Methane in Gas Shows from Boreholes in Epigenetic Permafrost of Siberian Arctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methane Concentration in Permafrost
- ∆—losses from the outer 0.001-m layer of the sample;
- V0—sample volume, m3, given the diameter of the syringe (d0 = 0.038 m) and height of the sample ();
- V1—volume of frozen sample after 0.001 m is thawed (given the d1 = (d0 − 0.002) = 0.036 m; H1 = H0 − 0.002 m);
- ρ0—bulk density of permafrost;
- ρt = 2650 kg m−3—normal particle density of quartz;
- W—moisture content.
- C—total concentration of methane in the sample;
- C1, C2—concentration of methane after the first and second degassing, respectively.
- m—mass of methane in permafrost sample, g;
- M = 16.04 g mol−1—molar mass of CH4;
- p = 101325 Pa—normal atmospheric pressure (during sampling of gas);
- V—volume of headspace, m3;
- c—measured concentration of CH4 , unit volume;
- R = 8.314 m3 Pa K−1 mol−1—gas constant;
- T—temperature of gas during sampling of headspace gas, K.
2.2. Emission of Methane
- E—emission of CH4, total mass of methane emitted from the borehole since chamber installation, g;
- Ck—volumetric concentration of methane in the borehole measured at time tk, g m−3;
- tk—exposition time since chamber installation, s.
- D—equivalent diameter of degassing of permafrost around the borehole to meet the concentration of CH4 in the borehole or the emitted amount of methane, m;
- Cs—concentration of methane in sediments averaged by borehole, mg m−3;
- H—borehole depth, m.
2.3. Isotopic Studies
3. Results and Discussion
3.1. Geological Sections
3.2. Methane Concentrations in the Cores
3.3. Initial Concentrations of Methane in Boreholes
3.4. Dynamics of Methane Emission
3.5. Toward an Understanding of Methane Origin in Geologic Sections
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 465–570. [Google Scholar]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Walter Anthony, K.M.; Anthony, P.; Grosse, G.; Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 2012, 5, 419–426. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraev, G.; Schulze, E.-D.; Yurova, A.; Kholodov, A.; Chuvilin, E.; Rivkina, E. Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils. Atmosphere 2017, 8, 105. [Google Scholar] [CrossRef]
- Are, F.E. The problem of the emission of deep-buried gases to the atmosphere. In Permafrost Response on Economic Development, Environmental Security and Natural Resources; Paepe, R., Melnikov, V.P., Van Overloop, E., Gorokhov, V.D., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 497–509. [Google Scholar]
- Etiope, G. Natural Gas Seepage: The Earth’s Hydrocarbon Degassing; Springer: Cham, Switzerland, 2015; p. 199. [Google Scholar]
- Walter, K.M.; Zimov, S.A.; Chanton, J.P.; Verbyla, D.; Chapin Iii, F.S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 2006, 443, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2013, 7, 64–70. [Google Scholar] [CrossRef]
- Leibman, M.O.; Kizyakov, A.I.; Plekhanov, A.V.; Streletskaya, I.D. New permafrost feature—Deep crater in Central Yamal (West Siberia, Russia) as a response to local climate fluctuations. Geogr. Environ. Sustain. 2014, 7, 68–80. [Google Scholar] [CrossRef]
- Buldovicz, S.N.; Khilimonyuk, V.Z.; Bychkov, A.Y.; Ospennikov, E.N.; Vorobyev, S.A.; Gunar, A.Y.; Gorshkov, E.I.; Chuvilin, E.M.; Cherbunina, M.Y.; Kotov, P.I.; et al. Cryovolcanism on the Earth: Origin of a Spectacular Crater in the Yamal Peninsula (Russia). Sci. Rep. 2018, 8, 13534. [Google Scholar] [CrossRef]
- Yakushev, V.S.; Chuvilin, E.M. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg. Sci. Technol. 2000, 31, 189–197. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal peninsula, West Siberia. Polarforschung 2000, 68, 215–219. [Google Scholar]
- Olenchenko, V.V.; Sinitsky, A.I.; Antonov, E.Y.; Eltsov, I.N.; Kushnarenko, O.N.; Plotnikov, A.E.; Potapov, V.V.; Epov, M.I. Results of geophysical surveys of the area of “Yamal crater”, the new geological structure. Earth’s Cryosphere 2015, 19, 84–95. [Google Scholar]
- Melnikov, E.S. Osobennosti posledeistviya azotnykh udobrenii v sosnyakakh i el’nikakh posle kompleksnogo ukhoda. Izvestiya Sankt-Peterburgskoi Lesotekhnicheskoi Akademii, 2004; 10–17. [Google Scholar]
- Gresov, A.I.; Obzhirov, A.I.; Yatsuk, A.V.; Mazurov, A.K.; Ruban, A.S. Gas content of bottom sediments and geochemical indicators of oil and gas on the shelf of the East Siberian Sea. Russ. J. Pac. Geol. 2017, 11, 308–314. [Google Scholar] [CrossRef]
- Rivkina, E.; Shcherbakova, V.; Laurinavichius, K.; Petrovskaya, L.; Krivushin, K.; Kraev, G.; Pecheritsina, S.; Gilichinsky, D. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 2007, 61, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivkina, E.M.; Gilichinsky, D.A. Methane as a paleoindicator of the dynamics of permafrost deposits. Lithol. Miner. Resour. 1996, 31, 396–400. [Google Scholar]
- Cherbunina, M.Y.; Shmelev, D.G.; Brouchkov, A.V.; Kazancev, V.S.; Argunov, R.N. Patterns of Spatial Methane Distribution in the Upper Layers of the Permafrost in Central Yakutia. Mosc. Univ. Geol. Bull. 2018, 73, 100–108. [Google Scholar] [CrossRef]
- Streletskaya, I.D.; Vasiliev, A.A.; Oblogov, G.E.; Semenov, P.B.; Vanshtein, B.G.; Rivkina, E.M. Methane in ground ice and frozen sediments in the coastal zone and on the shelf of Kara sea. Ice Snow 2018, 58, 65–77. (In Russian) [Google Scholar] [CrossRef]
- Rivkina, E.M.; Laurinavichus, K.S.; Gilichinsky, D.A.; Shcherbakova, V.A. Methane Generation in Permafrost Sediments. Dokl. Biol. Sci. 2002, 383, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Rivkina, E.; Gilichinsky, D.A.; McKay, C.; Dallimore, S. Methane distribution in permafrost: Evidence for an interpore pressure methane hydrate. In Permafrost Response on Economic Development, Environmental Security and Natural Resources; Paepe, R., Melnikov, V.P., Van Overloop, E., Gorokhov, V.D., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 487–496. [Google Scholar]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Milkov, A.V. Methanogenic biodegradation of petroleum in the West Siberian Basin (Russia): Significance for formation of giant Cenomanian gas pools. AAPG Bull. 2010, 94, 1485–1541. [Google Scholar] [CrossRef]
- Sherwood, O.A.; Schwietzke, S.; Arling, V.A.; Etiope, G. Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017. Earth Syst. Sci. Data 2017, 9, 639–656. [Google Scholar] [CrossRef] [Green Version]
- Dallimore, S.R.; Collett, T.S. Intrapermafrost gas hydrates from a deep core hole in the Mackenzie Delta, Northwest Territories, Canada. Geology 1995, 23, 527–530. [Google Scholar] [CrossRef]
- Niederberger, T.D.; Perreault, N.N.; Tille, S.; Lollar, B.S.; Lacrampe-Couloume, G.; Andersen, D.; Greer, C.W.; Pollard, W.; Whyte, L.G. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J. 2010, 4, 1326–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.D. Headspace Analysis: Static. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 229–236. [Google Scholar]
- Shmelev, D.; Veremeeva, A.; Kraev, G.; Kholodov, A.; Spencer, R.G.M.; Walker, W.S.; Rivkina, E. Estimation and Sensitivity of Carbon Storage in Permafrost of North-Eastern Yakutia. Permafr. Periglac. Processes 2017, 28, 379–390. [Google Scholar] [CrossRef]
- Rivkin, F.M.; Levantovskaya, N.P. Dynamics of sub-river channel taliks and the formation of gas hydrates. Kriosf. Zemli 2002, 6, 36–42. (In Russian) [Google Scholar]
- Yakushev, V.S. Genetic types of hydrocarbon gases in the permafrost strata. Kriosf. Zemli 2015, 19, 64–68. [Google Scholar]
- Buddo, I.V.; Misurkeeva, N.V.; Shelohov, I.A.; Agafonov, Y.A.; Smirnov, A.S.; Zharikov, M.G.; Kulinchenko, A.S. Experience of 3D transient electromagnetics application for shallow and hydrocarbon exploration within Western Siberia. In Proceedings of the 79th EAGE Conference & Exhibition, Paris, France, 12–15 June 2017. [Google Scholar]
- Van Everdingen, R.O. (Ed.) Multi-Language Glossary of Permafrost and Related Ground-Ice Terms in Chinese, English, French, German, Icelandic, Italian; International Permafrost Association. Norwegian, Polish, Romanian, Russian, Spanish, and Swedish; International Permafrost Association: Calgary, AB, Canada, 2005; p. 159. [Google Scholar]
Borehole | H, m | d0, m | Vb, m3 | Cb, mg m−3 | Cs, mg m−3 | D, m |
---|---|---|---|---|---|---|
PCV-1/17 | 15.9 | 0.112 | 0.157 | 0.8 | 6.0 | 0.040 |
30 | 0.119 | 0.333 | 2.6 | 10.1 | 0.059 | |
PCV-2/17 | 15.6 | 0.128 | 0.201 | 0.4 | 1.5 | 0.021 |
PCV-2a/17 | 18 | 0.128 | 0.232 | 178.3 | 8.7 | 0.541 |
23.4 | 0.124 | 0.284 | 4.4 | 8.7 | 0.083 | |
PCV-2b/17 | 30 | 0.122 | 1.3 | |||
PCV-2c/17 | 2 | 0.128 | 1.3 | |||
PCV-4/17 | 30 | 0.128 | 0.386 | 8.9 | 405.4 | 0.019 |
PCV-5/17 | 22 | 0.125 | 0.270 | 3.1 | 576.4 | 0.009 |
30.2 | 0.122 | 0.350 | 1.4 | 562.9 | 0.012 | |
PCV-6/17 | 30.2 | 0.113 | 0.300 | 0 | 8.0 | 0 |
PCV-7/17 | 30.6 | 0.124 | 0.367 | 214.5 | 2468.8 | 0.043 |
PCV-8/17 | 26.3 | 0.128 | 0.339 | 5.6 | 2416.3 | 0.006 |
ALZ-1/15 | 25.2 | 0.069 | 0.093 | 409404.4 | 1702.7 | 1.064 |
ALZ-3/15 | 20.0 | 0.072 | 0.081 | 79890.1 | 1101.2 | 0.610 |
AMB-3,4/07 | 23.0 | 0.070 | 0.088 | 608285.9 | 6424.2 | 0.679 |
CKC-1/17 | 6.0 | 0.090 | 0.038 | 115877.8 | 248.6 | 1.939 |
11.0 | 0.082 | 0.058 | 301792.8 | 188.3 | 3.289 | |
17.0 | 0.074 | 0.074 | 54864.5 | 145.1 | 1.444 | |
21.4 | 0.071 | 0.083 | 57017.9 | 117.2 | 1.565 |
Borehole | t, s | F0, μg m−2 s−1 | F, μg m−2 s−1 | E, mg | D, m | |
---|---|---|---|---|---|---|
PCV-1/17 | 15.6 | 155820 | 74.6 | 38.4 | 58.9 | 0.853 |
30.0 | 864060 | 441.6 | 20.8 | 199.5 | 0.886 | |
PCV-2/17 | 15.6 | 427320 | 37.3 | 18.6 | 102.5 | 2.368 |
PCV-2a/17 | 18 | 54540 | 8926.4 | 4484.8 | 3147.5 | 4.720 |
PCV-4/17 | 30 | 82500 | 742.8 | 381.3 | 404.8 | 0.206 |
PCV-7/17 | 30.6 | 177600 | 36587.3 | 3177.7 | 5801.0 | 0.403 |
ALZ-1/15 | 25.2 | 6386.8 | ||||
ALZ-3/15 | 20 | 1246.4 | ||||
AMB-3,4/07 | 23 | 9489.3 | ||||
CKC-1/17 | 6 | 1807.8 | ||||
11 | 4708.1 | |||||
17 | 856.0 | |||||
21.4 | 889.6 |
Borehole | H, m | δ13C(CH4), ‰ VPDB |
---|---|---|
PCV-2a/17 | 18 | −86.5 |
PCV-7/17 | 30.6 | −64.4 |
ALZ-1/15 | 25.2 | −84.9 |
AMB-3,4/07 | 23.0 | −85.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraev, G.; Rivkina, E.; Vishnivetskaya, T.; Belonosov, A.; van Huissteden, J.; Kholodov, A.; Smirnov, A.; Kudryavtsev, A.; Teshebaeva, K.; Zamolodchikov, D. Methane in Gas Shows from Boreholes in Epigenetic Permafrost of Siberian Arctic. Geosciences 2019, 9, 67. https://doi.org/10.3390/geosciences9020067
Kraev G, Rivkina E, Vishnivetskaya T, Belonosov A, van Huissteden J, Kholodov A, Smirnov A, Kudryavtsev A, Teshebaeva K, Zamolodchikov D. Methane in Gas Shows from Boreholes in Epigenetic Permafrost of Siberian Arctic. Geosciences. 2019; 9(2):67. https://doi.org/10.3390/geosciences9020067
Chicago/Turabian StyleKraev, Gleb, Elizaveta Rivkina, Tatiana Vishnivetskaya, Andrei Belonosov, Jacobus van Huissteden, Alexander Kholodov, Alexander Smirnov, Anton Kudryavtsev, Kanayim Teshebaeva, and Dmitrii Zamolodchikov. 2019. "Methane in Gas Shows from Boreholes in Epigenetic Permafrost of Siberian Arctic" Geosciences 9, no. 2: 67. https://doi.org/10.3390/geosciences9020067
APA StyleKraev, G., Rivkina, E., Vishnivetskaya, T., Belonosov, A., van Huissteden, J., Kholodov, A., Smirnov, A., Kudryavtsev, A., Teshebaeva, K., & Zamolodchikov, D. (2019). Methane in Gas Shows from Boreholes in Epigenetic Permafrost of Siberian Arctic. Geosciences, 9(2), 67. https://doi.org/10.3390/geosciences9020067