Heavy Metal Rules. I. Exoplanet Incidence and Metallicity
Abstract
:1. Introduction
Diversity of Exoplanet Properties and Their Formation Scenarios
2. Motivation and the Outline of This Review
2.1. SWEET-Cat
2.2. Nomenclature: The Term ‘Metallicity’ in Astronomy
2.2.1. Mass Fraction
2.2.2. The Solar () Scale
3. Metallicity of Planet Host Stars
3.1. Giant Planets and Metallicity
3.2. Metallicity of Sub-Jupiters
3.3. Very Massive Giants and Metallicity
3.4. Low-Mass Planets and Metallicity
4. Conclusions
4.1. Questions to Answer or to Think about
4.2. The Main New Results and Conclusions
- The study of the dependence of planet masses on the mean metallicity of their hosts revealed (see Section 3.2) that the hosts of sub-Jupiter mass planets (∼0.6–0.9 M) are systematically less metallic than the hosts of the Jupiter-like planets. The results seem to suggest that, at high metallicities, the longer disk lifetime [114,186] and higher amount of planet building material, e.g., [73], allows a formation of more massive Jupiter-like planets than at lower metallicities.
- Recently, several authors suggested that planets more massive than about 4 M tend to orbit around low-metallicity stars and might have formed in a different way than Jupiter-mass planets with <4 M, e.g., [188,195]. The results of this study show that giant planets with masses above and below 4 M orbiting solar-like stars are preferentially metal-rich, which does not support the previous hints about the different formation mechanisms of these two groups of planets. Formation of these planets and the observed metallicity trend can be explained by the CA models, e.g., [73], more easily than by the GI and TD models, e.g., [53,57]. The results also show statistically significant difference in the metallicity distributions of giant stars (>1.5 M) hosting planets with masses greater or less than 4 M. Perhaps, GI based models should be able to explain the formation of the most massive giant planets (>4 M) in low-meallicity environment more easily than CA based models. It is thus suggested that planets of the same mass can be formed through different channels depending on the disk mass i.e., environmental conditions.
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RV | Radial Velocity |
CCD | Charge-Coupled Device |
SS | Solar System |
CA | Core Accretion |
GI | Gravitational Instability |
TD | Tidal Downsizing |
ISM | Interstellar Medium |
BD | Brown Dwarf |
GTO | Guaranteed Time Observations |
HARPS | High Accuracy Radial velocity Planet Searcher |
HMPH | High Mass Planet Host |
SnoP | Stars with not Planets |
GPH | Giant Planet Host |
GP | Giant Planet |
SGPH | Super-Giant Planet Host |
SGP | Super-Giant Planet |
KS | Kolmogorov–Smirnov |
std | standard deviation |
TESS | Transiting Exoplanet Survey Satellite |
PLATO | PLAnetary Transits and Oscillations of stars |
AU | Astronomical Unit |
KDE | Kernel Density Estimate |
References
- Fontenelle, B.L.B. Entretiens sur la Pluralite des Mondes; Chez la veuve C. Blageart: Paris, France, 1686. [Google Scholar]
- Belorizky, D. Le Soleil, Etoile Variable. L’Astronomie 1938, 52, 359–361. [Google Scholar]
- Struve, O. Proposal for a project of high-precision stellar radial velocity work. Observatory 1952, 72, 199–200. [Google Scholar]
- Wolszczan, A.; Frail, D.A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 1992, 355, 145–147. [Google Scholar] [CrossRef]
- Wolszczan, A. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12. Science 1994, 264, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlowski, P. Planet Formation Scenarios; California Institute of Technology: Pasadena, CA, USA, 1993; Volume 36, pp. 149–165. [Google Scholar]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M. Detection of Planetary Transits across a Sun-like Star. Astrophys. J. Lett. 2000, 529, L45–L48. [Google Scholar] [CrossRef]
- Henry, G.W.; Marcy, G.W.; Butler, R.P.; Vogt, S.S. A Transiting “51 Peg-like” Planet. Astrophys. J. Lett. 2000, 529, L41–L44. [Google Scholar] [CrossRef]
- Chauvin, G.; Lagrange, A.M.; Dumas, C.; Zuckerman, B.; Mouillet, D.; Song, I.; Beuzit, J.L.; Lowrance, P. A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. Astron. Astrophys. 2004, 425, L29–L32. [Google Scholar] [CrossRef]
- Kalas, P.; Graham, J.R.; Chiang, E.; Fitzgerald, M.P.; Clampin, M.; Kite, E.S.; Stapelfeldt, K.; Marois, C.; Krist, J. Optical Images of an Exosolar Planet 25 Light—Years from Earth. Science 2008, 322, 1345. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.E.; Coughlin, J.L.; Hoffman, K.; Mullally, F.; Christiansen, J.L.; Burke, C.J.; Bryson, S.; Batalha, N.; Haas, M.R.; Catanzarite, J.; et al. Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25. Astrophys. J. Suppl. Ser. 2018, 235, 38. [Google Scholar] [CrossRef]
- Schneider, J.; Dedieu, C.; Le Sidaner, P.; Savalle, R.; Zolotukhin, I. Defining and cataloging exoplanets: The exoplanet.eu database. Astron. Astrophys. 2011, 532, A79. [Google Scholar] [CrossRef]
- Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E.M.; Van Grootel, V.; Randall, S.K.; Silvotti, R.; Baran, A.S.; Østensen, R.H.; Kawaler, S.D.; et al. A compact system of small planets around a former red-giant star. Nature 2011, 480, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Udry, S.; Mayor, M.; Santos, N.C. Statistical properties of exoplanets. I. The period distribution: Constraints for the migration scenario. Astron. Astrophys. 2003, 407, 369–376. [Google Scholar] [CrossRef]
- Santerne, A.; Moutou, C.; Tsantaki, M.; Bouchy, F.; Hébrard, G.; Adibekyan, V.; Almenara, J.M.; Amard, L.; Barros, S.C.C.; Boisse, I.; et al. SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. Astron. Astrophys. 2016, 587, A64. [Google Scholar] [CrossRef]
- Dawson, R.I.; Johnson, J.A. Origins of Hot Jupiters. arXiv, 2018; arXiv:1801.06117. [Google Scholar] [CrossRef]
- Ida, S.; Lin, D.N.C. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets. Astrophys. J. 2004, 604, 388–413. [Google Scholar] [CrossRef] [Green Version]
- Mordasini, C.; Alibert, Y.; Benz, W.; Naef, D. Extrasolar planet population synthesis. II. Statistical comparison with observations. Astron. Astrophys. 2009, 501, 1161–1184. [Google Scholar] [CrossRef]
- Suzuki, D.; Bennett, D.P.; Ida, S.; Mordasini, C.; Bhattacharya, A.; Bond, I.A.; Donachie, M.; Fukui, A.; Hirao, Y.; Koshimoto, N.; et al. Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants. Astrophys. J. Lett. 2018, 869, L34. [Google Scholar] [CrossRef]
- Mordasini, C.; Mayor, M.; Udry, S.; Lovis, C.; Ségransan, D.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Lo Curto, G.; Moutou, C.; et al. The HARPS search for southern extra-solar planets: XXIV. Companions to HD 85390, HD 90156, and HD 103197: A Neptune analog and two intermediate-mass planets. Astron. Astrophys. 2011, 526, A111. [Google Scholar] [CrossRef]
- Mordasini, C. Planetary population synthesis. arXiv, 2018; arXiv:1804.01532. [Google Scholar]
- Moore, W.B.; Lenardic, A.; Jellinek, A.M.; Johnson, C.L.; Goldblatt, C.; Lorenz, R.D. How habitable zones and super-Earths lead us astray. Nat. Astron. 2017, 1, 0043. [Google Scholar] [CrossRef]
- Martin, R.G.; Livio, M. The Solar System as an Exoplanetary System. Astrophys. J. 2015, 810, 105. [Google Scholar] [CrossRef]
- Beer, M.E.; King, A.R.; Livio, M.; Pringle, J.E. How special is the Solar system? Mon. Not. R. Astron. Soc. 2004, 354, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Winn, J.N.; Fabrycky, D.C. The Occurrence and Architecture of Exoplanetary Systems. Annu. Rev. Astron. Astrophys. 2015, 53, 409–447. [Google Scholar] [CrossRef] [Green Version]
- Demory, B.O.; Seager, S. Lack of Inflated Radii for Kepler Giant Planet Candidates Receiving Modest Stellar Irradiation. Astrophys. J. Suppl. Ser. 2011, 197, 12. [Google Scholar] [CrossRef]
- Miller, N.; Fortney, J.J. The Heavy-element Masses of Extrasolar Giant Planets, Revealed. Astrophys. J. Lett. 2011, 736, L29. [Google Scholar] [CrossRef]
- Bodenheimer, P.; Laughlin, G.; Lin, D.N.C. On the Radii of Extrasolar Giant Planets. Astrophys. J. 2003, 592, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Guillot, T.; Showman, A.P. Evolution of “51 Pegasus b-like” planets. Astron. Astrophys. 2002, 385, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Chabrier, G.; Baraffe, I. Heat Transport in Giant (Exo)planets: A New Perspective. Astrophys. J. Lett. 2007, 661, L81–L84. [Google Scholar] [CrossRef]
- Sestovic, M.; Demory, B.O.; Queloz, D. Investigating hot-Jupiter inflated radii with hierarchical Bayesian modelling. Astron. Astrophys. 2018, 616, A76. [Google Scholar] [CrossRef]
- Seager, S.; Kuchner, M.; Hier-Majumder, C.A.; Militzer, B. Mass-Radius Relationships for Solid Exoplanets. Astrophys. J. 2007, 669, 1279–1297. [Google Scholar] [CrossRef]
- Fortney, J.J.; Marley, M.S.; Barnes, J.W. Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits. Astrophys. J. 2007, 659, 1661–1672. [Google Scholar] [CrossRef] [Green Version]
- Hatzes, A.P.; Rauer, H. A Definition for Giant Planets Based on the Mass-Density Relationship. Astrophys. J. Lett. 2015, 810, L25. [Google Scholar] [CrossRef]
- Boss, A.P. Proximity of Jupiter-Like Planets to Low-Mass Stars. Science 1995, 267, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.N.C.; Bodenheimer, P.; Richardson, D.C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 1996, 380, 606–607. [Google Scholar] [CrossRef] [Green Version]
- Safronov, V.S. Evoliutsiia Doplanetnogo Oblaka; Nakua: Moscow, Russia, 1969. [Google Scholar]
- Pollack, J.B.; Hubickyj, O.; Bodenheimer, P.; Lissauer, J.J.; Podolak, M.; Greenzweig, Y. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas. Icarus 1996, 124, 62–85. [Google Scholar] [CrossRef]
- Alibert, Y.; Mordasini, C.; Benz, W.; Winisdoerffer, C. Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 2005, 434, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, Y.; Pudritz, R.E. The origin of planetary system architectures—I. Multiple planet traps in gaseous discs. Mon. Not. R. Astron. Soc. 2011, 417, 1236–1259. [Google Scholar] [CrossRef]
- Kuiper, G.P. On the Origin of the Solar System. In 50th Anniversary of the Yerkes Observatory and Half a Century of Progress in Astrophysics; McGrawHill: New York, NY, USA, 1951; p. 357. [Google Scholar]
- Boss, A.P. Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation. Astrophys. J. 1998, 503, 923–937. [Google Scholar] [CrossRef] [Green Version]
- Boss, A.P. Stellar Metallicity and the Formation of Extrasolar Gas Giant Planets. Astrophys. J. Lett. 2002, 567, L149–L153. [Google Scholar] [CrossRef]
- Boley, A.C.; Hayfield, T.; Mayer, L.; Durisen, R.H. Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption. Icarus 2010, 207, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Vorobyov, E.I.; Elbakyan, V.G. Gravitational fragmentation and formation of giant protoplanets on orbits of tens of au. Astron. Astrophys. 2018, 618, A7. [Google Scholar] [CrossRef]
- Ikoma, M.; Nakazawa, K.; Emori, H. Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity. Astrophys. J. 2000, 537, 1013–1025. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, Y.; Pudritz, R.E. Planet Traps and Planetary Cores: Origins of the Planet-Metallicity Correlation. Astrophys. J. 2014, 794, 25. [Google Scholar] [CrossRef]
- Mordasini, C.; Klahr, H.; Alibert, Y.; Miller, N.; Henning, T. Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity. Astron. Astrophys. 2014, 566, A141. [Google Scholar] [CrossRef]
- Tychoniec, U.; Tobin, J.J.; Karska, A.; Chandler, C.; Dunham, M.M.; Harris, R.J.; Kratter, K.M.; Li, Z.Y.; Looney, L.W.; Melis, C.; et al. The VLA Nascent Disk And Multiplicity Survey of Perseus Protostars (VANDAM). IV. Free-Free Emission from Protostars: Links to Infrared Properties, Outflow Tracers, and Protostellar Disk Masses. Astrophys. J. Suppl. Ser. 2018, 238. [Google Scholar] [CrossRef]
- Haisch, K.E., Jr.; Lada, E.A.; Lada, C.J. Disk Frequencies and Lifetimes in Young Clusters. Astrophys. J. Lett. 2001, 553, L153–L156. [Google Scholar] [CrossRef]
- Mamajek, E.E. Initial Conditions of Planet Formation: Lifetimes of Primordial Disks. AIP Conf. Proceed. 2009, 1158, 3–10. [Google Scholar]
- Boss, A.P. Giant planet formation by gravitational instability. Science 1997, 276, 1836–1839. [Google Scholar] [CrossRef]
- Durisen, R.H.; Boss, A.P.; Mayer, L.; Nelson, A.F.; Quinn, T.; Rice, W.K.M. Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation. In Protostars and Planets V; University of Arizona Press: Tucson, AZ, USA, 2007; pp. 607–622. [Google Scholar]
- Nayakshin, S.; Cha, S.H.; Bridges, J.C. The tidal downsizing hypothesis for planet formation and the composition of Solar system comets. Mon. Not. R. Astron. Soc. 2011, 416, L50–L54. [Google Scholar] [CrossRef]
- Nayakshin, S. Differentiation of silicates and iron during formation of Mercury and high-density exoplanets. Mon. Not. R. Astron. Soc. 2014, 441, 1380–1390. [Google Scholar] [CrossRef] [Green Version]
- Nayakshin, S. Dawes Review 7: The Tidal Downsizing Hypothesis of Planet Formation. Publ. Astron. Soc. Aust. 2017, 34, e002. [Google Scholar] [CrossRef]
- Alessi, M.; Pudritz, R.E. Formation of planetary populations—I. Metallicity and envelope opacity effects. Mon. Not. R. Astron. Soc. 2018, 478, 2599–2617. [Google Scholar] [CrossRef]
- Johansen, A.; Lambrechts, M. Forming Planets via Pebble Accretion. Annu. Rev. Earth Planet. Sci. 2017, 45, 359–387. [Google Scholar] [CrossRef]
- Boss, A.P. The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability. Astrophys. J. 2017, 836, 53. [Google Scholar] [CrossRef] [Green Version]
- Nayakshin, S. Tidal Downsizing model. II. Planet-metallicity correlations. arXiv, 2015; arXiv:1502.07585. [Google Scholar]
- Johansen, A.; Oishi, J.S.; Mac Low, M.M.; Klahr, H.; Henning, T.; Youdin, A. Rapid planetesimal formation in turbulent circumstellar disks. Nature 2007, 448, 1022–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ida, S.; Guillot, T.; Morbidelli, A. The radial dependence of pebble accretion rates: A source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 2016, 591, A72. [Google Scholar] [CrossRef]
- Alibert, Y.; Venturini, J.; Helled, R.; Ataiee, S.; Burn, R.; Senecal, L.; Benz, W.; Mayer, L.; Mordasini, C.; Quanz, S.P.; et al. The formation of Jupiter by hybrid pebble-planetesimal accretion. Nat. Astron. 2018, 2, 873–877. [Google Scholar] [CrossRef]
- Alibert, Y.; Mordasini, C.; Benz, W. Migration and giant planet formation. Astron. Astrophys. 2004, 417, L25–L28. [Google Scholar] [CrossRef]
- Helled, R.; Bodenheimer, P.; Podolak, M.; Boley, A.; Meru, F.; Nayakshin, S.; Fortney, J.J.; Mayer, L.; Alibert, Y.; Boss, A.P. Giant Planet Formation, Evolution, and Internal Structure. In Protostars and Planets VI; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 643–665. [Google Scholar]
- Matsuo, T.; Shibai, H.; Ootsubo, T.; Tamura, M. Planetary Formation Scenarios Revisited: Core-Accretion versus Disk Instability. Astrophys. J. 2007, 662, 1282–1292. [Google Scholar] [CrossRef]
- Mordasini, C.; Mollière, P.; Dittkrist, K.M.; Jin, S.; Alibert, Y. Global models of planet formation and evolution. Int. J. Astrobiol. 2015, 14, 201–232. [Google Scholar] [CrossRef]
- Forgan, D.; Rice, K. Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Mon. Not. R. Astron. Soc. 2013, 432, 3168–3185. [Google Scholar] [CrossRef] [Green Version]
- Ndugu, N.; Bitsch, B.; Jurua, E. Planet population synthesis driven by pebble accretion in cluster environments. Mon. Not. R. Astron. Soc. 2018, 474, 886–897. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Pudritz, R.E. Planetary Populations in the Mass-Period Diagram: A Statistical Treatment of Exoplanet Formation and the Role of Planet Traps. Astrophys. J. 2013, 778, 78. [Google Scholar] [CrossRef]
- Forgan, D.H.; Hall, C.; Meru, F.; Rice, W.K.M. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: The effect of fragment-fragment interactions. Mon. Not. R. Astron. Soc. 2018, 474, 5036–5048. [Google Scholar] [CrossRef]
- Mordasini, C.; Alibert, Y.; Benz, W.; Klahr, H.; Henning, T. Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. Astron. Astrophys. 2012, 541, A97. [Google Scholar] [CrossRef]
- Nayakshin, S. Tidal Downsizing model—IV. Destructive feedback in planets. Mon. Not. R. Astron. Soc. 2016, 461, 3194–3211. [Google Scholar] [CrossRef]
- Adibekyan, V. Formation and Evolution of Exoplanets in Different Environments; Astronomical Society of the Pacific: San Francisco, CA, USA, 2017; Volume 511, p. 70. [Google Scholar]
- Bond, J.C.; O’Brien, D.P.; Lauretta, D.S. The Compositional Diversity of Extrasolar Terrestrial Planets. I. In Situ Simulations. Astrophys. J. 2010, 715, 1050–1070. [Google Scholar] [CrossRef]
- Thiabaud, A.; Marboeuf, U.; Alibert, Y.; Cabral, N.; Leya, I.; Mezger, K. From stellar nebula to planets: The refractory components. Astron. Astrophys. 2014, 562, A27. [Google Scholar] [CrossRef]
- Dorn, C.; Khan, A.; Heng, K.; Connolly, J.A.D.; Alibert, Y.; Benz, W.; Tackley, P. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys. 2015, 577, A83. [Google Scholar] [CrossRef]
- Madhusudhan, N.; Amin, M.A.; Kennedy, G.M. Toward Chemical Constraints on Hot Jupiter Migration. Astrophys. J. Lett. 2014, 794, L12. [Google Scholar] [CrossRef]
- Thiabaud, A.; Marboeuf, U.; Alibert, Y.; Leya, I.; Mezger, K. Gas composition of the main volatile elements in protoplanetary discs and its implication for planet formation. Astron. Astrophys. 2015, 574, A138. [Google Scholar] [CrossRef]
- Adibekyan, V.; Sousa, S.G.; Santos, N.C. Characterization of Exoplanet-Host Stars. Asteroseismol. Exoplanets 2018, 49, 225. [Google Scholar]
- Santos, N.C.; Sousa, S.G.; Mortier, A.; Neves, V.; Adibekyan, V.; Tsantaki, M.; Delgado Mena, E.; Bonfils, X.; Israelian, G.; Mayor, M.; et al. SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs: I. New atmospheric parameters and masses for 48 stars with planets. Astron. Astrophys. 2013, 556, A150. [Google Scholar] [CrossRef]
- Bashi, D.; Helled, R.; Zucker, S. A Quantitative Comparison of Exoplanet Catalogs. arXiv, 2018; arXiv:1808.10236. [Google Scholar] [CrossRef]
- Sousa, S.G.; Santos, N.C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere: The impact on stellar and planetary mass. Astron. Astrophys. 2015, 576, A94. [Google Scholar] [CrossRef]
- Torres, G.; Fischer, D.A.; Sozzetti, A.; Buchhave, L.A.; Winn, J.N.; Holman, M.J.; Carter, J.A. Improved Spectroscopic Parameters for Transiting Planet Hosts. Astrophys. J. 2012, 757, 161. [Google Scholar] [CrossRef]
- Santos, N.C.; Israelian, G.; Mayor, M. Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. Astron. Astrophys. 2004, 415, 1153–1166. [Google Scholar] [CrossRef]
- Sousa, S.G.; Santos, N.C.; Mayor, M.; Udry, S.; Casagrande, L.; Israelian, G.; Pepe, F.; Queloz, D.; Monteiro, M.J.P.F.G. Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. Astron. Astrophys. 2008, 487, 373. [Google Scholar] [CrossRef]
- Sousa, S.G. ARES + MOOG: A Practical Overview of an Equivalent Width (EW) Method to Derive Stellar Parameters. In Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars; Springer International Publishing: New York, NY, USA, 2014; p. 297. [Google Scholar]
- Andreasen, D.T.; Sousa, S.G.; Tsantaki, M.; Teixeira, G.D.C.; Mortier, A.; Santos, N.C.; Suárez-Andrés, L.; Delgado-Mena, E.; Ferreira, A.C.S. SWEET-Cat update and FASMA: A new minimization procedure for stellar parameters using high-quality spectra. Astron. Astrophys. 2017, 600, A69. [Google Scholar] [CrossRef]
- Sousa, S.G.; Adibekyan, V.; Delgado-Mena, E.; Santos, N.C.; Andreasen, D.T.; Ferreira, A.C.S.; Tsantaki, M.; Barros, S.C.C.; Demangeon, O.; Israelian, G.; et al. SWEET-Cat updated. New homogenous spectroscopic parameters. arXiv, 2018; arXiv:1810.08108. [Google Scholar]
- Furlan, E.; Ciardi, D.R.; Cochran, W.D.; Everett, M.E.; Latham, D.W.; Marcy, G.W.; Buchhave, L.A.; Endl, M.; Isaacson, H.; Petigura, E.A.; et al. The Kepler Follow-up Observation Program. II. Stellar Parameters from Medium- and High-resolution Spectroscopy. Astrophys. J. 2018, 861, 149. [Google Scholar] [CrossRef]
- Petigura, E.A.; Howard, A.W.; Marcy, G.W.; Johnson, J.A.; Isaacson, H.; Cargile, P.A.; Hebb, L.; Fulton, B.J.; Weiss, L.M.; Morton, T.D.; et al. The California-Kepler Survey. I. High-resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets. Astrophys. J. 2017, 154, 107. [Google Scholar] [CrossRef]
- Nsamba, B.; Monteiro, M.J.P.F.G.; Campante, T.L.; Cunha, M.S.; Sousa, S.G. Centauri A as a potential stellar model calibrator: Establishing the nature of its core. Mon. Not. R. Astron. Soc. 2018, 479, L55–L59. [Google Scholar] [CrossRef]
- Bressan, A.; Marigo, P.; Girardi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145. [Google Scholar] [CrossRef]
- Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J. 2003, 591, 1220–1247. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Lodders, K.; Palme, H.; Gail, H.P. Abundances of the Elements in the Solar System. Landolt Börnstein 2009, 4B, 712. [Google Scholar]
- Caffau, E.; Ludwig, H.G.; Steffen, M.; Freytag, B.; Bonifacio, P. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere. Sol. Phys. 2011, 268, 255–269. [Google Scholar] [CrossRef]
- Bertelli, G.; Bressan, A.; Chiosi, C.; Fagotto, F.; Nasi, E. Theoretical isochrones from models with new radiative opacities. Astron. Astrophys. Suppl. Ser. 1994, 106, 275–302. [Google Scholar]
- Bonfanti, A.; Ortolani, S.; Nascimbeni, V. Age consistency between exoplanet hosts and field stars. Astron. Astrophys. 2016, 585, A5. [Google Scholar] [CrossRef]
- Fuhrmann, K. Nearby stars of the Galactic disk and halo. Astron. Astrophys. 1998, 338, 161–183. [Google Scholar] [CrossRef]
- Reddy, B.E.; Lambert, D.L.; Allende Prieto, C. Elemental abundance survey of the Galactic thick disc. Mon. Not. R. Astron. Soc. 2006, 367, 1329–1366. [Google Scholar] [CrossRef] [Green Version]
- Adibekyan, V.Z.; Sousa, S.G.; Santos, N.C.; Delgado Mena, E.; González Hernández, J.I.; Israelian, G.; Mayor, M.; Khachatryan, G. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. Galactic stellar populations and planets. Astron. Astrophys. 2012, 545, A32. [Google Scholar] [CrossRef]
- Adibekyan, V.Z.; Figueira, P.; Santos, N.C.; Hakobyan, A.A.; Sousa, S.G.; Pace, G.; Delgado Mena, E.; Robin, A.C.; Israelian, G.; González Hernández, J.I. Kinematics and chemical properties of the Galactic stellar populations. The HARPS FGK dwarfs sample. Astron. Astrophys. 2013, 554, A44. [Google Scholar] [CrossRef]
- Recio-Blanco, A.; de Laverny, P.; Kordopatis, G.; Helmi, A.; Hill, V.; Gilmore, G.; Wyse, R.; Adibekyan, V.; Randich, S.; Asplund, M.; et al. The Gaia-ESO Survey: The Galactic thick to thin disc transition. Astron. Astrophys. 2014, 567, A5. [Google Scholar] [CrossRef]
- Yi, S.; Demarque, P.; Kim, Y.C.; Lee, Y.W.; Ree, C.H.; Lejeune, T.; Barnes, S. Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture. Astrophys. J. Suppl. Ser. 2001, 136, 417–437. [Google Scholar] [CrossRef]
- Gonzalez, G. The stellar metallicity-giant planet connection. Mon. Not. R. Astron. Soc. 1997, 285, 403–412. [Google Scholar] [CrossRef]
- Santos, N.C.; Israelian, G.; Mayor, M. The metal-rich nature of stars with planets. Astron. Astrophys. 2001, 373, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Mowlavi, N.; Eggenberger, P.; Meynet, G.; Ekström, S.; Georgy, C.; Maeder, A.; Charbonnel, C.; Eyer, L. Stellar mass and age determinations. I. Grids of stellar models from Z = 0.006 to 0.04 and M = 0.5 to 3.5 M. Astron. Astrophys. 2012, 541, A41. [Google Scholar] [CrossRef]
- Théado, S.; Vauclair, S. Metal-rich Accretion and Thermohaline Instabilities in Exoplanet-host Stars: Consequences on the Light Elements Abundances. Astrophys. J. 2012, 744, 123. [Google Scholar] [CrossRef]
- Kunitomo, M.; Guillot, T.; Ida, S.; Takeuchi, T. Revisiting the pre-main-sequence evolution of stars II. Consequences of planet formation on stellar surface composition. Astron. Astrophys. 2018. [Google Scholar] [CrossRef]
- Ruffle, P.M.E.; Millar, T.J.; Roberts, H.; Lubowich, D.A.; Henkel, C.; Pasachoff, J.M.; Brammer, G. Galactic Edge Clouds. I. Molecular Line Observations and Chemical Modeling of Edge Cloud 2. Astrophys. J. 2007, 671, 1766–1783. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.; Chaboyer, B.; Arras, P.; Hansen, B.; Noyes, R.W. Stellar Pollution in the Solar Neighborhood. Astrophys. J. 2001, 555, 801–815. [Google Scholar] [CrossRef] [Green Version]
- Ercolano, B.; Clarke, C.J. Metallicity, planet formation and disc lifetimes. Mon. Not. R. Astron. Soc. 2010, 402, 2735–2743. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, X.; Lin, D.N.C. Migration and growth of protoplanetary embryos. III. mass and metallicity dependence for fgkm main—Sequence stars. Astrophys. J. 2016, 823, 162. [Google Scholar] [CrossRef]
- Dawson, R.I.; Chiang, E.; Lee, E.J. A metallicity recipe for rocky planets. Mon. Not. R. Astron. Soc. 2015, 453, 1471–1483. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.M.; Wilner, D.J.; Hughes, A.M.; Qi, C.; Rosenfeld, K.A.; Öberg, K.I.; Birnstiel, T.; Espaillat, C.; Cieza, L.A.; Williams, J.P.; et al. The TW Hya Disk at 870 m: Comparison of CO and Dust Radial Structures. Astrophys. J. 2012, 744, 162. [Google Scholar] [CrossRef]
- Birnstiel, T.; Andrews, S.M. On the Outer Edges of Protoplanetary Dust Disks. Astrophys. J. 2014, 780, 153. [Google Scholar] [CrossRef]
- Laughlin, G. Mining the Metal-rich Stars for Planets. Astrophys. J. 2000, 545, 1064–1073. [Google Scholar] [CrossRef]
- Gonzalez, G.; Laws, C.; Tyagi, S.; Reddy, B.E. Parent Stars of Extrasolar Planets. VI. Abundance Analyses of 20 New Systems. Astrophys. J. 2001, 121, 432–452. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.A.; Valenti, J. The Planet-Metallicity Correlation. Astrophys. J. 2005, 622, 1102–1117. [Google Scholar] [CrossRef]
- Johnson, J.A.; Aller, K.M.; Howard, A.W.; Crepp, J.R. Giant Planet Occurrence in the Stellar Mass-Metallicity Plane. Publ. Astron. Soc. Pac. 2010, 122, 905. [Google Scholar] [CrossRef]
- Sousa, S.G.; Santos, N.C.; Israelian, G.; Mayor, M.; Udry, S. Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. Astron. Astrophys. 2011, 533, A141. [Google Scholar] [CrossRef]
- Mortier, A.; Santos, N.C.; Sousa, S.; Israelian, G.; Mayor, M.; Udry, S. On the functional form of the metallicity-giant planet correlation. Astron. Astrophys. 2013, 551, A112. [Google Scholar] [CrossRef]
- Laughlin, G.; Adams, F.C. Possible Stellar Metallicity Enhancements from the Accretion of Planets. Astrophys. J. Lett. 1997, 491, L51–L54. [Google Scholar] [CrossRef] [Green Version]
- Pinsonneault, M.H.; DePoy, D.L.; Coffee, M. The Mass of the Convective Zone in FGK Main-Sequence Stars and the Effect of Accreted Planetary Material on Apparent Metallicity Determinations. Astrophys. J. Lett. 2001, 556, L59–L62. [Google Scholar] [CrossRef]
- Valenti, J.; Fischer, D. Stellar Metallicity and Planet Formation; ASP Conference Series; Spitzer Science Center and Michelson Science Center: Pasadena, CA, USA, 2008; Volume 384, p. 292. [Google Scholar]
- Spiegel, D.S.; Burrows, A.; Milsom, J.A. The Deuterium-burning Mass Limit for Brown Dwarfs and Giant Planets. Astrophys. J. 2011, 727, 57. [Google Scholar] [CrossRef]
- Chabrier, G.; Johansen, A.; Janson, M.; Rafikov, R. Giant Planet and Brown Dwarf Formation. In Protostars and Planets VI; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 619–642. [Google Scholar]
- Caballero, J.A. A review on substellar objects beyond the deuterium burning mass limit: Planets, brown dwarfs or what? arXiv, 2018; arXiv:1808.07798. [Google Scholar]
- Cumming, A.; Butler, R.P.; Marcy, G.W.; Vogt, S.S.; Wright, J.T.; Fischer, D.A. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets. Publ. Astron. Soc. Pac. 2008, 120, 531. [Google Scholar] [CrossRef]
- Russell, D. Geophysical Classification of Planets, Dwarf Planets, and Moons. arXiv, 2013; arXiv:1308.0616. [Google Scholar]
- Brucalassi, A.; Pasquini, L.; Saglia, R.; Ruiz, M.T.; Bonifacio, P.; Leão, I.; Canto Martins, B.L.; de Medeiros, J.R.; Bedin, L.R.; Biazzo, K.; et al. Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters. Astron. Astrophys. 2016, 592, L1. [Google Scholar] [CrossRef]
- Pinotti, R.; Boechat-Roberty, H.M.; Porto de Mello, G.F. Zero age planetary orbit of gas giant planets revisited: Reinforcement of the link with stellar metallicity. Mon. Not. R. Astron. Soc. 2017, 464, 3309–3314. [Google Scholar] [CrossRef]
- Bashi, D.; Helled, R.; Zucker, S.; Mordasini, C. Two empirical regimes of the planetary mass–radius relation. Astron. Astrophys. 2017, 604, A83. [Google Scholar] [CrossRef]
- Buchhave, L.A.; Bizzarro, M.; Latham, D.W.; Sasselov, D.; Cochran, W.D.; Endl, M.; Isaacson, H.; Juncher, D.; Marcy, G.W. Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 2014, 509, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Fulton, B.J.; Petigura, E.A.; Howard, A.W.; Isaacson, H.; Marcy, G.W.; Cargile, P.A.; Hebb, L.; Weiss, L.M.; Johnson, J.A.; Morton, T.D.; et al. The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets. Astrophys. J. 2017, 154, 109. [Google Scholar] [CrossRef]
- Narang, M.; Manoj, P.; Furlan, E.; Mordasini, C.; Henning, T.; Mathew, B.; Banyal, R.K.; Sivarani, T. Properties and occurrence rates of Kepler exoplanet candidates as a function of host star metallicity from the DR25 catalog. arXiv, 2018; arXiv:1809.08385. [Google Scholar] [CrossRef]
- Petigura, E.A.; Marcy, G.W.; Winn, J.N.; Weiss, L.M.; Fulton, B.J.; Howard, A.W.; Sinukoff, E.; Isaacson, H.; Morton, T.D.; Johnson, J.A. The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets. Astrophys. J. 2018, 155, 89. [Google Scholar] [CrossRef] [Green Version]
- Berger, T.A.; Huber, D.; Gaidos, E.; van Saders, J.L. Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2. Astrophys. J. 2018, 866, 99. [Google Scholar] [CrossRef]
- Johnson, J.L.; Li, H. Constraints on planet formation via gravitational instability across cosmic time. Mon. Not. R. Astron. Soc. 2013, 431, 972–977. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.L.; Li, H. The First Planets: The Critical Metallicity for Planet Formation. Astrophys. J. 2012, 751, 81. [Google Scholar] [CrossRef]
- Niedzielski, A.; Nowak, G.; Adamów, M.; Wolszczan, A. Substellar-mass Companions to the K-dwarf BD+14 4559 and the K-giants HD 240210 and BD+202457. Astrophys. J. 2009, 707, 768. [Google Scholar] [CrossRef]
- Maldonado, J.; Villaver, E.; Eiroa, C. The metallicity signature of evolved stars with planets. Astron. Astrophys. 2013, 554, A84. [Google Scholar] [CrossRef]
- Takarada, T.; Sato, B.; Omiya, M.; Harakawa, H.; Nagasawa, M.; Izumiura, H.; Kambe, E.; Takeda, Y.; Yoshida, M.; Itoh, Y.; et al. Planets around the evolved stars 24 Boötis and Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR. Publ. Astron. Soc. Japan 2018, 70, 59. [Google Scholar] [CrossRef]
- Sozzetti, A.; Torres, G.; Latham, D.W.; Stefanik, R.P.; Korzennik, S.G.; Boss, A.P.; Carney, B.W.; Laird, J.B. A Keck HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. II. On the Frequency of Giant Planets in the Metal-Poor Regime. Astrophys. J. 2009, 697, 544–556. [Google Scholar] [CrossRef]
- Santos, N.C.; Mayor, M.; Bonfils, X.; Dumusque, X.; Bouchy, F.; Figueira, P.; Lovis, C.; Melo, C.; Pepe, F.; Queloz, D.; et al. The HARPS search for southern extrasolar planets. XXV. Results from the metal-poor sample. Astron. Astrophys. 2011, 526, A112. [Google Scholar] [CrossRef]
- Mortier, A.; Santos, N.C.; Sozzetti, A.; Mayor, M.; Latham, D.; Bonfils, X.; Udry, S. The frequency of giant planets around metal-poor stars. Astron. Astrophys. 2012, 543, A45. [Google Scholar] [CrossRef] [Green Version]
- Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N.C.; et al. The HARPS search for southern extra-solar planets. XXII. Multiple planet systems from the HARPS volume limited sample. Astron. Astrophys. 2010, 512, A48. [Google Scholar] [CrossRef]
- Gaidos, E.; Mann, A.W. Objects in Kepler’s Mirror May be Larger Than They Appear: Bias and Selection Effects in Transiting Planet Surveys. Astrophys. J. 2013, 762, 41. [Google Scholar] [CrossRef]
- Cameron, E. On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach. Publ. Astron. Soc. Aust. 2011, 28, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Udry, S.; Santos, N.C. Statistical Properties of Exoplanets. Annu. Rev. Astron. Astrophys. 2007, 45, 397–439. [Google Scholar] [CrossRef] [Green Version]
- Sozzetti, A.; Casertano, S.; Lattanzi, M.G.; Spagna, A. Detection and measurement of planetary systems with GAIA. Astron. Astrophys. 2001, 373, L21–L24. [Google Scholar] [CrossRef] [Green Version]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.A.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef] [Green Version]
- Winn, J.N. Planet Occurrence: Doppler and Transit Surveys. In Handbook of Exoplanets; Deeg, H.J., Belmonte, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–18. [Google Scholar] [Green Version]
- Santerne, A. Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys. arXiv, 2018; arXiv:1805.08391. [Google Scholar]
- Guo, X.; Johnson, J.A.; Mann, A.W.; Kraus, A.L.; Curtis, J.L.; Latham, D.W. The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-resolution Spectroscopy for 776 Kepler Target Stars. Astrophys. J. 2017, 838, 25. [Google Scholar] [CrossRef] [Green Version]
- Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Dumusque, X.; et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv, 2011; arXiv:1109.2497. [Google Scholar]
- Sozzetti, A. On the possible correlation between the orbital periods of extrasolar planets and the metallicity of the host stars. Mon. Not. R. Astron. Soc. 2004, 354, 1194–1200. [Google Scholar] [CrossRef] [Green Version]
- Adibekyan, V.Z.; Figueira, P.; Santos, N.C.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S.G.; Correia, A.C.M.; Israelian, G.; Oshagh, M. Orbital and physical properties of planets and their hosts: New insights on planet formation and evolution. Astron. Astrophys. 2013, 560, A51. [Google Scholar] [CrossRef]
- Maldonado, J.; Villaver, E.; Eiroa, C. Chemical fingerprints of hot Jupiter planet formation. Astron. Astrophys. 2018, 612, A93. [Google Scholar] [CrossRef] [Green Version]
- Murray-Clay, R.A.; Chiang, E.I.; Murray, N. Atmospheric Escape From Hot Jupiters. Astrophys. J. 2009, 693, 23. [Google Scholar] [CrossRef]
- Adams, F.C. Magnetically Controlled Outflows from Hot Jupiters. Astrophys. J. 2011, 730, 27. [Google Scholar] [CrossRef]
- Owen, J.E.; Jackson, A.P. Planetary evaporation by UV & X-ray radiation: Basic hydrodynamics. Mon. Not. R. Astron. Soc. 2012, 425, 2931. [Google Scholar]
- Owen, J.E.; Wu, Y. Kepler Planets: A Tale of Evaporation. Astrophys. J. 2013, 775, 105. [Google Scholar] [CrossRef]
- Lundkvist, M.S.; Kjeldsen, H.; Albrecht, S.; Davies, G.R.; Basu, S.; Huber, D.; Justesen, A.B.; Karoff, C.; Silva Aguirre, V.; van Eylen, V.; et al. Hot super-Earths stripped by their host stars. Nature Commun. 2016, 7, 11201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazeh, T.; Holczer, T.; Faigler, S. Dearth of short-period Neptunian exoplanets: A desert in period-mass and period-radius planes. Astron. Astrophys. 2016, 589, A75. [Google Scholar] [CrossRef]
- Nelson, B.E.; Ford, E.B.; Rasio, F.A. Evidence for Two Hot-Jupiter Formation Paths. Astrophys. J. 2017, 154, 106. [Google Scholar] [CrossRef] [Green Version]
- Matsakos, T.; Königl, A. On the Origin of the Sub-Jovian Desert in the Orbital-period-Planetary-mass Plane. Astrophys. J. 2016, 820, L8. [Google Scholar] [CrossRef]
- Owen, J.E.; Lai, D. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 2018, 479, 5012–5021. [Google Scholar] [CrossRef]
- Bailey, E.; Batygin, K. The Hot Jupiter Period–Mass Distribution as a Signature of in situ Formation. Astrophys. J. Lett. 2018, 866, L2. [Google Scholar] [CrossRef]
- Andrews, S.M.; Rosenfeld, K.A.; Kraus, A.L.; Wilner, D.J. The Mass Dependence between Protoplanetary Disks and their Stellar Hosts. Astrophys. J. 2013, 771, 129. [Google Scholar] [CrossRef]
- Mohanty, S.; Greaves, J.; Mortlock, D.; Pascucci, I.; Scholz, A.; Thompson, M.; Apai, D.; Lodato, G.; Looper, D. Protoplanetary Disk Masses from Stars to Brown Dwarfs. Astrophys. J. 2013, 773, 168. [Google Scholar] [CrossRef]
- Barenfeld, S.A.; Carpenter, J.M.; Ricci, L.; Isella, A. ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association. Astrophys. J. 2016, 827, 142. [Google Scholar] [CrossRef]
- Ansdell, M.; Williams, J.P.; van der Marel, N.; Carpenter, J.M.; Guidi, G.; Hogerheijde, M.; Mathews, G.S.; Manara, C.F.; Miotello, A.; Natta, A.; et al. ALMA Survey of Lupus Protoplanetary Disks. I. Dust and Gas Masses. Astrophys. J. 2016, 828, 46. [Google Scholar] [CrossRef]
- Pascucci, I.; Testi, L.; Herczeg, G.J.; Long, F.; Manara, C.F.; Hendler, N.; Mulders, G.D.; Krijt, S.; Ciesla, F.; Henning, T.; et al. A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation. Astrophys. J. 2016, 831, 125. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Kenyon, S.J. Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets. Astrophys. J. 2008, 673, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Bouy, H.; Merín, B. Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations. Astron. Astrophys. 2015, 576, A52. [Google Scholar] [CrossRef]
- Burkert, A.; Ida, S. The Separation/Period Gap in the Distribution of Extrasolar Planets around Stars with Masses M ≥ 1.2 Msolar. Astrophys. J. 2007, 660, 845–849. [Google Scholar] [CrossRef]
- Currie, T. On the Semimajor Axis Distribution of Extrasolar Gas Giant Planets: Why Hot Jupiters are Rare Around High-Mass Stars. Astrophys. J. Lett. 2009, 694, L171–L176. [Google Scholar] [CrossRef]
- Manara, C.F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J.M.; Williams, J.P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; et al. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks. Astron. Astrophys. 2016, 591, L3. [Google Scholar] [CrossRef]
- Santos, N.C.; Israelian, G.; Mayor, M.; Rebolo, R.; Udry, S. Statistical properties of exoplanets. II. Metallicity, orbital parameters, and space velocities. Astron. Astrophys. 2003, 398, 363–376. [Google Scholar] [CrossRef]
- Ghezzi, L.; Cunha, K.; Smith, V.V.; de Araújo, F.X.; Schuler, S.C.; de la Reza, R. Stellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: A Possible Dependence of Planetary Mass on Metallicity. Astrophys. J. 2010, 720, 1290–1302. [Google Scholar] [CrossRef]
- Nakatani, R.; Hosokawa, T.; Yoshida, N.; Nomura, H.; Kuiper, R. Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks by Ultraviolet Radiation: Metallicity Dependence. Astrophys. J. 2018, 857, 57. [Google Scholar] [CrossRef]
- Nakatani, R.; Hosokawa, T.; Yoshida, N.; Nomura, H.; Kuiper, R. Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks. II. Metallicity Dependence of UV and X-Ray Photoevaporation. Astrophys. J. 2018, 865, 75. [Google Scholar] [CrossRef]
- Udry, S. Detection and characterization of exoplanets: From gaseous giants to super-Earths. In Proceedings of the Conference in the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks, Paris, France, 25–29 October 2010; University of Paris Diderot: Paris, France, 2010. [Google Scholar]
- Schlaufman, K.C. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation. Astrophys. J. 2018, 853, 37. [Google Scholar] [CrossRef] [Green Version]
- Mayor, M.; Pont, F.; Vidal-Madjar, A. From Hot Jupiters to Hot Neptunes ... and Below. Prog. Theor. Phys. Suppl. 2005, 158, 43–67. [Google Scholar] [CrossRef]
- Grether, D.; Lineweaver, C.H. How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars. Astrophys. J. 2006, 640, 1051–1062. [Google Scholar] [CrossRef]
- Sahlmann, J.; Ségransan, D.; Queloz, D.; Udry, S. A Possible Dividing Line Between Massive Planets and Brown-Dwarf Companions. Proceed. Int. Astron. Union 2011, 276, 117–120. [Google Scholar] [CrossRef]
- Ribas, I.; Miralda-Escudé, J. The eccentricity-mass distribution of exoplanets: Signatures of different formation mechanisms? Astron. Astrophys. 2007, 464, 779–785. [Google Scholar] [CrossRef]
- Buchhave, L.A.; Latham, D.W.; Johansen, A.; Bizzarro, M.; Torres, G.; Rowe, J.F.; Batalha, N.M.; Borucki, W.J.; Brugamyer, E.; Caldwell, C.; et al. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 2012, 486, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Mulders, G.D.; Pascucci, I.; Apai, D.; Frasca, A.; Molenda-Żakowicz, J. A Super-solar Metallicity for Stars with Hot Rocky Exoplanets. Astrophys. J. 2016, 152, 187. [Google Scholar] [CrossRef]
- Santos, N.C.; Adibekyan, V.; Figueira, P.; Andreasen, D.T.; Barros, S.C.C.; Delgado-Mena, E.; Demangeon, O.; Faria, J.P.; Oshagh, M.; Sousa, S.G.; et al. Observational evidence for two distinct giant planet populations. Astron. Astrophys. 2017, 603, A30. [Google Scholar] [CrossRef] [Green Version]
- Rafikov, R.R. Can Giant Planets Form by Direct Gravitational Instability? Astrophys. J. Lett. 2005, 621, L69–L72. [Google Scholar] [CrossRef]
- Cai, K.; Durisen, R.H.; Michael, S.; Boley, A.C.; Mejía, A.C.; Pickett, M.K.; D’Alessio, P. The Effects of Metallicity and Grain Size on Gravitational Instabilities in Protoplanetary Disks. Astrophys. J. Lett. 2006, 636, L149–L152. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Li, X.; Chen, Y.; Zhao, G. Giant planets around FGK stars form probably through core accretion. arXiv, 2018; arXiv:1805.02721. [Google Scholar] [CrossRef]
- Weiss, L.M.; Marcy, G.W.; Rowe, J.F.; Howard, A.W.; Isaacson, H.; Fortney, J.J.; Miller, N.; Demory, B.O.; Fischer, D.A.; Adams, E.R.; et al. The Mass of KOI-94d and a Relation for Planet Radius, Mass, and Incident Flux. Astrophys. J. 2013, 768, 14. [Google Scholar] [CrossRef]
- Chen, J.; Kipping, D. Probabilistic Forecasting of the Masses and Radii of Other Worlds. Astrophys. J. 2017, 834, 17. [Google Scholar] [CrossRef]
- Raghavan, D.; McAlister, H.A.; Henry, T.J.; Latham, D.W.; Marcy, G.W.; Mason, B.D.; Gies, D.R.; White, R.J.; ten Brummelaar, T.A. A Survey of Stellar Families: Multiplicity of Solar-type Stars. Astrophys. J. Suppl. Ser. 2010, 190, 1–42. [Google Scholar] [CrossRef]
- Gao, S.; Liu, C.; Zhang, X.; Justham, S.; Deng, L.; Yang, M. The Binarity of Milky Way F,G,K Stars as a Function of Effective Temperature and Metallicity. Astrophys. J. Lett. 2014, 788, L37. [Google Scholar] [CrossRef]
- Moe, M.; Kratter, K.M.; Badenes, C. The Close Binary Fraction of Solar-type Stars is Strongly Anti-correlated with Metallicity. arXiv, 2018; 1808, arXiv:1808.02116. [Google Scholar]
- Hayashi, C.; Nakano, T. Evolution of Stars of Small Masses in the Pre-Main-Sequence Stages. Prog. Theor. Phys. 1963, 30, 460–474. [Google Scholar] [CrossRef] [Green Version]
- Baraffe, I.; Chabrier, G.; Allard, F.; Hauschildt, P.H. Evolutionary models for solar metallicity low-mass stars: Mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 1998, 337, 403. [Google Scholar]
- Nakano, T. Pre-main Sequence Evolution and the Hydrogen-Burning Minimum Mass. In 50 Years of Brown Dwarfs: From Prediction to Discovery to Forefront of Research; Joergens, V., Ed.; Astrophysics and Space Science Library, Springer International Publishing: Cham, Switzerland, 2014; pp. 5–17. [Google Scholar]
- Kumar, S.S. Study of Degeneracy in Very Light Stars. Astron. J. 1962, 67, 579. [Google Scholar] [CrossRef]
- Kumar, S.S. The Structure of Stars of Very Low Mass. Astrophys. J. 1963, 137, 1121. [Google Scholar] [CrossRef]
- Torres, G.; Andersen, J.; Giménez, A. Accurate masses and radii of normal stars: Modern results and applications. Astron. Astrophys. Rev. 2010, 18, 67–126. [Google Scholar] [CrossRef]
- Nayakshin, S.; Fletcher, M. Tidal Downsizing model—III. Planets from sub-Earths to brown dwarfs: Structure and metallicity preferences. Mon. Not. R. Astron. Soc. 2015, 452, 1654–1676. [Google Scholar] [CrossRef]
- Haywood, M. A peculiarity of metal-poor stars with planets? Astron. Astrophys. 2008, 482, 673–676. [Google Scholar] [CrossRef] [Green Version]
- Adibekyan, V.Z.; Delgado Mena, E.; Sousa, S.G.; Santos, N.C.; Israelian, G.; González Hernández, J.I.; Mayor, M.; Hakobyan, A.A. Exploring the -enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples. Astron. Astrophys. 2012, 547, A36. [Google Scholar] [CrossRef]
- Adibekyan, V.Z.; Santos, N.C.; Sousa, S.G.; Israelian, G.; Delgado Mena, E.; González Hernández, J.I.; Mayor, M.; Lovis, C.; Udry, S. Overabundance of -elements in exoplanet-hosting stars. Astron. Astrophys. 2012, 543, A89. [Google Scholar] [CrossRef]
- Bertran de Lis, S.; Delgado Mena, E.; Adibekyan, V.Z.; Santos, N.C.; Sousa, S.G. Oxygen abundances in G- and F-type stars from HARPS. Comparison of [OI] 6300 Å and OI 6158 Å. Astron. Astrophys. 2015, 576, A89. [Google Scholar] [CrossRef]
- Delgado Mena, E.; Israelian, G.; González Hernández, J.I.; Bond, J.C.; Santos, N.C.; Udry, S.; Mayor, M. Chemical Clues on the Formation of Planetary Systems: C/O Versus Mg/Si for HARPS GTO Sample. Astrophys. J. 2010, 725, 2349–2358. [Google Scholar] [CrossRef]
- Alves, S.; Benamati, L.; Santos, N.C.; Adibekyan, V.Z.; Sousa, S.G.; Israelian, G.; De Medeiros, J.R.; Lovis, C.; Udry, S. Determination of the spectroscopic stellar parameters for 257 field giant stars. Mon. Not. R. Astron. Soc. 2015, 448, 2749–2765. [Google Scholar] [CrossRef]
- Takeda, Y.; Sato, B.; Murata, D. Stellar Parameters and Elemental Abundances of Late-G Giants. Publ. Astron. Soc. Jpn. 2008, 60, 781–802. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.J.; Croxall, K. The widths and peak metallicities of thin-disc metallicity distributions for solar neighbourhood dwarfs and giants. Mon. Not. R. Astron. Soc. 2005, 357, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Luck, R.E.; Heiter, U. Giants in the Local Region. Astrophys. J. 2007, 133, 2464–2486. [Google Scholar] [CrossRef] [Green Version]
- Ghezzi, L.; Cunha, K.; Schuler, S.C.; Smith, V.V. Metallicities of Planet-hosting Stars: A Sample of Giants and Subgiants. Astrophys. J. 2010, 725, 721–733. [Google Scholar] [CrossRef]
- Adibekyan, V.Z.; Benamati, L.; Santos, N.C.; Alves, S.; Lovis, C.; Udry, S.; Israelian, G.; Sousa, S.G.; Tsantaki, M.; Mortier, A.; et al. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars. Mon. Not. R. Astron. Soc. 2015, 450, 1900–1915. [Google Scholar] [CrossRef]
- da Silva, L.; Girardi, L.; Pasquini, L.; Setiawan, J.; von der Lühe, O.; de Medeiros, J.R.; Hatzes, A.; Döllinger, M.P.; Weiss, A. Basic physical parameters of a selected sample of evolved stars. Astron. Astrophys. 2006, 458, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, L.; Schönrich, R.; Asplund, M.; Cassisi, S.; Ramírez, I.; Meléndez, J.; Bensby, T.; Feltzing, S. New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Improved astrophysical parameters for the Geneva-Copenhagen Survey. Astron. Astrophys. 2011, 530, A138. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G. The Influence of Radial Stellar Migration on the Chemical Evolution of the Milky Way. Astrophys. J. 2013, 769, 4. [Google Scholar] [CrossRef]
- Minchev, I.; Chiappini, C.; Martig, M. Chemodynamical evolution of the Milky Way disk. I. The solar vicinity. Astron. Astrophys. 2013, 558, A9. [Google Scholar] [CrossRef]
- Mortier, A.; Santos, N.C.; Sousa, S.G.; Adibekyan, V.Z.; Delgado Mena, E.; Tsantaki, M.; Israelian, G.; Mayor, M. New and updated stellar parameters for 71 evolved planet hosts. On the metallicity-giant planet connection. Astron. Astrophys. 2013, 557, A70. [Google Scholar] [CrossRef]
- Reffert, S.; Bergmann, C.; Quirrenbach, A.; Trifonov, T.; Künstler, A. Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity. Astron. Astrophys. 2015, 574, A116. [Google Scholar] [CrossRef]
- Jones, M.I.; Jenkins, J.S.; Brahm, R.; Wittenmyer, R.A.; Olivares, E.F.; Melo, C.H.F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R.P.; et al. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars. Astron. Astrophys. 2016, 590, A38. [Google Scholar] [CrossRef]
- Ghezzi, L.; Montet, B.T.; Johnson, J.A. Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass. Astrophys. J. 2018, 860, 109. [Google Scholar] [CrossRef] [Green Version]
- Sato, B.; Izumiura, H.; Toyota, E.; Kambe, E.; Ikoma, M.; Omiya, M.; Masuda, S.; Takeda, Y.; Murata, D.; Itoh, Y.; et al. Planetary Companions around Three Intermediate-Mass G and K Giants: 18 Delphini, Aquilae, and HD 81688. Publ. Astron. Soc. Jpn. 2008, 60, 539–550. [Google Scholar] [CrossRef]
- Villaver, E.; Livio, M. The Orbital Evolution of Gas Giant Planets Around Giant Stars. Astrophys. J. Lett. 2009, 705, L81–L85. [Google Scholar] [CrossRef]
- Kunitomo, M.; Ikoma, M.; Sato, B.; Katsuta, Y.; Ida, S. Planet Engulfment by ~1.5–3 M sun Red Giants. Astrophys. J. 2011, 737, 66. [Google Scholar] [CrossRef]
- Ida, S.; Lin, D.N.C. Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses. Astrophys. J. 2005, 626, 1045–1060. [Google Scholar] [CrossRef]
- Boss, A.P. Formation of Giant Planets by Disk Instability on Wide Orbits Around Protostars with Varied Masses. Astrophys. J. 2011, 731, 74. [Google Scholar] [CrossRef]
- Vorobyov, E.I. Formation of giant planets and brown dwarfs on wide orbits. Astron. Astrophys. 2013, 552, A129. [Google Scholar] [CrossRef]
- Kratter, K.M.; Lodato, G. Gravitational Instabilities in Circumstellar Disks. Annu. Rev. Astron. Astrophys. 2016, 54, 271–311. [Google Scholar] [CrossRef] [Green Version]
- Sahlmann, J.; Ségransan, D.; Queloz, D.; Udry, S.; Santos, N.C.; Marmier, M.; Mayor, M.; Naef, D.; Pepe, F.; Zucker, S. Search for brown-dwarf companions of stars. Astron. Astrophys. 2011, 525, A95. [Google Scholar] [CrossRef]
- Grieves, N.; Ge, J.; Thomas, N.; Ma, B.; Sithajan, S.; Ghezzi, L.; Kimock, B.; Willis, K.; De Lee, N.; Lee, B.; et al. Exploring the brown dwarf desert: New substellar companions from the SDSS-III MARVELS survey. Mon. Not. R. Astron. Soc. 2017, 467, 4264–4281. [Google Scholar] [CrossRef]
- Borgniet, S.; Lagrange, A.M.; Meunier, N.; Galland, F.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.L.; Boisse, I.; Bonfils, X.; Bouchy, F.; et al. Extrasolar planets and brown dwarfs around AF-type stars. X.The SOPHIE northern sample. Combining the SOPHIE and HARPS surveys to compute the close giant planet mass-period distribution around AF-type stars. arXiv, 2018; 1809, arXiv:1809.09914. [Google Scholar]
- Jones, M.I.; Brahm, R.; Wittenmyer, R.A.; Drass, H.; Jenkins, J.S.; Melo, C.H.F.; Vos, J.; Rojo, P. An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4 M giant star HIP 67537. Astron. Astrophys. 2017, 602, A58. [Google Scholar] [CrossRef]
- Girven, J.; Gänsicke, B.T.; Steeghs, D.; Koester, D. DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission. Mon. Not. R. Astron. Soc. 2011, 417, 1210–1235. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Ge, J. Statistical properties of brown dwarf companions: Implications for different formation mechanisms. Mon. Not. R. Astron. Soc. 2014, 439, 2781–2789. [Google Scholar] [CrossRef]
- Mata Sánchez, D.; González Hernández, J.I.; Israelian, G.; Santos, N.C.; Sahlmann, J.; Udry, S. Chemical abundances of stars with brown-dwarf companions. Astron. Astrophys. 2014, 566, A83. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, J.; Villaver, E. Searching for chemical signatures of brown dwarf formation. Astron. Astrophys. 2017, 602, A38. [Google Scholar] [CrossRef] [Green Version]
- Fortier, A.; Beck, T.; Benz, W.; Broeg, C.; Cessa, V.; Ehrenreich, D.; Thomas, N. CHEOPS: A Space Telescope for Ultra-High Precision Photometry Of Exoplanet Transits. Proc. SPIE 2014, 9143, 91432J. [Google Scholar]
- Mayor, M.; Pepe, F.; Queloz, D.; Bouchy, F.; Rupprecht, G.; Lo Curto, G.; Avila, G.; Benz, W.; Bertaux, J.L.; Bonfils, X.; et al. Setting New Standards with HARPS. Messenger 2003, 114, 20–24. [Google Scholar]
- Cosentino, R.; Lovis, C.; Pepe, F.; Collier Cameron, A.; Latham, D.W.; Molinari, E.; Udry, S.; Bezawada, N.; Black, M.; Born, A.; et al. Harps-N: The New Planet Hunter at TNG. Proc. SPIE 2012, 8446, 84461V. [Google Scholar]
- Perruchot, S.; Kohler, D.; Bouchy, F.; Richaud, Y.; Richaud, P.; Moreaux, G.; Merzougui, M.; Sottile, R.; Hill, L.; Knispel, G.; et al. The SOPHIE Spectrograph: Design and Technical Key-Points for High Throughput and High Stability. Proc. SPIE 2008, 7014, 70140J. [Google Scholar]
- Quirrenbach, A.; Amado, P.J.; Caballero, J.A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F.J.; et al. CARMENES Instrument Overview. Proc. SPIE 2014, 9147, 91471F. [Google Scholar]
- Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Mégevand, D.; Zerbi, F.M.; Cabral, A.; Molaro, P.; Di Marcantonio, P.; et al. ESPRESSO—An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations. Messenger 2013, 153, 6–16. [Google Scholar]
- Artigau, E.; Kouach, D.; Donati, J.F.; Doyon, R.; Delfosse, X.; Baratchart, S.; Lacombe, M.; Moutou, C.; Rabou, P.; Parès, L.P.; et al. SPIRou: The Near-Infrared Spectropolarimeter/High-Precision Velocimeter for the Canada-France-Hawaii Telescope. Proc. SPIE 2014, 9147, 914715. [Google Scholar]
- Queloz, D.; Henry, G.W.; Sivan, J.P.; Baliunas, S.L.; Beuzit, J.L.; Donahue, R.A.; Mayor, M.; Naef, D.; Perrier, C.; Udry, S. No planet for HD 166435. Astron. Astrophys. 2001, 379, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Oshagh, M.; Santos, N.C.; Boisse, I.; Boué, G.; Montalto, M.; Dumusque, X.; Haghighipour, N. Effect of stellar spots on high-precision transit light-curve. Astron. Astrophys. 2013, 556, A19. [Google Scholar] [CrossRef] [Green Version]
- Dumusque, X.; Pepe, F.; Lovis, C.; Ségransan, D.; Sahlmann, J.; Benz, W.; Bouchy, F.; Mayor, M.; Queloz, D.; Santos, N.; et al. An Earth-mass planet orbiting Centauri B. Nature 2012, 491, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.C.; Mortier, A.; Faria, J.P.; Dumusque, X.; Adibekyan, V.Z.; Delgado-Mena, E.; Figueira, P.; Benamati, L.; Boisse, I.; Cunha, D.; et al. The HARPS search for southern extra-solar planets. XXXV. The interesting case of HD 41248: Stellar activity, no planets? Astron. Astrophys. 2014, 566, A35. [Google Scholar] [CrossRef]
- Hatzes, A.P. Periodic H variations in GL 581: Further evidence for an activity origin to GL 581d. Astron. Astrophys. 2016, 585, A144. [Google Scholar] [CrossRef]
- Faria, J.P.; Haywood, R.D.; Brewer, B.J.; Figueira, P.; Oshagh, M.; Santerne, A.; Santos, N.C. Uncovering the planets and stellar activity of CoRoT-7 using only radial velocities. Astron. Astrophys. 2016, 588, A31. [Google Scholar] [CrossRef]
- Tal-Or, L.; Zechmeister, M.; Reiners, A.; Jeffers, S.V.; Schöfer, P.; Quirrenbach, A.; Amado, P.J.; Ribas, I.; Caballero, J.A.; Aceituno, J.; et al. The CARMENES search for exoplanets around M dwarfs. Radial-velocity variations of active stars in visual-channel spectra. Astron. Astrophys. 2018, 614, A122. [Google Scholar] [CrossRef]
- Buchhave, L.A.; Latham, D.W. The Metallicities of Stars with and without Transiting Planets. Astrophys. J. 2015, 808, 187. [Google Scholar] [CrossRef]
- Matsumura, S.; Brasser, R.; Ida, S. N-body simulations of planet formation via pebble accretion. I. First results. Astron. Astrophys. 2017, 607, A67. [Google Scholar] [CrossRef]
- Galvagni, M.; Mayer, L. Early evolution of clumps formed via gravitational instability in protoplanetary discs: Precursors of Hot Jupiters? Mon. Not. R. Astron. Soc. 2014, 437, 2909–2921. [Google Scholar] [CrossRef]
- Udry, S.; Mayor, M.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Lovis, C.; Mordasini, C.; Pepe, F.; Queloz, D.; Sivan, J.P. The HARPS search for southern extra-solar planets. V. A 14 Earth-masses planet orbiting HD4308. Astron. Astrophys. 2006, 447, 361–367. [Google Scholar] [CrossRef]
- Mayor, M.; Udry, S.; Lovis, C.; Pepe, F.; Queloz, D.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Mordasini, C.; Segransan, D. The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M). Astron. Astrophys. 2009, 493, 639–644. [Google Scholar] [CrossRef]
- Jenkins, J.S.; Jones, H.R.A.; Tuomi, M.; Murgas, F.; Hoyer, S.; Jones, M.I.; Barnes, J.R.; Pavlenko, Y.V.; Ivanyuk, O.; Rojo, P.; et al. A Hot Uranus Orbiting the Super Metal-rich Star HD 77338 and the Metallicity-Mass Connection. Astrophys. J. 2013, 766, 67. [Google Scholar] [CrossRef]
- Rojas-Ayala, B.; Covey, K.R.; Muirhead, P.S.; Lloyd, J.P. Metallicity and Temperature Indicators in M Dwarf K-band Spectra: Testing New and Updated Calibrations with Observations of 133 Solar Neighborhood M Dwarfs. Astrophys. J. 2012, 748, 93. [Google Scholar] [CrossRef]
- Neves, V.; Bonfils, X.; Santos, N.C.; Delfosse, X.; Forveille, T.; Allard, F.; Udry, S. Metallicity of M dwarfs. III. Planet-metallicity and planet-stellar mass correlations of the HARPS GTO M dwarf sample. Astron. Astrophys. 2013, 551, A36. [Google Scholar] [CrossRef]
- Gaidos, E.; Mann, A.W.; Kraus, A.L.; Ireland, M. They are small worlds after all: Revised properties of Kepler M dwarf stars and their planets. Mon. Not. R. Astron. Soc. 2016, 457, 2877–2899. [Google Scholar] [CrossRef]
- Hobson, M.J.; Jofré, E.; García, L.; Petrucci, R.; Gómez, M. Testing the Planet-Metallicity Correlation in M-dwarfs with Gemini GNIRS Spectra. Rev. Mex. Astron. Astrofisica 2018, 54, 65–84. [Google Scholar]
- Courcol, B.; Bouchy, F.; Deleuil, M. An upper boundary in the mass-metallicity plane of exo-Neptunes. Mon. Not. R. Astron. Soc. 2016, 461, 1841–1849. [Google Scholar] [CrossRef] [Green Version]
- Petigura, E.A.; Sinukoff, E.; Lopez, E.D.; Crossfield, I.J.M.; Howard, A.W.; Brewer, J.M.; Fulton, B.J.; Isaacson, H.T.; Ciardi, D.R.; Howell, S.B.; et al. Four Sub-Saturns with Dissimilar Densities: Windows into Planetary Cores and Envelopes. Astrophys. J. 2017, 153, 142. [Google Scholar] [CrossRef] [Green Version]
- Brügger, N.; Alibert, Y.; Ataiee, S.; Benz, W. Metallicity effect and planet mass function in pebble-based planet formation models. arXiv, 2018; arXiv:1808.10707. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, Y. The Super Earth-Cold Jupiter Relations. arXiv, 2018; arXiv:1805.02660. [Google Scholar] [CrossRef]
- Everett, M.E.; Howell, S.B.; Silva, D.R.; Szkody, P. Spectroscopy of Faint Kepler Mission Exoplanet Candidate Host Stars. Astrophys. J. 2013, 771, 107. [Google Scholar] [CrossRef]
- Weiss, L.M.; Marcy, G.W. The Mass-Radius Relation for 65 Exoplanets Smaller than 4 Earth Radii. Astrophys. J. Lett. 2014, 783, L6. [Google Scholar] [CrossRef]
- Rogers, L.A. Most 1.6 Earth-radius Planets are Not Rocky. Astrophys. J. 2015, 801, 41. [Google Scholar] [CrossRef]
- Fulton, B.J.; Petigura, E.A. The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap. Astrophys. J. 2018, 156, 264. [Google Scholar] [CrossRef]
- Zeng, L.; Jacobsen, S.B.; Sasselov, D.D. Exoplanet Radius Gap Dependence on Host Star Type. Res. Notes Am. Astron. Soc. 2017, 1, 32. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Mordasini, C. Compositional Imprints in Density-Distance-Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation. Astrophys. J. 2018, 853, 163. [Google Scholar] [CrossRef]
- Lopez, E.D.; Fortney, J.J. Understanding the Mass-Radius Relation for Sub-neptunes: Radius as a Proxy for Composition. Astrophys. J. 2014, 792, 1. [Google Scholar] [CrossRef]
- Jin, S.; Mordasini, C.; Parmentier, V.; van Boekel, R.; Henning, T.; Ji, J. Planetary Population Synthesis Coupled with Atmospheric Escape: A Statistical View of Evaporation. Astrophys. J. 2014, 795, 65. [Google Scholar] [CrossRef]
- Owen, J.E.; Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 2017, 847, 29. [Google Scholar] [CrossRef]
- Ginzburg, S.; Schlichting, H.E.; Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 2018, 476, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Lehmer, O.R.; Catling, D.C. Rocky Worlds Limited to ˜1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation. Astrophys. J. 2017, 845, 130. [Google Scholar] [CrossRef]
- Owen, J.E.; Murray-Clay, R. Metallicity-dependent signatures in the Kepler planets. Mon. Not. R. Astron. Soc. 2018, 480, 2206–2216. [Google Scholar] [CrossRef]
- Schlaufman, K.C. A Continuum of Planet Formation between 1 and 4 Earth Radii. Astrophys. J. Lett. 2015, 799, L26. [Google Scholar] [CrossRef]
- Youdin, A.N. The Exoplanet Census: A General Method Applied to Kepler. Astrophys. J. 2011, 742, 38. [Google Scholar] [CrossRef]
- Zhu, W. Influence of Stellar Metallicity on Occurrence Rates of Planets and Planetary Systems. arXiv, 2018; arXiv:1808.09451. [Google Scholar]
- Wang, J.; Fischer, D.A. Revealing a Universal Planet-Metallicity Correlation for Planets of Different Sizes Around Solar-type Stars. Astrophys. J. 2015, 149, 14. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Huang, C. Dependence of Small Planet Frequency on Stellar Metallicity Hidden by Their Prevalence. Astrophys. J. 2016, 832, 196. [Google Scholar] [CrossRef]
- Beaugé, C.; Nesvorný, D. Emerging Trends in a Period-Radius Distribution of Close-in Planets. Astrophys. J. 2013, 763, 12. [Google Scholar] [CrossRef]
- Adibekyan, V.; Figueira, P.; Santos, N.C. Which Type of Planets do We Expect to Observe in the Habitable Zone? Origins Life Evol. Biosphere 2016, 46, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.F.; Teske, J.; Majewski, S.R.; Cunha, K.; Smith, V.; Souto, D.; Bender, C.; Mahadevan, S.; Troup, N.; Prieto, C.A.; et al. Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances. Astrophys. J. 2018, 155, 68. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Xie, J.W.; Zhou, J.L.; Zheng, Z.; Luo, A. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements. Proc. Natl. Acad. Sci. USA 2018, 115, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Adibekyan, V.; Santos, N.C.; Figueira, P.; Dorn, C.; Sousa, S.G.; Delgado-Mena, E.; Israelian, G.; Hakobyan, A.A.; Mordasini, C. From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio. Astron. Astrophys. 2015, 581, L2. [Google Scholar] [CrossRef] [Green Version]
- Adibekyan, V.; Gonçalves da Silva, H.M.; Sousa, S.G.; Santos, N.C.; Delgado Mena, E.; Hakobyan, A.A. Mg/Si Mineralogical Ratio of Low-Mass Planet Hosts. Correction for the NLTE Effects. Astrophysics 2017, 60, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Haywood, M. On the Correlation Between Metallicity and the Presence of Giant Planets. Astrophys. J. Lett. 2009, 698, L1–L5. [Google Scholar] [CrossRef]
- Lemasle, B.; François, P.; Piersimoni, A.; Pedicelli, S.; Bono, G.; Laney, C.D.; Primas, F.; Romaniello, M. Galactic abundance gradients from Cepheids. On the iron abundance gradient around 10-12 kpc. Astron. Astrophys. 2008, 490, 613–623. [Google Scholar] [CrossRef]
- Anders, F.; Chiappini, C.; Minchev, I.; Miglio, A.; Montalbán, J.; Mosser, B.; Rodrigues, T.S.; Santiago, B.X.; Baudin, F.; Beers, T.C.; et al. Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way’s radial metallicity gradient. Astron. Astrophys. 2017, 600, A70. [Google Scholar] [CrossRef]
Samples | KS Statistic | KS p-Value |
---|---|---|
Figure 5 | ||
HMPH Transit vs. HMPH RV | 0.089 | 0.392 |
HMPH RV vs. SnoP | 0.47 | |
HMPH Transit vs. SnoP | 0.49 | |
Figure 6 | ||
HMPH vs. SnoP | 0.339 | 0.003 |
Figure 7 | ||
GPH vs. SGMP | 0.152 | 0.026 |
GPH dwarfs vs. SGMP dwarfs | 0.067 | 0.935 |
GPH giants vs. SGMP giants | 0.288 | 0.061 |
GMP dwarfs vs. SnoP dwarfs | 0.450 | |
GMP giants vs. SnoP giants | 0.281 | 0.007 |
SGMP dwarfs vs. SnoP dwarfs | 0.480 | |
SGMP giants vs. SnoP giants | 0.187 | 0.105 |
Figure 8 | ||
LMPH vs. SnoP | 0.120 | 0.484 |
Only LMPH vs. SnoP | 0.252 |
Samples | Parameter | KS Statistic | KS p-Value |
---|---|---|---|
Cold planets (P > 100 days) | |||
Sub-Jupiters (28) vs. Saturns (25) | [] | 0.34 | 0.061 |
Sub-Jupiters (28) vs. Saturns (25) | Period | 0.24 | 0.366 |
Sub-Jupiters (28) vs. Jupiters (44) | [] | 0.38 | 0.009 |
Sub-Jupiters (28) vs. Jupiters (44) | Period | 0.24 | 0.240 |
Most massive cold planets (P > 100 days) | |||
Sub-Jupiters (21) vs. Saturns (18) | [] | 0.31 | 0.231 |
Sub-Jupiters (21) vs. Saturns (18) | Period | 0.43 | 0.034 |
Sub-Jupiters (21) vs. Jupiters (35) | [] | 0.37 | 0.039 |
Sub-Jupiters (21) vs. Jupiters (35) | Period | 0.26 | 0.260 |
Hot planets (P < 10 days) | |||
Sub-Jupiters (26) vs. Saturns (51) | [] | 0.22 | 0.332 |
Sub-Jupiters (26) vs. Saturns (51) | Period | 0.39 | 0.005 |
Sub-Jupiters (26) vs. Jupiters (50) | [] | 0.34 | 0.023 |
Sub-Jupiters (26) vs. Jupiters (50) | Period | 0.42 | 0.002 |
Most massive hot planets (P < 10 days) | |||
Sub-Jupiters (24) vs. Saturns (47) | [] | 0.28 | 0.134 |
Sub-Jupiters (24) vs. Saturns (47) | Period | 0.37 | 0.018 |
Sub-Jupiters (24) vs. Jupiters (47) | [] | 0.36 | 0.021 |
Sub-Jupiters (24) vs. Jupiters (47) | Period | 0.45 | 0.002 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adibekyan, V. Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences 2019, 9, 105. https://doi.org/10.3390/geosciences9030105
Adibekyan V. Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences. 2019; 9(3):105. https://doi.org/10.3390/geosciences9030105
Chicago/Turabian StyleAdibekyan, Vardan. 2019. "Heavy Metal Rules. I. Exoplanet Incidence and Metallicity" Geosciences 9, no. 3: 105. https://doi.org/10.3390/geosciences9030105
APA StyleAdibekyan, V. (2019). Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences, 9(3), 105. https://doi.org/10.3390/geosciences9030105