Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Studies
2.1.1. Lagos, Nigeria
2.1.2. Banjul, the Gambia
2.2. Data Used
2.3. PSI Analysis by Means of SNAP and StaMPS
3. Results and Discussion
3.1. Lagos, Nigeria
3.2. Banjul, the Gambia
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Ablain, M.; Cazenave, A.; Valladeau, G.; Guinehut, S. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci. 2009, 5, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef]
- Jenkins, G.J.; Murphy, J.M.; Sexton, D.M.H.; Lowe, J.A.; Jones, P.; Kilsby, C.G. UK Climate Projections: Briefing Report; CEDA: Sydney, Australia, 2009; ISBN 9781906360023. [Google Scholar]
- IPCC. The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY USA, 2007; p. 1009. ISBN 9780521705967. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science. 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Cazenave, A.; Cozannet, G. Sea level rise and its coastal impacts. Earths Future 2013, 2, 15–34. [Google Scholar] [CrossRef]
- Neumann Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J.B. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; de Gusmao, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a “beyond 4 °C world” in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 161–181. [Google Scholar] [CrossRef]
- Adeyinka, M.A.; Bankole, P.O.; Olaye, S. Environmental statistics: Situation in Federal Republic of Nigeria. In Proceedings of the Workshop on Environmental Statistics, Dakar, Senegal, 28 February–4 March 2005. [Google Scholar]
- Lall, S.V.; Henderson, J.V.; Venables, A.J. Africa’s Cities: Opening Doors to the World; The World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- The World Bank Group. Turn Down the Heat: Confronting the New Climate Normal; The World Bank Group: Washington, DC, USA, 2014; p. 276. [Google Scholar]
- Delgado Blasco, J.M.; Foumelis, M. Automated SNAP Sentinel-1 DInSAR Processing for StaMPS PSI with Open Source Tools (Version 1.0.1). Zenodo. Available online: http://doi.org/10.5281/zenodo.1322353 (accessed on 27 July 2018).
- Hooper, A.; Bekaert, D.; Spaans, K.; Arikan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Copernicus—The European Earth Observation Programme. Available online: www.copernicus.eu (accessed on 8 March 2019).
- Guo, H.-D.; Zhang, L.; Zhu, L.-W. Earth observation big data for climate change research. Adv. Clim. Chang. Res. 2015, 6, 108–117. [Google Scholar] [CrossRef]
- Kansakar, P.; Hossain, F. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy 2016, 36, 46–54. [Google Scholar] [CrossRef]
- Various Authors. Earth Observations in Support of the 2030 Agenda for Sustainable Development; GEO: Geneva, Switzerland, 2017. [Google Scholar]
- Pieterse, E. Africa’s Urban Revolution: Epistemic Adventures. In Proceedings of the Great Texts/Big Questions: GIPCA Lectures Series, Cape Town, South Africa, 30 April 2014; Available online: http://www.gipca.uct.ac.za/project/great-texts-edg (accessed on 8 March 2019).
- Rakodi, C. The urban challenge in Africa. In Managing Urban Futures; Routledge: Abingdon, UK, 2016; pp. 63–86. [Google Scholar]
- Ferretti, A.; Monti-guarnieri, A.; Prati, C.; Rocca, F. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19, February 2007); ESA Publications: Auckland, New Zealand, 2007; ISBN 92-9092-233-8. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A. review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the Small BAseline Subset algorithm: A DInSAR technique for surface deformation analysis. In Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change; Birkhäuser Basel: Basel, Switzerland, 2007. [Google Scholar]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1701. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Kampes, B.M.; Hanssen, R.F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2446–2453. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hanssen, R.F.; Van Leijen, F.J. Monitoring water defense structures using radar interferometry. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008. [Google Scholar]
- Svigkas, N.; Papoutsis, I.; Constantinos, L.; Tsangaratos, P.; Kiratzi, A.; Kontoes, C.H. Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece. Eng. Geol. 2016, 209, 175–186. [Google Scholar]
- Sowter, A.; Bin Che Amat, M.; Cigna, F.; Marsh, S.; Athab, A.; Alshammari, L. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.; Filmer, M.; Featherstone, W. First Results from Sentinel-1A InSAR over Australia: Application to the Perth Basin. Remote Sens. 2017, 9, 299. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Sun, Q.; Chen, W. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens. Environ. 2017, 188, 73–84. [Google Scholar] [CrossRef]
- Shamshiri, R.; Nahavandchi, H.; Motagh, M.; Haghighi, M.H. Multi-sensor InSAR Analysis of Surface Displacement over Coastal Urban City of Trondheim. Procedia Comput. Sci. 2016, 100, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.H.-M.; Ge, L.; Du, Z.; Wang, S.; Ma, C. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 92–103. [Google Scholar] [CrossRef]
- Ruiz-Constán, A.; Ruiz-Armenteros, A.M.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Lazecky, M.; García, M.; Sousa, J.J.; Sanz de Galdeano, C.; Delgado-Blasco, J.M.; Jiménez-Gavilán, P.; et al. SAR interferometry monitoring of subsidence in a detritic basin related to water depletion in the underlying confined carbonate aquifer (Torremolinos, southern Spain). Sci. Total Environ. 2018, 636, 670–687. [Google Scholar] [CrossRef]
- Cigna, F.; Lasaponara, R.; Masini, N.; Milillo, P.; Tapete, D. Persistent scatterer interferometry processing of COSMO-skymed stripmap HIMAGE time series to depict deformation of the historic centre of Rome, Italy. Remote Sens. 2014, 6, 12593–12618. [Google Scholar] [CrossRef]
- Yang, K.; Yan, L.; Huang, G.; Chen, C.; Wu, Z. Monitoring building deformation with InSAR: Experiments and validation. Sensors 2016, 16, 2182. [Google Scholar] [CrossRef] [PubMed]
- Gernhardt, S.; Auer, S.; Eder, K. Persistent scatterers at building facades—Evaluation of appearance and localization accuracy. ISPRS J. Photogramm. Remote Sens. 2015, 100, 92–105. [Google Scholar] [CrossRef]
- Bovenga, F.; Wasowski, J.; Nitti, D.O.; Nutricato, R.; Chiaradia, M.T. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens. Environ. 2012, 119, 272–285. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, 1–21. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 1999; Volume 6, ISBN 0849378990. [Google Scholar]
- Ng, A.H.M.; Ge, L.; Li, X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens. Environ. 2015, 159, 86–101. [Google Scholar] [CrossRef]
- Hu, J.; Ding, X.L.; Li, Z.W.; Zhang, L.; Zhu, J.J.; Sun, Q.; Gao, G.J. Vertical and horizontal displacements of Los Angeles from InSAR and GPS time series analysis: Resolving tectonic and anthropogenic motions. J. Geodyn. 2016, 99, 27–38. [Google Scholar] [CrossRef]
- De Luca, C.; Zinno, I.; Manunta, M.; Lanari, R.; Casu, F. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series. Remote Sens. Environ. 2016, 202, 3–17. [Google Scholar] [CrossRef]
- Casu, F.; Elefante, S.; Imperatore, P.; Zinno, I.; Manunta, M.; De Luca, C.; Lanari, R. SBAS-DInSAR parallel processing for deformation time-series computation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3285–3296. [Google Scholar] [CrossRef]
- Envisat ASAR. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar (accessed on 8 March 2019).
- Building Nigeria’s Response to Climate Change (BNRCC) Project. Towards a Lagos State Climate Change Adaptation Strategy. Prepared for the Commissioner of Environment, Lagos State; BNRCC: Ibadan, Nigeria, 2012. [Google Scholar]
- Ajibade, I.; Pelling, M.; Agboola, J.; Garschagen, M. Sustainability Transitions: Exploring Risk Management and the Future of Adaptation in the Megacity of Lagos. J. Extrem. Events 2016, 03, 1650009. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, S.; Natenzon, C.E.; Omojola, A.; Folorunsho, R.; Gilbride, J.; Rosenzweig, C. Framework for City Climate Risk Assessment. In Proceedings of the Fifth Urban Research Symposium Cities and Climate Change, Marseille, France, 28–30 June 2009. [Google Scholar]
- Eze, M.U.; Alozie, G.C.; Nwogu, N. Coastal Erosion and Tourism Infrastructure in Lagos State. Int. J. Adv. Res. Soc. Sci. Environ. Stud. Technol. 2016, 2, 227–239. [Google Scholar]
- Jaiteh, M.; Sarr, B. Climate Change and Development in the Gambia Challenges to Ecosystem Goods and Services. 2010, 57. Available online: http://www.academia.edu/3623740/Climate_Change_and_Development_in_the_Gambia_Challenges_to_Ecosystem_Goods_and_Services (accessed on 12 March 2019).
- Njie, M. The Gambia National Adaptation Programme of Action (NAPA) on Climate Change; Government of The Gambia: Banjul, Gambia, 2007.
- 2014–2016 Strategic Response Plan Gambia; OCHA: New York, NY, USA, 2014.
- Jallow, B.P.; Barrow, M.K.A.; Leatherman, S.P. Vulnerability of the coastal zone of the Gambia to sea level rise and development of response strategies and adaptation options. Clim. Res. 1996, 6, 165–177. [Google Scholar] [CrossRef]
- Risk Reduction Index in West Africa: Analysis of the Conditions and Capacities for Disaster Risk Reduction; DARA: Washington, DC, USA, 2013.
- Ciappa, A.; Grandoni, D.; Nicolosi, P.A.S.; Cannizzaro, V.A.S.; Piana, S.P. Use of Cosmo-Skymed Data for Innovative and Operational Applications. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 215–218. [Google Scholar]
- ESA SNAP. Available online: http://step.esa.int/main/toolboxes/snap/ (accessed on 8 March 2019).
- StaMPS. Available online: https://homepages.see.leeds.ac.uk/~earahoo/stamps/ (accessed on 8 March 2019).
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Delgado Blasco, J.M. Snap2stamps—Non-Official. Available online: https://github.com/mdelgadoblasco/snap2stamps (accessed on 8 March 2019).
- Delgado Blasco, J.M.; Sabatino, G.; Cuccu, R.; Rivolta, G.; Pelich, R.; Matgen, P.; Chini, M.; Marconcini, M. Support for Multi-temporal and Multi-mission data processing: The ESA Research and Service Support. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images, Brugge, Belgium, 27–29 June 2017. [Google Scholar]
- Sabater, J.R.; Duro, J.; Arnaud, A.; Albiol, D.; Koudogbo, F.N. Comparative analyses of multi-frequency PSI ground deformation measurements. Proc. SPIE 2011, 817. [Google Scholar] [CrossRef]
- Biagi, L.; Grec, F.; Negretti, M. Low-cost GNSS receivers for local monitoring: Experimental simulation, and analysis of displacementsxs. Sensors 2016, 16, 2140. [Google Scholar] [CrossRef] [PubMed]
- Barzaghi, R.; Cazzaniga, N.E.; De Gaetani, C.I.; Pinto, L.; Tornatore, V. Estimating and comparing dam deformation using classical and gnss techniques. Sensors 2018, 18, 756. [Google Scholar] [CrossRef] [PubMed]
- ICEYE. Available online: www.iceye.com (accessed on 8 March 2019).
- Popkin, G. Earth-observing companies push for more-advanced science satellites. Nature 2017, 545, 397. [Google Scholar] [CrossRef] [PubMed]
- Open Street Map. Available online: www.openstreetmap.org (accessed on 8 March 2019).
City | Dataset | Results |
---|---|---|
1. Lagos, Nigeria | Envisat/S1/TSX | Subsidence Detected |
2. Abidjan, Ivory Coast | S1 | Subsidence Detected |
3. Nouakchott, Mauritania | Envisat/S1 | Subsidence Detected |
4. Saint Louis, Senegal | Envisat/S1 | Subsidence Detected |
5. Stone Town, Zanzibar | S1 | No Subsidence |
6. Banjul, the Gambia | Envisat/S1/CSK | Subsidence Detected |
7. Lomé, Togo | S1 | Subsidence Detected |
8. Cotonou, Benin | Envisat/S1 | Subsidence Detected |
9. Accra, Ghana | Envisat/S1 | Subsidence Detected |
10. Monrovia, Liberia | Envisat/S1 | Subsidence Detected |
11. Luanda, Angola | Envisat/S1 | Subsidence Detected |
12. Mombasa, Kenya | S1 | Subsidence Detected |
13. Nacala, Mozambique | S1 | Subsidence Detected |
14. Quelimane, Mozambique | S1 | Subsidence Detected |
15. Mogadishu, Somalia | S1 | Subsidence Detected |
16. Dar Es Salaam, Tanzania | S1 | Subsidence Detected |
17. Conakry, Guinea | S1 | Subsidence Detected |
18. Douala, Cameroon | S1 | Subsidence Detected |
Mission Name (Agency) | Start–End Date | Free | Frequency | Repeat Cycle (Days) | Incidence Angle (Mid-Range) | Resolution (m) |
---|---|---|---|---|---|---|
ERS-1 (ESA) | July 1991–Mar 2000 | Yes | C | 3/35/168 | 23° | ~20 |
ERS-2 (ESA) | Apr 1995–Sep 2011 | Yes | C | 3/35 | 23° | ~20 |
Envisat-ASAR (ESA) | Mar 2002–Apr 2012 | Yes | C | 35 | 7 image swaths from 19° to 43.85° | ~20 |
TerraSAR-X (DLR) | Jun 2007– | No | X | 11 | 20°–55° | 16/3/1 |
TanDEM-X (DLR) | Jun 2010– | No | X | 11 | 20°–55° | 16/3/1 |
COSMO-SkyMed (ASI) | Jun 2007– | No | X | 16 (1 satellite) 4 (full constellation) <12 h (emergency mode) | 22.5°–54.75° | 3/1 |
ALOS-PALSAR (JAXA) | Jan 2006–May 2011 | No | L | 46 | 9.9°–50.8° | 100/30/20/10 |
ALOS-PALSAR 2 (JAXA) | May 2014– | No | L | 14 | 9.9°–60.8° | 100/10/6/3 |
Radarsat-1 (CSA) | Nov 1995–Mar 2013 | No | C | 24 | 7 image modes, 23.5°–47° | 100/10 |
Radarsat-2 (CSA) | Dec 2007– | No | C | 24 | 7 image modes, 23.5°–47° | 100/3 |
Sentinel-1 (ESA) | Sep 2014– | Yes | C | 6 | 3 image modes, 33.725°–43.875° | ~20 |
Iceye | Jan 2018 | No | X | 1 | 15°–35° | 10/3/1 |
Case Study | Sensor | Number of Images | Analysis Start Date | Analysis End Date | Orbits |
---|---|---|---|---|---|
Lagos, Nigeria | Sentinel-1 | 98 | March 2015 | November 2018 | 1 Ascending |
TerraSAR-X | 23 | December 2009 | May 2013 | 71 Ascending | |
Envisat-ASAR | 20 | January 2004 | September 2010 | 22 Descending | |
Banjul, the Gambia | Sentinel-1 | 100 | March 2015 | September 2018 | 133 Ascending |
COSMO-SkyMed | 60 | May 2011 | September 2018 | Descending | |
Envisat-ASAR | 18 | January 2004 | December 2008 | 266 Descending |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cian, F.; Blasco, J.M.D.; Carrera, L. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences 2019, 9, 124. https://doi.org/10.3390/geosciences9030124
Cian F, Blasco JMD, Carrera L. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences. 2019; 9(3):124. https://doi.org/10.3390/geosciences9030124
Chicago/Turabian StyleCian, Fabio, José Manuel Delgado Blasco, and Lorenzo Carrera. 2019. "Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS" Geosciences 9, no. 3: 124. https://doi.org/10.3390/geosciences9030124
APA StyleCian, F., Blasco, J. M. D., & Carrera, L. (2019). Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences, 9(3), 124. https://doi.org/10.3390/geosciences9030124