lucyna, R.; Jakub, N.; Paweł, J. Radium isotopes in the Polish Outer Carpathian mineral waters of various chemical composition. J. Environ. Radioact. 2012, 112, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Rosholt, J.N. Isotopic composition of uranium and thorium in crystalline rocks. J. Geophys. Res. Solid Earth 1983, 88, 7315–7330. [Google Scholar] [CrossRef]
- Langmuir, D. Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Herczeg, A.L.; Simpson, H.J.; Anderson, R.F.; Tfjer, R.M.; Mathieu, G.G.; Deck, B.L. Uranium and radium mobility in groundwaters and brines within the Delaware basin, southeastern New Mexico, U.S.A. Chem. Geol. 1988, 72, 181–196. [Google Scholar]
- Guerrero, J.L.; Vallejos, A.; Ceron, J.C.; Sanchez-Martos, F.; Pulido-Bosch, A.; Bolívar, J.P. U-isotopes and 226Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas. J. Environ. Radioact. 2016, 158–159, 9–20. [Google Scholar] [CrossRef]
- Kipfer, R.; Aeschbach-Hertig, W.; Peters, F.; Stute, M. Noble Gases in Lakes and Groundwaters; Porcelli, D., Ballentine, C.J., Wieler, R., Eds.; Mineralogical Society of America: Washington, DC, USA, 2002; pp. 615–690. [Google Scholar]
- Grundl, T.; Magnusson, N.; Brennwald, M.S.; Kipfer, R. Mechanisms of subglacial groundwater recharge as derived from noble gas, 14C, and stable isotopic data. Earth Planet. Sci. Lett. 2013, 369–370, 78–85. [Google Scholar] [CrossRef]
- Severinghaus, J.P.; Sowers, T.; Brook, E.J.; Alley, R.B.; Michael, L.; Bender, M.L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 1998, 391, 141–146. [Google Scholar] [CrossRef]
- Gilkeson, R.H.; Cartwright, K.; Cowart, J.B.; Holtzman, R.B. Hydrogeologic and Geochemical Studies of Selected Natural Radioisotopes and Barium in Groundwater in Illinois; Final Technical Completion Report to U.S. Bureau of Reclamation, Project B-108-ILL; University of Illinois at Urbana-Champaign, Water Resources Center: St Paul, MN, USA, 1983. [Google Scholar]
- Drake, H.; Suksi, J.; Tullborg, E.-L.; Lahaye, Y. Quaternary redox transitions in deep crystalline rock fractures at the western margin of the Greenland ice sheet. Appl. Geochem. 2017, 76, 196–209. [Google Scholar] [CrossRef]
- FinEst Link. 2018. Available online: http://www.finestlink.fi/en/ (accessed on 14 January 2018).
- Pärn, J. Origin and Geochemical Evolution of Palaeogroundwater in the Northern Part of the Baltic Artesian Basin. Doctoral Thesis, Tallinn University of Technology, Tallinn, Estonia, 2018; p. 226. [Google Scholar]
- Clayton, R.N.; Friedman, I.; Graf, D.L.; Mayeda, T.K.; Meents, W.F.; Shimp, N.F. The origin of saline formation waters. Isotopic composition. J. Geophys. Res. 1966, 71, 3869–3882. [Google Scholar] [CrossRef]
- Grasby, S.E.; Osadetz, K.; Betcher, R.; Render, F. Reversal of the regional-scale flowsystem of the Williston Basin in response to Pleistocene glaciation. Geology 2000, 29, 635–638. [Google Scholar] [CrossRef]
- McIntosh, J.C.; Walter, L.M. Paleowaters in Silurian–Devonian carbonate aquifers: Geochemical evolution of groundwater in the Great Lakes region since the late Pleistocene. Geochim. Cosmochim. Acta 2006, 70, 2454–2479. [Google Scholar] [CrossRef]
- Person, M.; McIntosh, J.C.; Remenda, V.; Bense, V. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater systems. Rev. Geophys. 2007, 45, RG3007. [Google Scholar] [CrossRef]
- Siegel, D.I.; Mandle, R.J. Isotopic evidence for glacial meltwater recharge to the Cambrian-Ordovician aquifer, north-central United States. Quat. Res. 1984, 22, 328–335. [Google Scholar] [CrossRef]
No | Well ID | Date | Depth | pH | EC | T | δ18O | δ2H | 226Ra | 228Ra | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− | Br− | Ba2+ | Mn2+ | NH4+ | NO3− | Sr2+ | Fe2+ | F− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | μS·cm−1 | °C | ‰ VSMOW | Bq·L−1 | mg·L−1 | ||||||||||||||||||||
Voronka aquifer (V2vr) | |||||||||||||||||||||||||
12 | 124 | 01.06.1988 | 101.5 | −21.5 | |||||||||||||||||||||
25 | 124 | 13.04.2005 | 101.5 | 8.0 | 411 | 8.4 | −20.8 | 0.16 | 0.10 | 34.5 | 10.1 | 34.7 | 7.3 | 146.4 | 56.7 | bdl | 0.2 | bdl | 0.07 | 0.18 | |||||
3 | 158 | 26.06.1990 | 110 | 7.6 | 102.1 | 21.3 | 79.1 | 1.0 | 311.2 | 12.8 | 33.3 | 0.03 | bdl | 12.10 | |||||||||||
4 | 158 | 28.10.2014 | 110 | −14.9 | −107.9 | ||||||||||||||||||||
5 | 171 | 08.10.2014 | 95 | 8.2 | 461 | 8.4 | −20.7 | −157.2 | 0.11 | 0.30 | 44.7 | 13.5 | 29.6 | 8.8 | 170.8 | 53.3 | 0.7 | bdl | bdl | 0.41 | 0.47 | ||||
65 | 179 | 12.04.2005 | 90 | 7.8 | 364 | 8.2 | −20.3 | 0.40 | 0.16 | 30.9 | 13.6 | 28.0 | 8.7 | 183.1 | 41.1 | bdl | 0.7 | bdl | 0.05 | 0.13 | |||||
7 | 179 | 09.06.2014 | 90 | 8.1 | 405 | 8.1 | −20.5 | −154.6 | 0.07 | 0.20 | 35.9 | 13.2 | 28.1 | 8.5 | 36.5 | 0.1 | bdl | 0.37 | 0.27 | 0.17 | 0.63 | 0.49 | |||
82 | 185 | 11.08.1991 | 95 | −20.4 | |||||||||||||||||||||
95 | 187 | 13.04.2005 | 70 | 7.8 | 254 | 8.3 | −21.3 | 0.13 | 0.10 | 22.6 | 8.4 | 15.0 | 6.0 | 152.5 | 11.0 | bdl | 0.6 | bdl | 0.05 | 0.08 | |||||
10 | 187 | 13.11.2013 | 70 | 8.0 | 136 | 8.5 | −21.3 | −161.1 | 0.11 | 0.25 | 21.9 | 3.7 | 11.7 | 4.2 | 155.6 | 6.7 | 0.2 | 1.2 | 0.08 | 0.10 | 0.01 | 0.23 | 0.17 | 0.29 | |
111 | 509 | 05.12.1989 | 44.1 | 21.9 | 42.6 | 220.0 | 80.0 | 1.2 | 0.40 | ||||||||||||||||
122 | 1153 | 04.07.1991 | 77.5 | −21.8 | |||||||||||||||||||||
133 | 1153 | 05.07.1994 | 77.5 | 7.4 | −21.4 | 23.2 | 10.0 | 18.2 | 7.0 | 158.7 | 20.6 | 5.9 | |||||||||||||
144 | 1153 | 30.08.1995 | 77.5 | −21.5 | 36.1 | 32.7 | 128.1 | 81.0 | 13.0 | ||||||||||||||||
155 | 1153 | 13.04.2005 | 77.5 | 7.8 | 253 | 8.5 | −21.5 | bdl | 0.11 | 24.6 | 7.2 | 16.7 | 7.0 | 140.3 | 8.5 | bdl | 0.7 | bdl | 0.07 | 0.14 | |||||
164 | 8914 | 30.08.1995 | 75 | −20.0 | |||||||||||||||||||||
176 | 8914 | 12.08.1996 | 75 | −20.3 | |||||||||||||||||||||
18 | 8914 | 06.09.2013 | 75 | 8.1 | 262 | 9.5 | 0.24 | 0.36 | 30.7 | 11.7 | 25.1 | 6.4 | 170.8 | 36.7 | bdl | bdl | 0.39 | 0.17 | 0.04 | 0.40 | bdl | 0.31 | |||
19 | 8914 | 02.09.2016 | 75 | 8.0 | 386 | 9.1 | −20.6 | −153.7 | 33.0 | 12.0 | 25.0 | 8.2 | 163.5 | 38.0 | bdl | bdl | bdl | bdl | 0.22 | 0.49 | 0.65 | ||||
20 | 11570 | 01.07.2016 | 100 | 8.1 | 649 | 9.1 | −21.4 | −161.0 | 37.0 | 8.3 | 20.0 | 5.6 | 109.0 | 68.0 | 14.0 | 0.7 | bdl | 0.60 | 0.12 | 0.14 | 0.45 | ||||
215 | 19570 | 13.04.2005 | 109 | 8.0 | 700 | 8.4 | −17.7 | 0.39 | 0.31 | 59.9 | 13.7 | 64.0 | 8.8 | 195.2 | 134.0 | bdl | 0.4 | bdl | 0.07 | 0.07 | |||||
228 | 23886 | 09.09.2016 | 124.5 | 8.2 | 1366 | 8.8 | −20.6 | −152.1 | 28.0 | 9.9 | 18.0 | 7.6 | 141.7 | 14.0 | bdl | bdl | bdl | bdl | 0.20 | 0.45 | 0.51 | ||||
258 | 25687 | 20.11.2012 | 82 | 7.8 | 294 | 8.8 | −20.5 | 28.0 | 10.0 | 22.0 | 7.3 | 23.2 | 4.6 | bdl | |||||||||||
26 | 25687 | 09.09.2016 | 82 | 8.0 | 359 | 8.8 | −20.5 | −152.4 | 32.0 | 12.0 | 21.0 | 8.2 | 174.4 | 27.0 | bdl | bdl | bdl | 0.41 | 0.19 | 0.49 | 0.47 | ||||
23 | 25689 | 13.11.2013 | 85 | 8.1 | 158.6 | 8.0 | 0.08 | 0.22 | 25.0 | 4.9 | 13.9 | 4.9 | 124.0 | 11.3 | 0.2 | bdl | 0.15 | 0.10 | 0.04 | 0.32 | 0.00 | 0.33 | |||
248 | 25689 | 05.08.2014 | 85 | 7.7 | 297 | 8.3 | −20.6 | −155.1 | 28.7 | 11.0 | 19.5 | 7.5 | 14.0 | bdl | 0.3 | bdl | 0.12 | 0.13 | 0.47 | 0.42 | |||||
Gdov aquifer (V2gd) | |||||||||||||||||||||||||
27 | 122 | 14.09.2018 | 170 | 7.4 | 1022 | −19.5 | −145.6 | 113.8 | 25.0 | 108.7 | 11.0 | 158.6 | 358.1 | 16.5 | 0.3 | 0.56 | |||||||||
282 | 154 | 10.07.1991 | 134 | −20.3 | |||||||||||||||||||||
295 | 154 | 12.04.2005 | 130 | 7.8 | 1649 | 8.5 | −21.0 | 0.27 | 0.87 | 133.3 | 21.6 | 130.0 | 10.7 | 134.2 | 447.1 | bdl | 0.3 | bdl | 0.18 | 0.48 | |||||
302 | 160 | 01.06.1990 | 142 | −15.0 | |||||||||||||||||||||
311 | 160 | 30.07.1991 | 142 | −14.4 | 0.44 | ||||||||||||||||||||
32 | 160 | 08.10.2014 | 142 | 409 | 8.9 | −13.0 | −95.3 | 0.32 | 0.20 | 71.0 | bdl | bdl | 0.49 | 0.38 | |||||||||||
311 | 161 | 26.06.1990 | 140 | 7.7 | 78.0 | 23.6 | 2.4 | 1.0 | 311.2 | 9.2 | 30.5 | 0.05 | bdl | 6.10 | |||||||||||
343 | 161 | 13.04.2005 | 140 | 7.9 | 788 | 8.8 | −13.6 | 0.34 | 0.55 | 88.4 | 13.7 | 54.3 | 10.6 | 231.8 | 139.3 | bdl | 0.8 | bdl | 0.10 | 0.28 | |||||
35 | 170 | 01.04.2004 | 0.59 | 0.82 | |||||||||||||||||||||
365 | 172 | 12.04.2005 | 136 | 7.9 | 1226 | 8.5 | −20.2 | 0.48 | 0.72 | 93.8 | 19.3 | 105.0 | 11.4 | 146.4 | 313.0 | bdl | 0.3 | bdl | 0.15 | 0.36 | |||||
372 | 174 | 14.06.1988 | 145.4 | 7.7 | −12.0 | 0.24 | 52.7 | 13.5 | 13.0 | 4.4 | 225.8 | 27.7 | 0.0 | bdl | bdl | ||||||||||
385 | 183 | 12.04.2005 | 140 | 7.9 | 548 | 9.1 | −21.3 | 0.34 | 0.46 | 110.6 | 20.4 | 105.0 | 10.7 | 115.9 | 361.3 | bdl | 0.5 | bdl | 0.18 | 0.34 | |||||
395 | 188 | 12.04.2005 | 90 | 7.7 | 555 | 8.9 | −21.7 | 0.17 | 0.32 | 49.7 | 11.4 | 33.0 | 7.3 | 103.7 | 117.0 | 10.3 | 0.3 | bdl | 0.09 | 0.32 | |||||
40 | 188 | 08.10.2014 | 90 | 8.2 | 513 | 8.7 | −21.6 | −164.9 | 0.28 | 0.29 | 48.7 | 9.8 | 28.2 | 6.7 | 97.6 | 95.9 | 9.0 | bdl | bdl | 0.68 | 0.48 | ||||
411 | 296 | 26.10.1989 | 148 | 7.7 | 60.3 | 19.2 | 50.0 | 8.0 | 164.8 | 136.9 | 10.0 | 0.10 | 0.46 | bdl | |||||||||||
42 | 296 | 09.04.2007 | 148 | 8.0 | 0.45 | 0.25 | |||||||||||||||||||
43 | 296 | 14.09.2018 | 148 | 7.5 | 467 | −14.5 | −105.6 | 60.9 | 13.1 | 44.0 | 7.8 | 183.1 | 117.7 | bdl | 0.2 | 0.22 | |||||||||
442 | 300 | 14.06.1988 | 165 | 7.6 | −14.4 | −105.0 | 0.40 | 81.0 | 15.9 | 36.7 | 5.2 | 213.6 | 120.9 | 12.7 | bdl | 0.9 | |||||||||
46 | 300 | 16.02.2009 | 165 | 7.6 | 0.34 | 0.55 | 81.0 | 15.9 | 36.7 | 5.2 | 213.6 | 120.9 | 12.7 | bdl | 0.9 | ||||||||||
47 | 300 | 14.09.2018 | 160 | 7.4 | 496 | −12.9 | −94.0 | 76.6 | 21.4 | 30.0 | 5.4 | 262.4 | 100.7 | bdl | 0.3 | 0.37 | |||||||||
48 | 375 | 05.07.1994 | 160 | 7.8 | −22.5 | 85.6 | 20.1 | 108.6 | 11.0 | 189.2 | 280.1 | 5.9 | |||||||||||||
492 | 386 | 05.07.1988 | 150 | 7.7 | −22.7 | −176.0 | 0.59 | 104.1 | 22.3 | 78.5 | 10 | 109.8 | 360.5 | 16.9 | bdl | bdl | |||||||||
50 | 412 | 08.10.2014 | 156 | 349 | 9.2 | −12.2 | −89.4 | 0.25 | 0.09 | 74.3 | bdl | bdl | 0.50 | 0.35 | |||||||||||
51 | 424 | 08.10.2014 | 150 | 8.3 | 490 | 9.4 | −20.2 | −153.0 | 40.6 | 13.5 | 32.1 | 8.5 | 146.4 | 72.1 | 2.2 | bdl | 0.57 | 0.45 | 0.65 | ||||||
521 | 4460 | 26.10.1989 | 145 | 7.6 | 99.2 | 22.4 | 90.0 | 10.0 | 146.4 | 323.0 | 20.6 | 0.25 | 1.20 | bdl | |||||||||||
535 54 | 14798 23887 | 13.04.2005 09.09.2016 | 159.5 88 | 7.9 8.0 | 526 399 | 100 8.3 | −12.0 −20.4 | −153.1 | 0.29 | 0.40 | 69.7 120.0 | 11.3 19.0 | 35.8 110.0 | 7.7 11.0 | 256.2 130.8 | 48.2 360.0 | bdl 17.0 | 0.6 bdl | bdl bdl | 4.70 | 0.18 | 0.09 | 0.94 | 0.26 | 1.10 |
55 | 25686 | 09.09.2016 | 122 | 8.1 | 1391 | 9.0 | −19.2 | −142.1 | 0.52 | 0.57 | 120.0 | 21.0 | 110.0 | 12.0 | 141.7 | 360.0 | 17.0 | bdl | bdl | 4.60 | 0.19 | 0.84 | 1.20 | ||
568 | 25688 | 20.11.2012 | 118 | 7.9 | 1003 | 8.9 | −17.7 | 97.0 | 19.0 | 106.0 | 11.0 | 281.0 | 6.0 | bdl | |||||||||||
57 | 25688 | 09.09.2016 | 118 | 8.0 | 1380 | 9.2 | −17.8 | −130.4 | 0.47 | 0.54 | 120.0 | 20.0 | 110.0 | 12.0 | 174.4 | 350.0 | 17.0 | bdl | bdl | 4.80 | 0.18 | 0.94 | 1.20 | ||
58 | 25690 | 13.11.2013 | 122 | 8.2 | 577 | 8.5 | 0.69 | 0.44 | 92.0 | 12.1 | 70.4 | 7.9 | 150.0 | 222.1 | 2.4 | bdl | 2.48 | 0.09 | 0.16 | 0.55 | 0.01 | 0.30 | |||
598 | 25690 | 05.08.2014 | 122 | 7.9 | 1204 | 8.5 | −19.8 | −147.7 | 109.4 | 19.2 | 102.6 | 10.7 | 295.7 | 2.5 | 1.1 | bdl | 2.02 | bdl | 1.04 | 0.36 | |||||
60 | 25690 | 09.09.2016 | 122 | 8.1 | 1285 | 9.0 | −19.7 | −146.1 | 0.41 | 0.51 | 110.0 | 19.0 | 100.0 | 11.0 | 130.8 | 330.0 | 16.0 | bdl | bdl | 4.70 | 0.18 | 0.81 | bdl | ||
618 | 25692 | 08.10.2014 | 120 | 8.3 | 1381 | 8.6 | −17.4 | −131.9 | 0.53 | 0.68 | 126.7 | 19.3 | 103.5 | 11.2 | 170.8 | 350.0 | 2.8 | bdl | bdl | 2.18 | 0.39 | ||||
62 | 25692 | 09.09.2016 | 120 | 8.1 | 1558 | 9.2 | −17.6 | −130.1 | 0.64 | 0.74 | 140.0 | 21.0 | 120.0 | 13.0 | 152.6 | 410.0 | 17.0 | bdl | bdl | 5.70 | 0.21 | 1.00 | 1.20 | ||
Voronka + Gdov aquifers | |||||||||||||||||||||||||
631 | 153 | 26.06.1990 | 8.1 | 101.3 | 20.9 | 79.3 | 8.4 | 231.9 | 96.8 | 59.3 | 0.05 | bdl | 0.20 | ||||||||||||
641 | 156 | 26.06.1990 | 110 | 7.4 | 101.6 | 21.0 | 79.2 | 21.0 | 427.1 | 34.7 | 1.5 | 0.03 | bdl | 0.20 | |||||||||||
65 | 157 | 09.06.2014 | 120 | 8.0 | 1274 | 9.3 | −21.2 | −159.9 | 0.59 | 0.60 | 136.6 | 20.5 | 99.5 | 9.9 | 204.8 | 5.3 | 1.2 | bdl | 0.87 | 1.11 | bdl | ||||
661 | 162 | 01.08.1990 | 140 | −16.3 | −111.0 | 0.32 | |||||||||||||||||||
675 | 162 | 13.04.2005 | 140 | 7.9 | 856 | 8.7 | −17.4 | 0.52 | 0.16 | 87.4 | 16.0 | 58.6 | 9.0 | 183.0 | 189.3 | bdl | 0.5 | bdl | 0.10 | 0.26 | |||||
681 | 163 | 30.07.1991 | 138 | −14.7 | 0.31 | 100.1 | 20.3 | 79.7 | |||||||||||||||||
692 | 163 | 01.06.1990 | 138 | −15.1 | −102.0 | ||||||||||||||||||||
701 | 169 | 26.06.1990 | 7.6 | 102.8 | 21.7 | 78.8 | 1.0 | 311.2 | 12.8 | 49.4 | 0.03 | bdl | 17.40 | ||||||||||||
712 | 298 | 14.06.1988 | 145 | 7.3 | −22.0 | −164.0 | 0.58 | 103.1 | 21.8 | 78.8 | 9.6 | 134.2 | 293.6 | 10.0 | bdl | 0.7 | |||||||||
721 | 299 | 26.10.1989 | 144 | 7.6 | 103.3 | 21.9 | 78.7 | 10.0 | 146.4 | 291.4 | 22.6 | 0.20 | 1.80 | bdl | |||||||||||
735 | 477 | 12.04.2005 | 90 | 7.7 | 1380 | 9.2 | −22.7 | 0.65 | 1.18 | 108.8 | 20.4 | 130.0 | 12.9 | 158.6 | 350.6 | 26.5 | bdl | bdl | 0.14 | 0.62 | |||||
741 | 485 | 26.10.1989 | 145 | 8 | 104.3 | 22.4 | 78.4 | 4.0 | 238.0 | 39.0 | 0.0 | 0.22 | 0.56 | bdl | |||||||||||
75 | 485 | 14.09.2018 | 145 | 7.6 | 285 | −11.7 | −84.1 | 50.1 | 12.5 | 14.2 | 4.6 | 250.2 | 8.5 | bdl | 0.4 | 0.20 | |||||||||
762 | 115 | 07.07.1991 | 120 | 8.3 | −21.9 | 159.5 | 15.3 | 116.0 | 8.0 | 73.2 | 453.4 | 21.4 | 0.08 | ||||||||||||
773 | 1152 | 05.07.1994 | 122 | 7.9 | −21.4 | 150.7 | 14.7 | 122.0 | 8.3 | 85.4 | 455.6 | 18.9 | |||||||||||||
784 | 1152 | 28.09.1995 | 122 | −21.3 | |||||||||||||||||||||
79 804 | 1152 4734 | 28.10.2014 12.08.1996 | 122 100 | −21.5 −22.0 | −161.8 | 146.9 63.1 | 13.1 21.3 | 150.0 43.4 | 7.3 7.3 | 85.4 146.4 | 482.2 185.8 | 7.0 6.6 | |||||||||||||
817 | 4734 | 27.03.2007 | 100 | 8.0 | 728 | 9.3 | −22.0 | ||||||||||||||||||
82 | 4734 | 02.09.2016 | 100 | 7.9 | 1069 | 9.4 | −22.5 | −168.4 | 82.0 | 17.0 | 95.0 | 11.0 | 152.6 | 240.0 | 19.0 | bdl | bdl | 3.40 | 0.19 | 0.55 | 1.00 | ||||
835 | 5157 | 12.04.2005 | 125 | 7.8 | 445 | 9.1 | −12.5 | 0.43 | 0.23 | 52.5 | 15.9 | 20.0 | 9.3 | 280.7 | 22.3 | bdl | 0.3 | bdl | 0.08 | 0.29 | |||||
84 | 11569 | 01.07.2016 | 100 | 8.0 | 409 | 8.5 | −21.5 | −161.7 | 61.0 | 9.8 | 35.0 | 6.3 | 150.0 | 15.0 | 0.6 | 3.3 | 1.40 | bdl | 0.24 | 0.34 | |||||
85 | 15831 | 13.11.2013 | 123.3 | 8.3 | 527 | 8.2 | −22.6 | −169.7 | 0.77 | 0.52 | 71.8 | 10.7 | 63.3 | 7.5 | 149.5 | 176.9 | 17.2 | bdl | 0.75 | 0.18 | 0.09 | 0.46 | 0.01 | 0.28 | |
86 | 15841 | 14.04.2005 | 117 | 7.9 | 933 | 9.0 | −22.7 | 0.55 | 0.67 | 64.7 | 16.5 | 82.7 | 10.0 | 170.8 | 199.6 | bdl | 0.2 | bdl | 0.08 | 0.25 | |||||
87 | 16557 | 09.06.2014 | 110 | 8.1 | 393 | 9.2 | −21.6 | −163.4 | 0.12 | 0.10 | 45.1 | 8.6 | 24.6 | 6.7 | 59.8 | 10.2 | bdl | bdl | bdl | 0.08 | 0.36 | 0.54 | |||
88 | 16557 | 28.10.2014 | 110 | −21.6 | −162.2 | ||||||||||||||||||||
89 | 485 | 14.09.2018 | 145 | 7.6 | 285 | −11.7 | −84.1 | 0.18 | 0.30 | 50.1 | 12.5 | 14.2 | 4.6 | 250.2 | 8.5 | bdl | 0.4 | 0.20 | |||||||
Crystalline basement aquifer | |||||||||||||||||||||||||
902 | 1151 | 06.09.1994 | 160 | 7.7 | −21.2 | 206.0 | 32.6 | 211.0 | 12.5 | 79.3 | 735.4 | 27.6 | |||||||||||||
915 | 1151 | 25.04.2001 | 160 | 8.5 | 1540 | 8.8 | −21.3 | 188.0 | 25.2 | 210.0 | 11.7 | 64.1 | 629.0 | 14.8 |
No | Well ID | SI-calcite | SI-dolomte | SI-dolomite (disordered) | SI-CO2(g) |
---|---|---|---|---|---|
2 | 124 | 0.05 | −0.32 | −0.93 | −2.94 |
5 | 171 | 0.41 | 0.43 | −0.18 | −3.07 |
6 | 179 | −0.11 | −0.45 | −1.07 | −2.65 |
9 | 187 | −0.30 | −0.90 | −1.51 | −2.72 |
10 | 187 | −0.09 | −0.82 | −1.44 | −2.90 |
15 | 1153 | −0.29 | −1.00 | −1.61 | −2.76 |
18 | 8914 | 0.17 | 0.04 | −0.58 | −2.97 |
21 | 19570 | 0.37 | 0.21 | −0.40 | −2.82 |
23 | 25689 | −0.03 | −0.64 | −1.25 | −3.10 |
29 | 154 | 0.28 | −0.12 | −0.73 | −2.81 |
34 | 161 | 0.49 | 0.30 | −0.32 | −2.66 |
36 | 172 | 0.29 | 0.02 | −0.59 | −2.86 |
38 | 183 | 0.25 | −0.10 | −0.72 | −2.97 |
39 | 188 | −0.27 | −1.06 | −1.68 | −2.80 |
40 | 188 | 0.21 | −0.15 | −0.77 | −3.32 |
46 | 300 | 0.11 | −0.36 | −0.97 | −2.40 |
53 | 14798 | 0.46 | 0.24 | −0.37 | −2.61 |
55 | 25686 | 0.57 | 0.50 | −0.11 | −3.08 |
57 | 25688 | 0.55 | 0.45 | −0.16 | −2.89 |
58 | 25690 | 0.62 | 0.48 | −0.14 | −3.14 |
60 | 25690 | 0.50 | 0.37 | −0.24 | −3.11 |
61 | 25692 | 0.87 | 1.05 | 0.43 | −3.20 |
62 | 25692 | 0.65 | 0.60 | −0.01 | −3.05 |
67 | 162 | 0.38 | 0.15 | −0.47 | −2.76 |
73 | 477 | 0.16 | −0.28 | −0.89 | −2.64 |
83 | 5157 | 0.28 | 0.16 | −0.45 | −2.47 |
85 | 15831 | 0.62 | 0.53 | −0.08 | −3.24 |
86 | 15841 | 0.23 | −0.02 | −0.63 | −2.79 |
89 | 485 | 0.02 | −0.45 | −1.06 | −2.32 |
No | Well ID | Date | Aquifer | Well Depth | He | He (Error) | Ne | Ne Error | Ar | Ar (Error) | Kr | Kr (Error) | Xe | Xe (Error) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | cm3·STP·g−1 | |||||||||||||
10 | 187 | 13-Nov-13 | Cm-V | 70 | 1.46·10−5 | 1.09·10−7 | 3.77·10−7 | 8.28·10−10 | 7.53·10−4 | 2.05·10−6 | 1.57·10−7 | 1.05·10−9 | 2.12·10−8 | 1.97·10−10 |
85 | 15831 | 13-Nov-13 | Cm-V | 123.3 | 2.50·10−5 | 1.88·10−7 | 3.81·10−7 | 8.39·10−10 | 1.27·10−3 | 3.41·10−6 | 2.18·10−7 | 1.16·10−9 | 2.34·10−8 | 2.15·10−10 |
84 | 11569 | 1-Jul-16 | Cm-V | 100 | 7.09·10−5 | 7.09·10−7 | 5.95·10−7 | 4.90·10−9 | 8.93·10−4 | 7.14·10−6 | 1.86·10−7 | 2.40·10−9 | 2.24·10−8 | 4.06·10−10 |
19 | 8914 | 2-Sep-16 | V2vr | 75 | 3.66·10−5 | 3.66·10−7 | 5.79·10−7 | 4.90·10−9 | 1.12·10−3 | 8.97·10−6 | 1.92·10−7 | 2.21·10−9 | 2.31·10−8 | 4.42·10−10 |
82 | 4734 | 2-Sep-16 | Cm-V | 100 | 1.68·10−5 | 1.69·10−7 | 1.77·10−7 | 1.50·10−9 | 6.67·10−4 | 5.34·10−6 | 1.27·10−7 | 1.38·10−9 | 1.57·10−8 | 3.13·10−10 |
26 | 25687 | 9-Sep-16 | V2vr | 82 | 7.88·10−5 | 7.88·10−7 | 8.85·10−7 | 7.32·10−9 | 1.18·10−3 | 9.46·10−6 | 2.04·10−7 | 2.28·10−9 | 2.38·10−8 | 4.34·10−10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raidla, V.; Pärn, J.; Aeschbach, W.; Czuppon, G.; Ivask, J.; Kiisk, M.; Mokrik, R.; Samalavičius, V.; Suursoo, S.; Tarros, S.; et al. Intrusion of Saline Water into a Coastal Aquifer Containing Palaeogroundwater in the Viimsi Peninsula in Estonia. Geosciences 2019, 9, 47. https://doi.org/10.3390/geosciences9010047
Raidla V, Pärn J, Aeschbach W, Czuppon G, Ivask J, Kiisk M, Mokrik R, Samalavičius V, Suursoo S, Tarros S, et al. Intrusion of Saline Water into a Coastal Aquifer Containing Palaeogroundwater in the Viimsi Peninsula in Estonia. Geosciences. 2019; 9(1):47. https://doi.org/10.3390/geosciences9010047
Chicago/Turabian StyleRaidla, Valle, Joonas Pärn, Werner Aeschbach, György Czuppon, Jüri Ivask, Madis Kiisk, Robert Mokrik, Vytautas Samalavičius, Siiri Suursoo, Siim Tarros, and et al. 2019. "Intrusion of Saline Water into a Coastal Aquifer Containing Palaeogroundwater in the Viimsi Peninsula in Estonia" Geosciences 9, no. 1: 47. https://doi.org/10.3390/geosciences9010047