Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates
Abstract
:Forward by Ronald I. Dorn
1. Introduction
2. Samples and Methods
3. Results
3.1. Iron Cracking as a Physiochemical Process
3.2. Quartz Alteration
3.3. Complex Intercalation of Cold Climate Rock Coatings
3.4. Mn-Rich Bacteria Casts
3.5. Anthropogenic Geochemical Impacts on Cold-Climate Rock Surfaces
3.5.1. Acid Mine Drainages
3.5.2. Coatings Altered by Human Activities in the Khumbu of Nepal
3.5.3. Lead Contamination of Rock Surface Coatings
4. Discussion
4.1. Nanoscale Evidence of Chemical Processes Decaying Rock Surfaces
4.2. Nanoscale Observations of Rock Coatings
“Deposition of the manganese and iron oxides within the clay matrix might then cement the clay layer...the hexagonal arrangement of the oxygen in either the tetrahedral or octahedral layers of the clay minerals could form a suitable template for crystallization of the layered structures of birnessite.”[129]
“[e]ven if analysis methods are improved, the situation will remain complicated by the flexibility and great variety of Mn oxide structures. The common elements of these structures enable them to easily intergrow with and transform with one another.”[130]
4.3. Anthropogenic Geochemical Impacts on Cold-Climate Rock Surfaces
“Lead accumulates in rock varnishes and dust films on desert surfaces. Electron microprobe profiles reveal that lead is a contaminant in the uppermost surfaces of rock varnishes, but these concentrations drop to background levels below the very surface of natural rock coatings that have formed since lead additives were introduced into gasoline in 1922.”(Dorn [96], p. 139)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Molnar, P.; Anderson, R.S.; Andersson, S.P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.N.; Wohl, E.E. Bedrock fracture influences on geomorphic process and form across process domains and scales. Earth Surf. Process. Landf. 2018, 1–19. [Google Scholar] [CrossRef]
- Eppes, M.C.; Hancock, G.S.; Chen, X.; Arey, J.; Dewers, T.; Huettenmoser, J.; Kiessling, S.; Moser, F.; Tannu, N.; Weiserbs, B.; et al. Rates of subcritical cracking and long-term rock erosion. Geology 2018, 46, 951–954. [Google Scholar] [CrossRef]
- Scheidegger, A.E. Surface joint systems, tectonic stresses and geomorphology: A reconciliation of conflicting observations. Geomorphology 2001, 38, 213–219. [Google Scholar] [CrossRef]
- Hobbs, D.W. The formation of tension joints in sedimentary rocks: An explanation. Geol. Mag. 1967, 104, 550–556. [Google Scholar] [CrossRef]
- Ehlen, J. Some effects of weathering on joints in granitic rocks. Catena 2002, 49, 91–109. [Google Scholar] [CrossRef]
- Engelder, T. Joints and shear fractures in rock. In Fracture Mechanics of Rock; Atkinson, B., Ed.; Academic Press: Orlando, FL, USA, 1987; pp. 27–69. [Google Scholar]
- Schultz, R.A. Growth of geologic fractures into large-strain populations: Review of nomenclature, subcritical crack growth, and some implications for rock engineering. Int. J. Rock Mech. Min. Sci. 2000, 37, 403–411. [Google Scholar] [CrossRef]
- Twidale, C.R.; Bourne, J.A. Bornhardts. Z. Geomorphol. Suppl. 1978, 31, 111–137. [Google Scholar]
- St Clair, J.; Moon, S.; Holbrook, W.S.; Perron, J.T.; Riebe, C.S.; Martel, S.J.; Carr, B.; Harman, C.; Singha, K.; deB Richter, D. Geophysical imaging reveals topographic stress control of bedrock weathering. Science 2015, 350, 534–538. [Google Scholar] [CrossRef]
- Eyles, N.; Arnaud, E.; Scheidegger, A.E.; Eyles, C.H. Bedrock jointing and geomorphology in southwestern ontario, canada: An example of tectonic predesign. Geomorphology 1997, 19, 17–34. [Google Scholar] [CrossRef]
- Hall, K.; Thorn, C.E.; Sumner, A. On the persistence of ‘weathering’. Geomorphology 2012, 149–150, 1–10. [Google Scholar] [CrossRef]
- Hall, K. Perceptions of rock weathering in cold regions: A discussion on space and time attributes of scale. Géomorphol. Relief Processus Environ. 2006, 3, 187–196. [Google Scholar] [CrossRef]
- Hall, K.; Thorn, C. The historical legacy of spatial scales in cold region weathering: Misrepresentation and resulting misdirection. Geomorphology 2011, 130, 83–90. [Google Scholar] [CrossRef]
- Hall, K. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 1999, 31, 47–63. [Google Scholar] [CrossRef]
- Hall, K.; André, M.F. New insights into rock weathering from high-frequency rock temperature data: An antarctic study of weathering by thermal stress. Geomorphology 2001, 41, 23–35. [Google Scholar] [CrossRef]
- Hall, K.; André, M.F. Rock thermal data at the grain scale: Applicability to granular disintegration in cold environments. Earth Surf. Process. Landf. 2003, 28, 823–836. [Google Scholar] [CrossRef]
- Walder, J.S.; Hallet, B. The physical basis of frost weathering: Toward a more fundamental and unified perspective. Arct. Alp. Res. 1986, 18, 27–32. [Google Scholar] [CrossRef]
- Van Vliet-Lanoë, B.; Fox, C.A. Frost action. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 575–603. [Google Scholar]
- Hobbs, W.H. Earth Features and Their Meaning. An Introduction to Geology for the Student and the General Reader; MacMillan: New York, NY, USA, 1919. [Google Scholar]
- Holmes, A. Principles of Physical Geology; Ronald Press: New York, NY, USA, 1965; p. 1288. [Google Scholar]
- McKnight, T.L. Physical Geography: A Landscape Appreciation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Rapp, A. Recent development of mountain slopes in karkevagge and surroundings, northern scandinavia. Geogr. Ann. 1960, 42A, 71–201. [Google Scholar]
- Hall, K. Enhanced bedrock weathering in association with late-lying snowpaches: Evidence from livingston island, antarctica. Earth Surf. Process. Landf. 1993, 18, 121–129. [Google Scholar] [CrossRef]
- Hall, K.; André, M.-F. Temperature observations in antarctic tafoni: Implications for weathering, biological colonization, and tafoni formation. Antarct. Sci. 2006, 18, 377–384. [Google Scholar] [CrossRef]
- Hall, K.; Otte, W. A note on biological weathering on nunataks of the juneau icefield, alaska. Permafr. Periglac. Process. 1990, 1, 189–196. [Google Scholar] [CrossRef]
- Dixon, J.C. Solute movement on hillslopes in the alpine environment of the colorado front range. In Hillslope Processes; Abrahams, A.D., Ed.; Allen and Unwin: London, UK, 1986; pp. 139–159. [Google Scholar]
- Dixon, J.C. Chemical weathering in cold climates. In Treatise on Geomorphology, Volume 4; Pope, G., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 245–257. [Google Scholar]
- Dixon, J.C.; Thorn, C.E. Chemical weathering and landscape development in alpine environments. Geomorphology 2005, 67, 127–145. [Google Scholar] [CrossRef]
- Dixon, J.C.; Thorn, C.E.; Darmody, R.G. Chemical weathering processes on the vantage peak nunatak, juneau icefield, southern alaska. Phys. Geogr. 1984, 5, 111–131. [Google Scholar] [CrossRef]
- Dixon, J.C.; Thorn, C.E.; Darmody, R.G.; Campbell, S.W. Weathering rinds and rock coatings from an arctic alpine environment, northern scandinavia. Geol. Soc. Am. Bull. 2002, 114, 226–238. [Google Scholar] [CrossRef]
- Pope, G.; Dorn, R.I.; Dixon, J. A new conceptual model for understanding geographical variations in weathering. Ann. Assoc. Am. Geogr. 1995, 85, 38–64. [Google Scholar]
- Campbell, S.W.; Dixon, J.C.; Darmody, R.G.; Thorn, C.E. Spatial variation of early season surface water chemistry in karkevagge, swedish lapland. Geogr. Ann. A 2001, 83, 169–178. [Google Scholar] [CrossRef]
- Campbell, S.W.; Dixon, J.C.; Thorn, C.E.; Darmody, R.G. Chemical denudation rates in karkevagge, swedish lapland. Geogr. Ann. A 2002, 84, 179–185. [Google Scholar] [CrossRef]
- Dixon, J.C. Stone pavements, lag deposits, and contemporary landscape evolution. In Dynamic Mars: Recent and Current Evolution of the Red Planet; Soare, R.J., Conway, S.J., Clifford, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 387–410. [Google Scholar]
- Thorn, C.E.; Darmody, R.G.; Dixon, J.C.; Schlyter, P. The chemical weathering regime of karkevagge, arctic-alpine sweden. Geomorphology 2001, 41, 37–52. [Google Scholar] [CrossRef]
- Thorn, C.E.; Dixon, J.C.; Darmody, R.G.; Allan, C.E. Ten years (1994–2004) of “potential” weathering in kärkevagge, swedish lapland. Catena 2006, 65, 272–278. [Google Scholar] [CrossRef]
- Thorn, C.E.; Dixon, J.C.; Darmody, R.G.; Rissing, J.M. Weathering trends in fine debris beneath a snow patch, niwot ridge, front range, colorado. Phys. Geogr. 1989, 10, 307–321. [Google Scholar] [CrossRef]
- Marrero, S.M.; Hein, A.S.; Naylor, M.; Attal, M.; Shanks, R.; Winter, K.; Woodward, J.; Dunning, S.; Westoby, M.; Sugden, D. Controls on subaerial erosion rates in antarctica. Earth Planet. Sci. Lett. 2018, 501, 56–66. [Google Scholar] [CrossRef]
- Kanamaru, T.; Suganuma, Y.; Oiwane, H.; Miura, H.; Miura, M.; Okuno, J.I.; Hayakawa, H. The weathering of granitic rocks in a hyper-arid and hypothermal environment: A case study from the sør-rondane mountains, east antarctica. Geomorphology 2018, 317, 62–74. [Google Scholar] [CrossRef]
- Heindel, R.C.; Lyons, W.B.; Welch, S.A.; Spickard, A.M.; Virginia, R.A. Biogeochemical weathering of soil apatite grains in the mcmurdo dry valleys, antarctica. Geoderma 2018, 320, 136–145. [Google Scholar] [CrossRef]
- Salvatore, M.; Truitt, K.; Roszell, K.; Lanza, N.; Rampe, E.; Mangold, N.; Dehouck, E.; Wiens, R.; Clegg, S. Investigating the role of anhydrous oxidative weathering on sedimentary rocks in the transantarctic mountains and implications for the modern weathering of sedimentary lithologies on mars. Icarus 2019, 319, 669–684. [Google Scholar] [CrossRef]
- Dabski, M. Application of the handysurf e-35b electronic profilometer for the study of weathering micro-relief in glacier forelands in se iceland. Acta Geol. Pol. 2015, 65, 389–401. [Google Scholar] [CrossRef]
- Joo, Y.J.; Soreghan, A.M.; Madden, M.E.E.; Soreghan, G.S. Quantification of particle shape by an automated image analysis system: A case study in natural sediment samples from extreme climates. Geosci. J. 2018, 22, 525–532. [Google Scholar] [CrossRef]
- Mergelov, N.; Mueller, C.W.; Prater, I.; Shorkunov, I.; Dolgikh, A.; Zazovskaya, E.; Shishkov, V.; Krupskaya, V.; Abrosimov, K.; Cherkinsky, A.; et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on earth. Sci. Rep. 2018, 8, 3367. [Google Scholar] [CrossRef]
- Etienne, S. The role of biological weathering in periglacial areas: A study of weathering rinds in south iceland. Geomorphology 2002, 47, 75–86. [Google Scholar] [CrossRef]
- Etienne, S.; Dupont, J. Fungal weathering of basaltic rocks in a cold oceanic environment (iceland): Comparison between experimental and field observations. Earth Surf. Process. Landf. 2002, 27, 737–748. [Google Scholar] [CrossRef]
- Blacker, J.J. Chemical Weathering Processes Leading to Soil Development in Arctic Glacial Forefields. Ph.D. Thesis, School of Earth and Environment, University of Leeds, Leeds, UK, 2018. [Google Scholar]
- Hochella, M.F.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, mineral nanoparticles, and earth systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef]
- Hochella, M.F. Nanoscience and technology: The next revolution in the earth sciences. Earth Planet. Sci. Lett. 2002, 203, 593–605. [Google Scholar] [CrossRef]
- Banfield, J.F.; Eggleton, R.A. Analytical transmission electron microscope studies of plagioclase, muscovite and k-feldsapr weathering. Clay Clay Miner. 1990, 38, 77–89. [Google Scholar] [CrossRef]
- Dorn, R.I.; Gordon, S.J.; Krinsley, D.; Langworthy, K. Nanoscale: Mineral weathering boundary. In Treatise on Geomorphology, Volume 4; Pope, G.A., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 4, pp. 44–69. [Google Scholar]
- Benzerara, K.; Yoon, T.H.; Menguy, N.; Tyliszczak, T.; Brown, G.E. Nanoscale environments associated with bioweathering of a mg-fe-pyroxene. Proc. Natl. Acad. Sci. USA 2005, 102, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Bonneville, S.; Smits, M.M.; Brown, A.; Harrington, J.; Leake, J.R.; Brydson, R.; Benning, L.G. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology 2009, 37, 615–618. [Google Scholar] [CrossRef]
- Lower, S.K.; Hochella, M.F.; Beveridge, T.J. Bacterial recognition of mineral surfaces: Nanoscale interactions between shewanella and alpha-feooh. Science 2001, 292, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, B.; Banfield, J.F. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. In Molecular Geomicrobiology; Banfield, J.F., Cervini-Silva, J., Nealson, K.H., Eds.; Mineralogical Society of America: Washington, DC, USA, 2005; pp. 109–156. [Google Scholar]
- Jiang, Z.; Liu, Q.; Roberts, A.P.; Barron, V.; Jorrent, J.; Zhang, Q. A new model for transformation of herrihydrite to hematite in soils and sediments. Geology 2018, 46, 987–990. [Google Scholar]
- McMaster, T.J. Atomic force microscopy of the fungi–mineral interface: Applications in mineral dissolution, weathering and biogeochemistry. Curr. Opin. Biotechnol. 2012, 23, 562–569. [Google Scholar] [CrossRef]
- Pope, G.A. Newly discovered submicron-scale weathering in quartz: Geographical implications. Prof. Geogr. 1995, 47, 375–387. [Google Scholar] [CrossRef]
- Pope, G.A. Internal weathering in quartz grains. Phys. Geogr. 1995, 16, 315–338. [Google Scholar] [CrossRef]
- Caplette, J.N.; Schindler, M. Black rock-coatings in trail, british columbia, canda: Records of past emissions of lead, zinc, antimony, arsenic, tellurium, tin, selenium, silver, bismuth, and indium-bearing atmospheric contaminants. Can. Mineral. 2018, 56, 113–127. [Google Scholar] [CrossRef]
- Mantha, N.M.; Schindler, M.; Murayama, M.; Hochella, M.F. Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution i. Formation and mineralogical composition. Geochim. Cosmochim. Acta 2012, 85, 254–274. [Google Scholar] [CrossRef]
- Schindler, M.; Dorn, R.I. Rock and Mineral Coatings: Records of Climate Change, Pollution, and Life; GeoScienceWorld: McLean, VA, USA, 2017; p. 40. [Google Scholar]
- Schindler, M.; Hochella Jr, M.F. Soil memory in mineral surface coatings: Environmental processes recorded at the nanoscale. Geology 2015, 43, 415–418. [Google Scholar] [CrossRef]
- Mantha, H.; Schindler, M.; Hochella, M.F. Occurrence and formation of incidental metallic cu and cus nanoparticles in organic-rich contaminated surface soils in timmins, ontario. Environ. Sci. Nano 2019. [Google Scholar] [CrossRef]
- Leverington, D.W.; Schindler, M. Delineating areas of past environmental degradation near smelters using rock coatings: A case study at rouyn-noranda, quebec. Sci. Rep. 2018, 8, 17364. [Google Scholar] [CrossRef] [PubMed]
- Krinsley, D.H.; Dorn, R.I.; Tovey, N.K. Nanometer-scale layering in rock varnish: Implications for genesis and paleoenvironmental interpretation. J. Geol. 1995, 103, 106–113. [Google Scholar] [CrossRef]
- Krinsley, D. Models of rock varnish formation constrained by high resolution transmission electron microscopy. Sedimentology 1998, 45, 711–725. [Google Scholar] [CrossRef]
- Langworthy, K.; Krinsley, D.; Dorn, R.I. High resolution transmission electron microscopy evaluation of silica glaze reveals new textures. Earth Surf. Process. Landf. 2010, 35, 1615–1620. [Google Scholar] [CrossRef]
- Ditto, J.; Krinsley, D.; Langworthy, K. Localized grounding, excavation, and dissection using in-situ probe techniques for focused ion beam and scanning electron microscopy: Experiments with rock varnish. Scanning 2012, 34, 279–283. [Google Scholar] [CrossRef]
- Krinsley, D.; Ditto, J.; Langworthy, K.; Dorn, R.I.; Thompson, T. Varnish microlaminations: New insights from focused ion beam preparation. Phys. Geogr. 2013, 34, 159–173. [Google Scholar] [CrossRef]
- Macholdt, D.S.; Jochum, K.P.; Pöhlker, C.; Stoll, B.; Weis, U.; Weber, B.; Muller, M.; Kappl, M.; Buhre, S.; Kilcoyne, A.L.D.; et al. Microanalytical methods for in-situ high-resolution analysis of rock varnish at the micrometer to nanometer scale. Chem. Geol. 2015, 411, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Garvie, L.A.J.; Burt, D.M.; Buseck, P.R. Nanometer-scale complexity, growth, and diagenesis in desert varnish. Geology 2008, 36, 215–218. [Google Scholar] [CrossRef]
- Giorgetti, G.; Baroni, C. High-resolution analysis of silica and sulphate-rich rock varnishes from victoria land (antarctica). Eur. J. Mineral. 2007, 19, 381–389. [Google Scholar] [CrossRef]
- Campbell, I.B.; Claridge, G.G.C. Antarctica: Soils, Weathering Processes and Environment; Elsevier: Amsterdam, The Netherlands, 1987; p. 367. [Google Scholar]
- Mahaney, W.C.; Claridge, G.; Campbell, I.A. Microtextures on quartz grains in tills from antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 121, 89–103. [Google Scholar] [CrossRef]
- Talkington, R.W.; Mayewski, P.A.; Gaudette, H.E. Geochemical and glacio-geomorphic implications of basalt weathering in the queen maud mountains, antarctica. Geol. Mag. 1982, 119, 553–566. [Google Scholar] [CrossRef]
- Gibson, E.K.; Wentworth, S.J.; McKay, D.S. Chemical weathering and diagenesis of a cold desert soil from wright valley, antarctica: An analog of martian weathering processes. J. Geophys. Res. Solid Earth 1983, 88, A912–A928. [Google Scholar] [CrossRef]
- Salvatore, M.R.; Mustard, J.F.; Head, J.W.; Cooper, R.F.; Wyatt, M.B. Development of alteration rinds by oxidative weathering processes in beacon valley, antarctica, and implications for mars. Geochim. Cosmochim. Acta 2013, 115, 137–161. [Google Scholar] [CrossRef]
- Watts, S.H. A scanning electron microscope study of bedrock microfractures in granites under high arctic conditions. Earth Surf. Process. Landf. 1985, 10, 61–172. [Google Scholar] [CrossRef]
- Chevrier, V.; Mathé, P.E.; Rochette, P.; Gunnlaugsson, H.P. Magnetic study of an antarctic weathering profile on basalt: Implications for recent weathering on mars. Earth Planet. Sci. Lett. 2006, 244, 501–514. [Google Scholar] [CrossRef]
- Cannon, K.M.; Mustard, J.F.; Salvatore, M.R. Alteration of immature sedimentary rocks on earth and mars: Recording aqueous and surface–atmosphere processes. Earth Planet. Sci. Lett. 2015, 417, 78–86. [Google Scholar] [CrossRef]
- Mahaney, W.C.; Dohm, J.M.; Schwartz, S.; Findling, N.; Hart, K.M.; Conway, S.J.; Allen, C.C.; Miyamoto, H.; Fairén, A.G. Mineralogy, chemistry and biological contingents of an early-middle miocene antarctic paleosol and its relevance as a martian analogue. Planet. Space Sci. 2014, 104, 253–269. [Google Scholar] [CrossRef]
- Bockheim, J.G. Properties of a chronosequence of ultraxerous soils in the trans-arctic mountains. Geoderma 1982, 28, 239–255. [Google Scholar] [CrossRef]
- Bockheim, J.G. The Soils of Antarctica; Springer: Berlin, Germany, 2015. [Google Scholar]
- Haus, N.W.; Wilhelm, K.R.; Bockheim, J.G.; Fournelle, J.; Miller, M. A case for chemical weathering in soils of hurd peninsula, livingston island, south shetland islands, antarctica. Geoderma 2016, 263, 185–194. [Google Scholar] [CrossRef]
- Marra, K.R.; Madden, M.E.E.; Soreghan, G.S.; Hall, B.L. Chemical weathering trends in fine-grained ephemeral stream sediments of the mcmurdo dry valleys, antarctica. Geomorphology 2017, 281, 13–30. [Google Scholar] [CrossRef]
- Lamp, J.L.; Mackay, S.L.; Head, J.W. Thermal stress weathering and the spalling of antarctic rocks. J. Geophys. Res. Earth Surface 2017, 122, 3–24. [Google Scholar] [CrossRef]
- Krinsley, D.; Dorn, R.I.; DiGregorio, B.E. Astrobiological implications of rock varnish in tibet. Astrobiology 2009, 9, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Bockheim, J.G. Evolution of desert pavements and the vesicular layer in soils of the transantarctic mountains. Geomorphology 2010, 118, 433–443. [Google Scholar] [CrossRef]
- Brown, D.J.; Lee, M.R. From microscopic minerals to global climate change? Geol. Today 2007, 23, 172–177. [Google Scholar] [CrossRef]
- Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, T.L.; Michael, J.R. Scanning Electron Microscopy and X-ray Microanalysis; Elsevier: Amsterdam, The Netherlands, 2003; p. 586. [Google Scholar]
- Overwijk, M.H.F.; Van den Heuvel, F.C.; Bulle-Lieuwma, C.W.T. Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1993, 11, 2021–2024. [Google Scholar] [CrossRef]
- Burnett, T.L.; Kelley, R.; Winiarski, B.; Contreras, L.; Daly, M.; Gholinia, A.; Burke, M.G.; Withers, P.J. Large volume serial section tomography by xe plasma fib dual beam microscopy. Ultramicroscopy 2016, 161, 119–129. [Google Scholar] [CrossRef]
- Dorn, R.I.; Gordon, M.; Pagán, E.O.; Bostwick, T.W.; King, M.; Ostapuk, P. Assessing early spanish explorer routes through authentication of rock inscriptions. Prof. Geogr. 2012, 64, 415–429. [Google Scholar] [CrossRef]
- Dorn, R.I. Rock Coatings; Elsevier: Amsterdam, The Netherlands, 1998; p. 429. [Google Scholar]
- Fleisher, M.; Liu, T.; Broecker, W.; Moore, W. A clue regarding the origin of rock varnish. Geophys. Res. Lett. 1999, 26, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Spilde, M.N.; Melim, L.A.; Northrup, D.E.; Boston, P.J. Anthropogenic lead as a tracer for rock varnish growth: Implications for rates of formation. Geology 2013, 41, 263–266. [Google Scholar] [CrossRef]
- Zerboni, A. Holocene rock varnish on the messak plateau (libyan sahara): Chronology of weathering processes. Geomorphology 2008, 102, 640–651. [Google Scholar] [CrossRef]
- Vázquez-Selem, L.; Heine, K. Late quaternary glaciation of mexico. In Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2004; pp. 233–242. [Google Scholar]
- Dorn, R.I.; Phillips, F.M.; Zreda, M.G.; Wolfe, E.W.; Jull, A.J.T.; Kubik, P.W.; Sharma, P. Glacial chronology of mauna kea, hawaii, as constrained by surface-exposure dating. Natl. Geogr. Res. Explor. 1991, 7, 456–471. [Google Scholar]
- Krinsley, D.; Dorn, R.I.; Anderson, S. Factors that may interfere with the dating of rock varnish. Phys. Geogr. 1990, 11, 97–119. [Google Scholar] [CrossRef]
- Krinsley, D.H.; Dorn, R.I.; DiGregorio, B.E.; Langworthy, K.A.; Ditto, J. Rock varnish in new york: An accelerated snapshot of accretionary processes. Geomorphology 2012, 138, 339–351. [Google Scholar] [CrossRef]
- Murdoch, J.; Webb, R.W. Minerals of california, centennial volume (1866–1966). Calif. Div. Mines Geol. Bull. 1966, 189, 1–344. [Google Scholar]
- Weed, R.; Ackert, R.J. Chemical weathering of beacon supergroup sandstones and implications for antarctic glacial chronology. S. Afr. J. Sci. 1986, 82, 513–516. [Google Scholar]
- Yesavage, T.; Thompson, A.; Hausrath, E.M.; Brantley, S.L. Basalt weathering in an arctic mars—Analog site. Icarus 2015, 254, 219–232. [Google Scholar] [CrossRef]
- Mergelov, N.S.; Goryachkin, S.V.; Shorkunov, I.G.; Zazovskaya, E.P.; Cherkinsky, A.E. Endolithic pedogenesis and rock varnish on massive crystalline rocks in east antarctica. Eurasian Soil Sci. 2012, 45, 901–917. [Google Scholar] [CrossRef]
- Dorn, R.I. Formation of silica glaze rock coatings through water vapor interactions. Phys. Geogr. 2012, 33, 21–31. [Google Scholar] [CrossRef]
- Aulinas, M.; Garcia-Valles, M.; Fernandez-Turiel, J.L.; Gimeno, D.; Saavedra, J.; Gisbert, G. Insights into the formation of rock varnish in prevailing dusty regions. Earth Surf. Process. Landf. 2015, 40, 447–458. [Google Scholar] [CrossRef]
- Dorn, R.I.; Krinsley, D.H.; Langworthy, K.A.; Ditto, J.; Thompson, T.J. The influence of mineral detritus on rock varnish formation. Aeolian Res. 2013, 10, 61–76. [Google Scholar] [CrossRef]
- Strini, A.; Guglielmin, M.; Hall, K. Tafoni development in a cryotic environment: An example from northern victoria land, antarctica. Earth Surf. Process. Landf. 2008, 33, 1502–1519. [Google Scholar] [CrossRef]
- French, H.M.; Guglielmin, M. Observations on granite weathering phenomena, mount keinath, northern victoria land, antarctica. Permafr. Periglac. Process. 2002, 13, 231–236. [Google Scholar] [CrossRef]
- Guglielmin, M.; Cannone, N.; Strini, A.; Lewkowicz, A.G. Biotic and abiotic processes on granite weathering landforms in a cryotic environment, northern victoria land, australia. Permafr. Periglac. Process. 2005, 16, 69–85. [Google Scholar] [CrossRef]
- Hall, K.; Guglielmin, M.; Strini, A. Weathering of granite in antarctica: I. Light penetration into rock and implications for rock weathering and endolithic communities. Earth Surf. Process. Landf. 2008, 33, 295–307. [Google Scholar] [CrossRef]
- Hall, K.; Guglielmin, M.; Strini, A. Weathering of granite in antarctica: Ii. Thermal stress at the grain scale. Earth surface processes and landforms. Earth Surf. Process. Landf. 2008, 33, 475–493. [Google Scholar] [CrossRef]
- Boger, P.D.; Boger, J.L.; Jones, L.M.; Faure, G. Effect of chemical weathering on the rb-sr date of feldspar in neogene till, mount fleming, south victoria land, antarctica. Chem. Geol. 1987, 65, 35–44. [Google Scholar] [CrossRef]
- Weed, R.; Norton, S.A. Siliceous crusts, quartz rinds and biotic weathering of sandstones in the cold desert of antarctica. In Diversity of Environmental Biogeochemistry (Developments in Geochemistry, Volume 6); Berthelin, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 327–339. [Google Scholar]
- Washburn, A.L. Desert varnish. In Weathering, Frost Action and Patterned Ground in the Mesters District, Northeast Greenland; Washburn, A.L., Ed.; Reitzels: Copenhagen, Denmark, 1969; pp. 14–15. [Google Scholar]
- Douglas, G.R. Manganese-rich rock coatings from iceland. Earth Surf. Process. Landf. 1987, 12, 301–310. [Google Scholar] [CrossRef]
- Dorn, R.I.; Krinsley, D.H.; Liu, T.; Anderson, S.; Clark, J.; Cahill, T.A.; Gill, T.E. Manganese-rich rock varnish does occur in antarctica. Chem. Geol. 1992, 99, 289–298. [Google Scholar] [CrossRef]
- Marnocha, C.; Dixon, J.C. Bacterial communities in fe/mn films, sulphate crusts, and aluminium glazes from swedish lapland: Implications for astrobiology on mars. Int. J. Astrobiol. 2013, 12, 345–356. [Google Scholar] [CrossRef]
- Lebedeva, M.P.; Golovanov, D.L.; Shishkov, V.A.; Ivanov, A.L.; Abrosimov, K.M. Microscopic and tomographic studies for interpreting the genesis of desert varnish and the vesicular horizon of desert soils in mongolia and the USA. Bol. Soc. Geol. Mexicana 2019, 71, 21–42. [Google Scholar]
- Dorn, R.I.; Cahill, T.A.; Eldred, R.A.; Gill, T.E.; Kusko, B.; Bach, A.; Elliott-Fisk, D.L. Dating rock varnishes by the cation ratio method with pixe, icp, and the electron microprobe. Int. J. PIXE 1990, 1, 157–195. [Google Scholar] [CrossRef]
- Tazaki, K. Formation of banded iron-manganese structures by natural microbial communities. Clays Clay Miner. 2000, 48, 511–520. [Google Scholar] [CrossRef]
- Villalobos, M.; Toner, B.; Bargar, J.; Sposito, G. Characterization of the manganese oxide produced by pseudomonas putida strain mnb1. Geochim. Cosmochim. Acta 2003, 67, 2649–2662. [Google Scholar] [CrossRef]
- Krinsley, D.H.; Dorn, R.I.; DiGregorio, B.E.; Razink, J.; Fisher, R. Mn-fe enhancing budding bacteria in century-old rock varnish, erie canal, new york. J. Geol. 2017, 125, 317–336. [Google Scholar] [CrossRef]
- Vázquez-Ortega, A.; Fein, J.B. Thermodynamic modeling of mn (ii) adsorption onto manganese oxidizing bacteria. Chem. Geol. 2017, 464, 147–154. [Google Scholar] [CrossRef]
- Hartshorne, R.S.; Reardon, C.L.; Ross, D.; Nuester, J.; Clarke, T.A.; Gates, A.J.; Mills, P.C.; Frederickson, J.K.; Zachara, J.M.; Shi, L.; et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009, 106, 22169–22174. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.M. The Tetravalent Manganese Oxides: Clarification of Their Structural Variations and Relationships and Characterization of Their Occurrence in the Terrestrial Weathering Environment as Desert Varnish and Other Manganese Oxides. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1979. [Google Scholar]
- McKeown, D.A.; Post, J.E. Characterization of manganese oxide mineralogy in rock varnish and dendrites using x-ray absorption spectroscopy. Am. Mineral. 2001, 86, 701–713. [Google Scholar] [CrossRef]
- Liu, T.; Broecker, W.S. Millennial-scale varnish microlamination dating of late pleistocene geomorphic features in the drylands of western USA. Geomorphology 2013, 187, 38–60. [Google Scholar] [CrossRef]
- Liu, T.; Broecker, W.; Stein, M. Rock varnish evidence for a younger dryas wet event in the dead sea basin. Geophys. Res. Lett. 2013, 40, 2229–2235. [Google Scholar] [CrossRef]
- Liu, T. Vml Dating Lab. Available online: http://www.vmldating.com/ (accessed on 17 November 2017).
- Glasby, G.P.; McPherson, J.G.; Kohn, B.P.; Johnston, J.H.; Keys, J.R.; Freeman, A.G.; Tricker, M.J. Desert varnish in southern victoria land, antarctica. N. Z. J. Geol. Geophys. 1981, 24, 389–397. [Google Scholar]
- Johnston, J.H.; Cardile, C.M. The characterisation of the iron oxide phase in desert varnish from antarctica using backscattered conversion electron and X-ray mössbauer spectroscopy. Chem. Geol. 1984, 45, 73–90. [Google Scholar] [CrossRef]
- Baker, B.J.; Banfield, J.F. Microbial communities in acid mine drainage. FEMS Microb. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Fein, J.B.; Brady, P.V.; Jain, J.C.; Dorn, R.I.; Lee, J. Bacterial effects on the mobilization of cations from a weathered pb-contaminated andesite. Chem. Geol. 1999, 158, 189–202. [Google Scholar] [CrossRef]
- Dorn, R.I. Anthropogenic interactions with rock varnish. In Biogeochemical Cycles: Anthropogenic and Ecological Drivers; Dontsova, K., Balogh-Brunstad, Z., Le Roux, G., Eds.; American Geophysical Union: Washington, DC, USA, 2019. [Google Scholar]
- Black, J.L.; MacLeod, I.D.; Smith, B.W. Theoretical effects of industrial emissions on colour change at rock art sites on burrup peninsula, western australia. J. Archaeol. Sci. Rep. 2017, 12, 457–462. [Google Scholar] [CrossRef]
- Sims, D.B.; Hudson, A.C.; Keller, J.E.; Konstantinos, V.I.; Konstantinos, M.P. Trace element scavenging in dry wash surficial sediments in an arid region of southern nevada, USA. Mine Water Environ. 2017, 36, 124–132. [Google Scholar] [CrossRef]
- Hoar, K.; Nowinski, P.; Hodge, V.F.; Cizdziel, J.V. Rock varnish: A passive forensic tool for monitoring recent air pollution and source identification. Nuclear Technol. 2011, 175, 351–359. [Google Scholar] [CrossRef]
- Nowinski, P. Desert Varnish as an Indicator of Modern-Day Air Pollution in Southern Nevada. Ph.D. Thesis, Environmental Science, University of Nevada Las Vegas, Las Vegas, NV, USA, 2009; p. 209. [Google Scholar]
- Nowinski, P.; Hodge, F.W.; Gerstenberger, S.; Cizdziel, J.V. Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants. Environ. Pollut. 2013, 179, 132–137. [Google Scholar] [CrossRef]
- Hodge, V.F.; Farmer, D.E.; Diaz, T.A.; Orndorff, R.L. Prompt detection of alpha particles from po-210: Another clue to the origin of rock varnish? J. Environ. Radioact. 2005, 78, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, Y.; Stein, M.; Enzel, Y. From dust to varnish: Geochemical constraints on rock varnish formation in the negev desert, israel. Geochim. Cosmochim. Acta 2014, 126, 97–111. [Google Scholar] [CrossRef]
- Getty, S.R.; Gutzler, D.S.; Asmerom, Y.; Shearer, C.K.; Free, S.J. Chemical signals of epiphytic lichens in southwestern north america; natural versus man-made sources for airborne particulates. Atmos. Environ. 1999, 33, 5095–5104. [Google Scholar] [CrossRef]
- Andersen, S.T. History of the terrestrial environment in the quaternary of denmark. Bull. Geol. Soc. Den. 1994, 41, 219–228. [Google Scholar]
- Potapowicz, J.; Szumińska, D.; Szopińska, M.; Polkowska, Ż. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part i. Case study of antarctica. Sci. Total Environ. 2019, 651, 1534–1548. [Google Scholar] [CrossRef] [PubMed]
- Perdrial, N.; Liewig, N.; Delphin, J.-E.; Elsass, F. Tem evidence for intracellular accumulation of lead by bacteria in subsurface environmentsl. Chem. Geol. 2008, 253, 196–204. [Google Scholar] [CrossRef]
- Villalobos, M.; Bargar, J.; Sposito, G. Trace metal retention on biogenic manganese oxide nanoparticles. Elements 2005, 1, 223–226. [Google Scholar] [CrossRef]
Figures | Glacier | Location | Rock Type |
---|---|---|---|
1,7,13 | Greenland outlet glacier | −63.5540, −50.5853 | gneiss |
1 | Greenland shoreline, near Nuuk | 64.2089, −51.6130 | gneiss |
2 | Sandstone, an older moraine, Beacon Valley, Ross Desert | −77.8220, 160.7148 | sandstone |
3 | Akesu volcanic field, Tibet [89] | 35.7001, 81.5803 | andesite |
4 | Glacial Polish, Iztaccíhuatl, Mexico | 19.1716, −98.6362 | andesite |
5,6,9 | Desert pavement [90], Beacon Valley, Ross Desert, Antarctica | −77.8321, 160.6293 | sandstone |
8 | Mt. Van Valkenburg, Clark Mountains, Antarctica | −77.3098, −142.1168 | granite |
10 | Palisades glacier, acid mine drainage | 37.0772, −118.4722 | granodiorite |
11 | Ngozumpa Glacier, Nepal | 28.0069, 86.6898 | gneiss |
12 | Khumbu Nepal | 27.8137, 86.7194 | gneiss |
Technique (and Acronym) | Information Obtained | Spatial Resolution |
---|---|---|
Coupled dual-beam focused ion beam electron microscopy (FIB-EM) | Used to create and image cross sections in situ in TEM analyses. Real time imaging in SEM mode during ion milling. | >~1 nm |
High resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) | 2-D spatial imaging, lattice imaging. | >0.08 nm |
Energy dispersive X-ray analysis (EDX) | Elemental composition, X-ray mapping of elements. | >1 nm (HRTEM) >20 nm (SEM) |
Scanning electron microscopy (SEM) with back-scattered electron detector (BSE) | SEM provides topographic insight, while average atomic number (Z) revealed through contrast in grayscale BSE image. | >5 nm |
Scanning electron microscopy (SEM) with secondary electrons (SE) | 2-D spatial imaging. | >1 nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorn, R.I.; Krinsley, D.H. Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates. Geosciences 2019, 9, 121. https://doi.org/10.3390/geosciences9030121
Dorn RI, Krinsley DH. Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates. Geosciences. 2019; 9(3):121. https://doi.org/10.3390/geosciences9030121
Chicago/Turabian StyleDorn, Ronald I., and David H. Krinsley. 2019. "Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates" Geosciences 9, no. 3: 121. https://doi.org/10.3390/geosciences9030121
APA StyleDorn, R. I., & Krinsley, D. H. (2019). Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates. Geosciences, 9(3), 121. https://doi.org/10.3390/geosciences9030121