Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff
Abstract
:1. Introduction
1.1. Natural Examples with β-Shape P–T–t Paths
1.2. Models of Potential Heat Sources
2. Numerical Modeling Design
2.1. Numerical Nodel
2.2. Initial and Boundary Conditions
2.3. Density Procedure, Hydration, Melting, and Melt Extraction
3. Experimental Results
3.1. Slab Rollback Experiments (R1 and R2)
3.2. Slab Breakoff Experiments (B1, B2, and B3)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Material* | ρ0 [kg m3](solid) | k [W (m*K)−1] | Rheology/ Flow Law | Tsolidus [K] | Tliquidus [K] | Hr [μW m−3] | HL [kJ kg−1] | E [kJ mol−1] | n | AD [Mpa-II*s−1] | V [J (MPa·mol)−1] | Cohesion [MPa] | sin (φdry) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sedimentary and felsic upper, lower crust and rhyolite | sediments:2600 felsic crust: 2700/2800 | Wet quartzite | at P<1 at P>1200 Mpa | 2 Felsic crust:1 | 300 | 154 | 2.3 | 10-3.5 | 0 | 10 | 0.15 | ||
Melt-bearing sediments, felsic crust and rhyolite | 2400 (lower crust 2600) | -//- | -//- | -//- | -//- | -//- | -//- | 0 | 1 | -//- | -//- | 1 | 0 |
Hydrated basalts | 3000 | Wet quartzite | at P<1600 MPa at P>1600 Mpa | 0.25 | 380 | 154 | 2.3 | 10-3.5 | 0 | 10 | 0.1 | ||
Melt-bearing basalts | 2900 | -//- | -//- | -//- | -//- | -//- | -//- | 0 | 1 | -//- | -//- | 1 | 0 |
Gabbro | 3000 | -//- | Plagioclase An75 | -//- | -//- | 0.25 | 380 | 238 | 3.2 | 10-3.5 | 0 | 10 | 0.6 |
Melt-bearing gabbro | 3000 | -//- | Wet quartzite | -//- | -//- | -//- | -//- | 0 | 1 | -//- | -//- | 1 | 0 |
Lithosphere- asthenosphere mantle | 3280/3300 | Dry olivine | 0.022 | - | 532 | 3.5 | 104.4 | 8 | 10 | 0.6 | |||
Hydrated mantle/ serpentinized mantle | 3300/ 3200 | -//- | Wet olivine | Hydrated mantle: at P<1600 Mpa: at P>1600 Mpa: | Hydrated mantle: | 0.022 | Hydrated mantle:300 | 470 | 4 | 103.3 | -//- | 10 | 0.1 |
Dry/wet melt-bearing mantle | 3300/2900 | -//- | Dry/wet olivine | -//- | -//- | -//- | - | 0 | 1 | 104.4 | -//- | 1 | 0 |
Reference | [81,111] | [112] | [113] | [90] | [90] | [83] | [81,111] | [113] | [113] | [113] | [81,113] |
References
- Penniston-Dorland, S.C.; Kohn, M.J.; Manning, C.E. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet Sci. Lett. 2015, 428, 243–254. [Google Scholar] [CrossRef]
- Kurz, W.; Handler, R.; Bertoldi, C. Tracing the exhumation of the Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar dating of white mica in eclogites. Swiss J. Geosci 2008, 101, 191–206. [Google Scholar] [CrossRef]
- Perraki, M.; Faryad, S.W. First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 2014, 203–203, 157–166. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Toraman, E.; Seaton, N.C.A.; Fayon, A.K. Metamorphic and tectonic evolution of a structurally continuous blueschist-to-Barrovian terrane, Sivrihisar Massif, Turkey. J. Metamorph. Geol. 2011, 29, 193–212. [Google Scholar] [CrossRef]
- Brown, M.; Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Amer. Miner. 2018, 103, 181–196. [Google Scholar] [CrossRef]
- Gao, X.Y.; Zheng, Y.F.; Chen, X.R. U–Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen: constraints on P–T–t path. J. Metamorph. Geol. 2011, 29, 721–740. [Google Scholar] [CrossRef]
- Wilke, F.D.H.; O’Brien, P.; Gerdes, A.; Timmerman, M.J.; Sudo, M.; Khan, M.A. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. Eur. J. Mineral. 2010, 22, 703–719. [Google Scholar] [CrossRef]
- Faryad, S.W. Distribution and geological position of high-/ultrahigh-pressure units within the European Variscan Belt: A review. In Ultrahigh Pressure Metamorphism: 25 Years after the Discovery of Coesite and Diamond; Dobrzhinetskaya, L., Faryad, S.W., Wallis, S., Cuthbert, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 361–397. [Google Scholar]
- Faryad, S.W.; Žak, J. High-pressure granulites of the Podolsko complex, Bohemian Massif: An example of crustal rocks that were subducted to mantle depths and survived a pervasive mid-crustal high-temperature overprint. Lithos 2016, 246–247, 246–260. [Google Scholar] [CrossRef]
- O’Brien, P.J. The fundamental Variscan problem: high-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures. In Orogenic Processes: Quantification and Modelling in the Variscan Belt; Franke, W., Haak, V., Oncken, O., Tanner, D., Eds.; The Geological Society, Special Publication: London, UK, 2000; Volume 179, pp. 369–386. [Google Scholar]
- Faryad, S.W. The Kutná Hora Complex (Moldanubian zone, Bohemian Massif): A composite of crustal and mantle rocks subducted to HP/UHP conditions. Lithos 2009, 109, 193–208. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Medaris, L.G.; Bakunczubarow, N. Nd–Sm age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neues Jahrbuch Miner. Abhandlungen 1991, 163, 169–196. [Google Scholar]
- Faryad, S.W.; Fišera, M. Olivine-bearing symplectites in fractured garnet from eclogite, Moldanubian Zone (Bohemian Massif)—A short-lived, granulite facies event. J. Metamorph. Geol. 2015, 33, 597–612. [Google Scholar] [CrossRef]
- Faryad, S.W.; Jedlicka, R.; Collet, S. Eclogite facies rocks of the Monotonous unit, clue to Variscan suture in the Moldanubian Zone (Bohemian Massif). Lithos 2013, 179, 353–363. [Google Scholar] [CrossRef]
- Faryad, S.W.; Jedlicka, R.; Hauzenberger, C.; Racek, M. High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies. Mineral. Petrol. 2018, 112, 603–616. [Google Scholar] [CrossRef]
- Jedlicka, R.; Faryad, S.W.; Hauzenberger, C. Prograde metamorphic history of UHP granulites from the Moldanubian Zone (Bohemian Massif) revealed by major element and Y+REE zoning in Garnets. J. Petrol. 2015, 56, 2069–2088. [Google Scholar] [CrossRef]
- Kotková, J.; O’Brien, P.J.; Ziemann, M.A. Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology 2011, 39, 667–670. [Google Scholar] [CrossRef]
- Massonne, H.J.; O’Brien, P.J. Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzofeldspathic rock from the Erzgebirge, Germany. Amer. Miner. 2003, 88, 883–889. [Google Scholar] [CrossRef]
- Nahodilová, R.; Štípská, P.; Powell, R.; Košler, J.; Racek, M. High-Ti muscovite as a prograde relict in high pressure granulites with metamorphic Devonian zircon ages (Běstvina granulite body, Bohemian Massif): Consequences for the relamination model of subducted crust. Gondwana Res. 2014, 2, 630–648. [Google Scholar]
- Faryad, S.W.; Nahodilová, R.; Dolejš, D. Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet. Lithos 2010, 114, 54–69. [Google Scholar] [CrossRef]
- Kotková, J. High-pressure granulites of the Bohemian Massif: recent advances and open questions. J. Geosci. 2007, 52, 45–71. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Kröner, A.; Jaeckel, P.; Hegner, E.; Zelazniewicz, A.; Kryza, R. Petrological and isotopic studies on Palaeozoic high-pressure granulites, Gory Sowie Mts, Polish Sudetes. J. Petrol. 1997, 38, 433–456. [Google Scholar] [CrossRef]
- Schantl, P.; Hauzenberger, C.; Finger, F.; Müller, T.; Linner, M. New evidence for the prograde and retrograde PT-path of high-pressure granulites, Moldanubian Zone, Lower Austria, by Zr-in-rutile thermometry and garnet diffusion modelling. Lithos 2019, 342–343, 420–439. [Google Scholar] [CrossRef]
- Tajčmanová, L.; Konopásek, J.; Schulmann, K. Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of Central Europe. J. Metamorph. Geol. 2006, 24, 119–134. [Google Scholar] [CrossRef]
- Sorger, D.; Hauzenberger, C.A.; Linner, M.; Iglseder, C.; Finger, F. Carboniferous Polymetamorphism Recorded in Paragneiss-Migmatites from the Bavarian Unit (Moldanubian Superunit, Upper Austria): Implications for the Tectonothermal Evolution at the End of the Variscan Orogeny. J. Petrol. 2018, 59, 1–23. [Google Scholar] [CrossRef]
- Franke, W. The mid-European segment of the Variscides; tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In Orogenic Processes: Quantification and Modelling in the Variscan Belt; Franke, W., Haak, V., Oncken, O., Tanner, D., Eds.; The Geological Society, Special Publication: London, UK, 2000; Volume 179, pp. 35–61. [Google Scholar]
- Kröner, A.; O’Brien, P.; Nemchin, A.; Pidgeon, R.T. Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to carboniferous high temperature processes. Contrib. Mineral. Petrol. 2000, 138, 127–142. [Google Scholar] [CrossRef]
- Schulmann, K.; Kröner, A.; Hegner, E.; Wendt, I.; Konopasek, J.; Lexa, O.; Štípská, P. Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Amer. J. Sci. 2005, 305, 407–448. [Google Scholar] [CrossRef]
- Faryad, S.W.; Kachlík, V.; Sláma, J.; Hoinkes, G. Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian Zone (Bohemian Massif). J. Metamorph. Geol. 2015, 33, 295–310. [Google Scholar] [CrossRef]
- Finger, F.; Gerdes, A.; Janoušek, V.; René, M.; Riegler, G. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: The significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J. Geosci. 2007, 52, 9–28. [Google Scholar] [CrossRef]
- Henk, A.; von Blanckenburg, F.; Finger, F.; Schaltegger, U.; Zulauf, G. Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In Orogenic Processes: Quantification and Modelling in the Variscan Belt; Franke, W., Haak, V., Oncken, O., Tanner, D., Eds.; The Geological Society, Special Publication: London, UK, 2000; Volume 179, pp. 387–399. [Google Scholar]
- Holland, T.J.B. High water activities in the generation of high-pressure kyanite eclogites of the Tauern Window, Austria. J. Geol. 1979, 87, 1–27. [Google Scholar] [CrossRef]
- Zimmermann, R.; Hammerschmidt, K.; Franz, G. Eocene high-pressure metamorphisms in the Penninic units of the Tauern Window (Eastern Alps). Evidence from 40Ar–39Ar dating and petrological investigations. Contrib. Mineral. Petrol. 1994, 117, 175–186. [Google Scholar] [CrossRef]
- Dachs, E.; Proyer, A. Relics of high-pressure metamorphism from the Grossglockner region, Hohe Tauern, Austria: paragenetic evolution and PT-paths of retrogressed eclogites. Eur. J. Mineral. 2001, 13, 67–86. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Dingeldey, C.; Miller, C.; Hacjer, B.R.; Mcwilliams, M.O. Formation, subduction, ans exhumation of Penninic oceanic crust in the Eastern Alps: time constraints from 40Ar/39Ar geochronology. Tectonophysics 2004, 394, 155–170. [Google Scholar] [CrossRef]
- Kurz, W.; Neubauer, F.; Dachs, E. Eclogite meso- and microfabrics: implications for the burial and exhumation history of eclogites in the Tauern Window (Eastern Alps) from P–T–d paths. Tectonophysics 1998, 285, 183–209. [Google Scholar] [CrossRef]
- Wiederkehr, M.; Bousquet, R.; Schmidt, S.M.; Berger, A. From subduction to collision: thermal overprint of HP/LT meta-sediments in the north-eastern Lepontine Dome (Swiss Alps) and consequences regarding the tectono-metamorphic evolution of the Alpine orogenic wedge. Swiss J. Geosci. 2008, 101, 127–155. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, F.M.; van de Zedde, D.M.A.; Wortel, M.J.R.; Vissers, R.L.M. Late-orogenic heating during exhumation: Alpine PTt trajectories and thermomechanical models. Earth Planet. Sci. Lett. 2004, 220, 185–199. [Google Scholar] [CrossRef]
- Borghi, A.; Compahnoni, R.; Sandrone, R. Composite P-T paths in the Internal Penninic Massifs of the Western Alps: Petrological constraints to their thermo-mechanical evolution. Eclogue Geol. Helv. 1996, 89, 345–367. [Google Scholar]
- Brouwer, F.M.; Vissers, R.L.M.; Lamb, W.M. Structure and metamorphism of the Gran Paradiso massif, western Alps, Italy. Contrib. Mineral. Petrol. 2002, 143, 450–470. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J. Exhumation as fast as subduction? Geology 2001, 29, 3–6. [Google Scholar] [CrossRef]
- Brouwer, F.M. Thermal Evolution of High-Pressure Metamorphic Rocks in the Alps. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2000; p. 146. [Google Scholar]
- Tóth, T.M.; Grandjean, V.; Engli, M. Polyphase evolution and reaction sequence of compositional domains in metabasalt: a model based on local chemical equilibrium and metamorphic differentiation. Geol. J. 2000, 35, 163–183. [Google Scholar] [CrossRef]
- Liu, Q.; Hermann, J.; Zhang, J. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos 2013, 177, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Wilke, F.D.H.; O’Brien, P.J.; Altenberger, U.; Konrad-Schmolke, M.; Khan, M.A. Multi-stage history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos 2010, 114, 70–85. [Google Scholar] [CrossRef]
- Faryad, S.W.; Baldwin, S.L.; Jedlicka, R.; Ježek, J. Two stage garnet growth in coesite eclogite from the southeastern Papua New Guinea (U)HP terrane. Contrib. Mineral. Petrol. 2019, 174, 73. [Google Scholar] [CrossRef]
- Baldwin, S.L.; Webb, L.E.; Monteleone, B.D. Late Miocene coesite-eclogite exhumed in the Woodlark Rift. Geology 2008, 36, 735–738. [Google Scholar] [CrossRef]
- Abers, G.A.; Eilon, Z.; Gaherty, J.B.; Jin, G.; Kim, Y.H.; Obrebski, M.; Dieck, C. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift. J. Geophys. Res. Solid Earth 2016, 121, 951–971. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, C.; Jamieson, R.A.; Butler, J.P.; Warren, C.J. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet. Sci. Lett. 2009, 287, 116–129. [Google Scholar] [CrossRef]
- Boutelier, D.; Chemenda, A.; Jorand, C. Continental subduction and exhumation of high-pressure rocks: Insight from thermo-mechanical laboratory modelling. Earth Planet. Sci. Lett. 2004, 222, 209–216. [Google Scholar] [CrossRef]
- Burov, E.; Jolivet, L.; Le Pourhiet, L.; Poliakov, A. A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpinetype collision belts. Tectonophysics 2001, 342, 113–136. [Google Scholar] [CrossRef]
- Chemenda, A.I.; Mattauer, M.; Malavieille, J.; Bokun, A.N. A mechanism for syn-collisional rock exhumation and associated normal faulting: results from physical modelling. Earth Planet. Sci. Lett. 1995, 132, 225–232. [Google Scholar] [CrossRef]
- Gerya, T.V.; Perchuk, L.L.; Burg, J.-P. Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos 2008, 103, 236–256. [Google Scholar] [CrossRef]
- Li, Z.-H.; Gerya, T.V. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J. Geophys. Res. 2009, 114, B09406. [Google Scholar] [CrossRef] [Green Version]
- Sizova, E.; Gerya, T.; Brown, M. Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates. J. Metamorp. Geol. 2012, 30, 927–955. [Google Scholar] [CrossRef]
- Warren, C.J.; Beaumont, C.; Jamieson, R. Deep subduction and rapid exhumation: role of crustal strength and strain weakening in continental subduction and ultrahighpressure rock exhumation. Tectonics 2008, 27, TC6002. [Google Scholar] [CrossRef]
- Yamato, P.E.; Burov, E.; Agart, P.; Le Pourhiet, L.; Jolivet, L. HP–UHP exhumation during slow continental subduction: self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet. Sci. Lett. 2008, 271, 63–74. [Google Scholar] [CrossRef]
- Bea, F. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 2012, 153, 278–291. [Google Scholar] [CrossRef]
- Jamieson, R.A.; Beaumont, C.; Fullsack, P.; Lee, B. Barrovian regional metamorphism: where’s the heat? In What Drives Metamorphism and Metamorphic Reactions? Treloar, P.J., O’Brian, P.J., Eds.; The Geological Society, Special Publication: London, UK, 1998; Volume 138, pp. 23–51. [Google Scholar]
- Burg, J.P.; Gerya, T.V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J. Metamorph. Geol. 2005, 23, 75–95. [Google Scholar] [CrossRef]
- Engi, M.; Todd, C.S.; Schmatz, D.R. Tertiary metamorphic conditions in the eastern Lepontine Alps. Schweizerische Mineralogische Petrographische Mitteilungen 1995, 75, 347–369. [Google Scholar]
- Frey, M.; Ferreiro Mählmann, R. Alpine metamorphism of the Central Alps. Schweizerische Mineralogische Petrographische Mitteilungen 1999, 79, 135–154. [Google Scholar]
- Becker, H. Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (Swiss Alps) – New evidence for Eocene high-pressure metamorphism in the Central Alps. Geology 1993, 21, 599–602. [Google Scholar] [CrossRef]
- Ballèvre, M.; Lagabrielle, Y.; Merle, O. Tertiary ductile normal faulting as a consequence of lithospheric stacking in the Western Alps. Mémoires de la Société Géologique Suisse 1990, 1, 227–236. [Google Scholar]
- Bousquet, R.; Goffé, B.; Henry, P.; Le Pichon, X.; Chopin, C. Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust. Tectonophysics 1997, 273, 105–127. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Sonder, L.J. Heat-producing elements and the thermal and baric patterns of metamorphic belts. Science 1990, 250, 763–769. [Google Scholar] [CrossRef]
- Engi, M.; Berger, A.; Roselle, G.T. Role of the tectonic accretion channel in collisional orogeny. Geology 2001, 29, 1143–1146. [Google Scholar] [CrossRef]
- Platt, J.P. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol. Soc. Am. Bull. 1986, 97, 1037–1053. [Google Scholar] [CrossRef]
- Davies, J.H.; von Blanckenburg, F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 1995, 129, 85–102. [Google Scholar] [CrossRef]
- Duretz, T.; Gerya, T.; May, D. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 2011, 502, 244–256. [Google Scholar] [CrossRef]
- Baumann, C.; Gerya, T.V.; Connoly, A.D. Numerical Modelling of Spontaneous Slab Breakoff Dynamics during Continental Collision; The Geological Society, Special Publication: London, UK, 2010; Volume 332, pp. 99–114. [Google Scholar]
- Boutelier, D.; Cruden, A.R. Slab breakoff: Insights from 3D thermo-mechanical analogue modelling experiments. Tectonophysics 2017, 694, 197–213. [Google Scholar] [CrossRef]
- Duretz, T.; Gerya, T. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination. Tectonophysics 2013, 602, 124–140. [Google Scholar] [CrossRef]
- Freeburn, R.; Bouilhol, P.; Maunder, B.; Magni, V.; van Hunen, J. Numerical models of the magmatic processes induced by slab breakoff. Earth Planet. Sci. Lett. 2017, 478, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Gerya, T.V.; Yuen, D.A.; Maresch, W.V. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 2004, 226, 101–116. [Google Scholar] [CrossRef]
- Li, Z.-H.; Xu, Z.; Gerya, T.; Burg, J.P. Collision of continental corner from 3-D numerical modeling. Earth Planet. Sci. Lett. 2013, 380, 98–111. [Google Scholar] [CrossRef]
- Van Hunen, J.; Allen, M.B. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 2015, 302, 27–37. [Google Scholar] [CrossRef]
- Niu, Y. Slab breakoff: A causal mechanism or pure convenience? Sci. Bull. 2017, 62, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Mako, C.A.; Caddick, M.J. Quantifying magnitudes of shear heating in metamorphic systems. Tectonophysics 2018, 744, 499–517. [Google Scholar] [CrossRef]
- Gerya, T.V.; Yuen, D.A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modelling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 2003, 140, 295–318. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Schubert, G. Geodynamics; Cambridge University Press: Cambridge, UK, 2002; p. 456. [Google Scholar]
- Dymkova, D.; Gerya, T.; Burg, J.-P. 2D thermomechanical modelling of continent–arc–continent collision. Gondwana Res. 2016, 32, 138–150. [Google Scholar] [CrossRef]
- Faccenda, M.; Gerya, T.V.; Chakraborty, S. Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 2008, 103, 257–287. [Google Scholar] [CrossRef]
- Sizova, E.; Gerya, T.; Brown, M.; Perchuk, L.L. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 2010, 116, 209–229. [Google Scholar] [CrossRef] [Green Version]
- Sizova, E.; Gerya, T.; Stüwe, K.; Brown, M. Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambr. Res. 2015, 271, 198–224. [Google Scholar] [CrossRef]
- Li, Z.-H.; Gerya, T.; Connolly, J.A.D. Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth Sci. Rev. 2019, 196, 102874. [Google Scholar] [CrossRef]
- Djomani, Y.H.P.; O’Reilly, S.Y.; Griffin, W.L.; Morgan, P. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 2001, 184, 605–621. [Google Scholar] [CrossRef]
- Griffin, W.L.; O’Reilly, S.Y.; Reilly, S.Y.; Abe, N.; Aulbach, S.; Davies, R.M.; Pearson, N.J.; Doyle, B.J.; Kivi, K. The origin and evolution of Archean lithospheric mantle. Precambr. Res. 2003, 127, 19–41. [Google Scholar] [CrossRef]
- Gerya, T.V.; Stöckhert, B.; Perchuck, A.L. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics 2002, 21, 6-1–6-19. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Gerya, T.V.; Yuen, D.A. Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet. Sci. Lett. 2003, 212, 47–62. [Google Scholar] [CrossRef]
- Katz, R.F.; Spiegelman, M.; Langmuir, C.H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 2003, 4, 1073. [Google Scholar] [CrossRef]
- Vogt, K.; Gerya, T.; Castro, A. Crustal growth at active continental margins:numerical modeling. Phys. Earth Planet. Inter. 2012, 192–193, 1–20. [Google Scholar] [CrossRef]
- Brown, M. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front. 2014, 5, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Bina, C.R.; Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J.Geophys. Res. 1994, 99, 15853–15860. [Google Scholar] [CrossRef]
- Faccenda, M.; Minelli, G.; Gerya, T.V. Coupled and decoupled regimes of continental collision: Numerical modelling. Earth Planet. Sci. 2009, 278, 337–349. [Google Scholar] [CrossRef]
- Ueda, K.; Gerya, T.V.; Burg, J.-P. Delamination in collisional orogens: Thermomechanical modeling. J. Geophys. Res. 2012, 17, B08202. [Google Scholar] [CrossRef] [Green Version]
- Magni, V.; Faccenna, C.; van Hunen, J.; Funiciello, F. Delamination vs. break-off: The fate of continental collision. Geophys. Res. Lett. 2013, 40, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Janoušek, V.; Holub, F.V. The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: Case study from the Moldanubian Zone of the Bohemian Massif. Proc. Geol. Assoc. 2007, 118, 75–86. [Google Scholar]
- Schulmann, K.; Konopásek, J.; Janoušek, V.; Lexa, O.; Lardeaux, J.-M.; Edel, J.-B.; Štίpska, P.; Ulrich, S. An Andean type Paleozoic convergence in the Bohemian Massif. C. R. Geosci. 2009, 341, 266–286. [Google Scholar] [CrossRef]
- Babuška, V.; Plomerová, J. Boundaries of mantle–lithosphere domains in the Bohemian Massif as extinct exhumation channels for high-pressure rocks. Gondwana Res. 2013, 23, 973–987. [Google Scholar] [CrossRef]
- Janoušek, V.; Gerdes, A. Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U-Pb ages for the Sázava and Tábot intrusions and their geotectonic significance. J. Czech Geolc. Soc. 2003, 48, 70–71. [Google Scholar]
- Gerdes, A.; Friedl, G.; Parrish, R.R.; Finger, F. High resolution geochronology of Variscan granite emplacement—The South Bohemian Batholith. J. Czech Geosci. Soc. 2002, 48, 53–54. [Google Scholar]
- Klomίnský, J.; Jarchovský, T.; Rajpoot, G.S. Atlas of Plutonic Rocks and Orthogneisses in the Bohemian Massif; Czech Geological Survey: Prague, Czech Republic, 2010. [Google Scholar]
- Cloos, M.; Sapiie, B.; Quarles van Ufford, A.; Wiland, R.J.; Warren, P.Q.; McMahon, T.P. Collisional delamination in New Guinea: The geotectonics of subducting slab breakoff. Geol. Soc. Am. Spec. Pap. 2006, 400, 1–55. [Google Scholar]
- Hacker, B.R. Ascent of the ultrahigh-pressure Western Gneiss Region, Norway. In Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst; Cloos, M., Carlson, W.D., Gilbert, M.C., Liou, J.G., Sorenson, S.S., Eds.; Geological Society of America: Boulder, CO, USA, 2007; Volume 419, pp. 171–184. [Google Scholar]
- Brun, J.-P.; Faccenna, C. Exhumation of high-pressure rocks driven by slab rollback. Earth Planet. Sci. Lett. 2008, 272, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust. Geology 2013, 41, 555–558. [Google Scholar] [CrossRef]
- Ring, U.; Glodny, J.; Will, T.; Thomson, S. The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Ann. Rev. Earth Planet. Sci. 2010, 38, 45–76. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.L.; Mo, X.X. Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau: a long-lasting magmatism since continental collision through slab steepening. Lithos 2016, 246–247, 99–109. [Google Scholar] [CrossRef]
- Bittner, D.; Schmeling, H. Numerical modeling of melting processes and induced diapirism in the lower crust. Geophys. J. Int. 1995, 123, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Clauser, C.; Huenges, E. Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations; Ahrens, T.J., Ed.; AGU Reference Shelf: Washington, DC, USA, 1995; Volume 3, pp. 105–126. [Google Scholar]
- Ranalli, G. Rheology of the Earth; Chapman and Hall: London, UK, 1995; p. 413. [Google Scholar]
R1 | R2 | B1 | B2 | B3 | B1A | B1B | B1C | B1D | B1E | R1A | R1B | R2A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oceanic plate length (km) | 400 | 400 | 700 | 700 | 700 | 700 | 700 | 700 | 700 | 700 | 400 | 400 | 400 |
Oceanic plate age (Myrs) | 40 | 40 | 40 | 80 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Pushing velocity (m/s) | 5 | 5 | 5 | 3 * | 2 | 5 | 5 | 5 | 5 | 5 | 2 | 5 | 5 |
Time of pushing (Myrs) | 80 | 10 | 80 | 8 | 17 | 80 | 80 | 8 | 80 | 8 | 80 | 80 | 10 |
Left continental lithosphere thickness (km) | 100 | 100 | 100 | 70 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Right continental lithosphere thickness (km) | 100 | 100 | 140 | 70 | 70 | 140 | 140 | 140 | 140 | 140 | 100 | 100 | 100 |
Continental lithospheric density (kg/m3) | 3280 | 3280 | 3280 | 3280 | 3280 | 3280 | 3260 | 3260 | 3280 | 3280 | 3280 | 3280 | 3280 |
Ambient mantle temperature (°C) | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1350 | 1350 | 1300 | 1350 | 1350 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sizova, E.; Hauzenberger, C.; Fritz, H.; Faryad, S.W.; Gerya, T. Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff. Geosciences 2019, 9, 499. https://doi.org/10.3390/geosciences9120499
Sizova E, Hauzenberger C, Fritz H, Faryad SW, Gerya T. Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff. Geosciences. 2019; 9(12):499. https://doi.org/10.3390/geosciences9120499
Chicago/Turabian StyleSizova, Elena, Christoph Hauzenberger, Harald Fritz, Shah Wali Faryad, and Taras Gerya. 2019. "Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff" Geosciences 9, no. 12: 499. https://doi.org/10.3390/geosciences9120499
APA StyleSizova, E., Hauzenberger, C., Fritz, H., Faryad, S. W., & Gerya, T. (2019). Late Orogenic Heating of (Ultra)High Pressure Rocks: Slab Rollback vs. Slab Breakoff. Geosciences, 9(12), 499. https://doi.org/10.3390/geosciences9120499