A Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily)
Abstract
:1. Introduction
2. Regional Geological Setting and Sample Site
3. Materials and Methods
4. Optical and SEM Petrography
5. Analytical Results
6. Discussion
7. Conclusions
- (1)
- The widely acknowledged idea that “the very small” can be helpful to understand the "very large" is here plainly verified: the thin vein of silicate glass in the fist-size peridotite xenolith gives important information to clarify the volcanological paradox of large explosive eruptions produced by high-Mg magmas, which generally yield quiet effusive eruptions.
- (2)
- The interaction between mafic magmas, undersaturated in volatiles, and subjacent serpentinites is a plausible way to explain the formation of a hybrid silicate melt very rich in Mg and in volatiles, chiefly H2O. Since serpentinite is very much depleted in incompatible elements, compared to the igneous end member, the latter can impart its geochemical signature to the newly formed, hybrid melt.
- (3)
- Some ultramafic volcanic rocks, including some komatiite, meimechite, and (alkali-)picrite types, in diverse geological contexts, may derive from hybrid melts produced by the interaction of primitive mafic magmas (e.g., basalts) with serpentinites at crustal depths (Figure 7). Although serpentinites chiefly originate in abyssal oceanic settings [56,57,58,59], buried serpentinite bodies very likely occur at shallow/middle crustal depths worldwide, even in Mediterranean-type marine basins [103] and in cratonic areas.
- (4)
- The Aforementioned suggestions can be relevant to explain some ancient and recent explosive eruptions of Mount Etna, related to relatively Mg-rich, even picritic [9] magmas, although some background geological problems are still debated among researchers (e.g., whether serpentinite geological bodies occur in the Etnean basement, or not).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newhall, C.; Self, S. The Volcanic Explosivity Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism. J. Geophys. Res. 1982, 87, 1231–1238. [Google Scholar] [CrossRef]
- Giordano, D.; Russel, J.K.; Dingwell, D.B. Viscosity of magmatic liquids: A model. Earth. Planet. Sci. Lett. 2008, 271, 123–134. [Google Scholar] [CrossRef]
- Schmincke, H.-U. Volcanism; Springer: Berlin, Germany, 1998; p. 324. ISBN 3-540-43650-2. [Google Scholar]
- Coltelli, M.; Del Carlo, P.; Vezzoli, L. Stratigraphic constraints for explosive activity in the past 100 ka at Etna Volcano, Italy. Int. J. Earth. Sci. 2000, 89, 65–677. [Google Scholar] [CrossRef]
- Del Carlo, P.; Pompilio, M. The relationship between volatile content and the eruptive style of basaltic magma: The Etna case. Ann. Geophys. 2004, 47, 1423–1432. [Google Scholar]
- Kamenetsky, V.S.; Pompilio, M.; Métrich, N.; Sobolev, A.V.; Kuzmin, D.V.; Thomas, R. Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology 2007, 35, 255–258. [Google Scholar] [CrossRef]
- Swanson, D.A.; Rose, T.R.; Mucek, A.E.; Garcia, M.O.; Fiske, R.S.; Mastin, L.G. Cycles of explosive and effusive eruptions at Kìlauea Volcano Hawai’i. Geology 2014, 7, 631–634. [Google Scholar] [CrossRef]
- Amore, C.; Giuffrida, E.; Scribano, V.; Lowenstern, J.B.; Müller, W. Emplacement and textural analysis of some present-daypyroclastic deposits of Mt Etna, Sicily. Boll. Soc. Geol. Ital. 1987, 106, 785–791. [Google Scholar]
- Coltelli, M.; Del Carlo, P.; Pompilio, M.; Vezzoli, L. Explosive eruption of a picrite: The 3930 BP subplinian eruption of Etna volcano, Italy. Geophys. Res. Lett. 2005, 32, L23307. [Google Scholar] [CrossRef]
- Patterson, M.; Francis, D.; McCandless, T. Kimberlites: Magmas or mixtures? Lithos 2009, 112, 191–200. [Google Scholar] [CrossRef]
- White, J.; Ross, P.-S. Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 2011, 201, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Graettinger, A.H.; Valentine, G.A.; Sonder, I.; Ross, P.-S.; White, J.D.L.; Taddeucci, J. Maar-diatreme geometry and deposits: Subsurface blast experiments with variable explosion depth. Geochem. Geophys. Geosyst. 2014, 15, 740–764. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.T. CO2 and the eruptibility of picrite and komatiite. Lithos 1995, 34, 19–25. [Google Scholar] [CrossRef]
- Saal, A.E.; Hauri, E.H.; Langmuir, C.H.; Perfit, M.R. Vapor undersaturation in primitive mid-ocean ridge basalts and the volatile content of Earth’s upper mantle. Nature 2002, 419, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Hauri, E.H.; Gaetani, G.A.; Green, T.H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 2000, 248, 715–734. [Google Scholar] [CrossRef]
- Scribano, V.; Carbone, S.; Manuella, F.C. Diatreme eruption probably related to explosive interaction of rising magma with serpentinite diapirs in the shallow crust (Carlentini Formation Hyblean area Sicily): A xenolith perspective. Epitome 2007, 2, 130–131. [Google Scholar]
- Manuella, F.C.; Carbone, S.; Ferlito, C.; Hovland, M. Magma–serpentinite interaction as the origin of diatremes: A case study from the Hyblean Plateau (southeastern Sicily). Int. J. Earth Sci. 2016, 105, 1371–1385. [Google Scholar] [CrossRef]
- Viccaro, M.; Scribano, V.; Cristofolini, R.; Ottolini, L.; Manuella, F.C. Primary origin of some trachytoid magmas: Inferences from naturally quenched glasses in hydrothermally metasomatized gabbroic xenoliths (Hyblean area Sicily). Lithos 2009, 113, 659–672. [Google Scholar] [CrossRef]
- Herzberg, C. Depth and degree of melting of komatiite. J. Geophys. Res. 1992, 97, 4521–4540. [Google Scholar] [CrossRef]
- Herzberg, C.; O’Hara, M.J. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 2002, 43, 1857–1883. [Google Scholar] [CrossRef]
- Gudfinnsson, G.H.; Presnall, D.C. Continuous gradations among primary carbonatitic kimberlitic melilitic basaltic picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J. Petrol. 2005, 46, 1645–1659. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T.; Draper, D.S.; Agee, C.B.; Jewell, J.; Thorpe, A.; Hess, P.C. The last lavas erupted during the main phase of the Siberian flood volcanic province: Results from experimental petrology. Contrib. Mineral. Petrol. 2007, 153, 191–209. [Google Scholar] [CrossRef]
- Herzberg, C.; Asimov, P.D.; Arndt, N.; Niu, Y.L.; Lesher, C.M.; Fitton, J.G.; Cheadle, M.J.; Saunders, A.D. Temperatures in ambient mantle and plumes: Constraints from basalts picrites and komatiites. Geochem. Geophys. Geosys. 2007, 8, Q02006. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S.; Catalano, S. Main structural domains of the central Mediterranean region and their Neogene tectonic evolution. Boll. Geofis. Teor. Appl. 1994, 36, 141–144. [Google Scholar]
- Rocchi, S.; Longaretti, G.; Salvadori, M. Subsurface Mesozoic and Cenozoic magmatism in southeastern Sicily: Distribution volume and geochemistry of magmas. Acta Vulcanol. 1998, 10, 395–408. [Google Scholar]
- De Rosa, R.; Mazzuoli, R.; Scribano, V.; Trua, T. Nuovi dati petrologici sulle Vulcaniti dei Monti Iblei (Sicilia sud-orientale): Implicazioni genetiche e geotettoniche. Miner. Petrogr. Acta 1991, 34, 133–151. [Google Scholar]
- Tonarini, S.; D’Orazio, M.; Armenti, P.; Innocenti, F.; Scribano, V. Geochemical features of Eastern Sicily lithosphere as probed by Hyblean xenoliths and lavas. Eur. J. Mineral. 1996, 8, 1153–1173. [Google Scholar] [CrossRef]
- Schmincke, H.U.; Behncke, B.; Grasso, M.; Raffi, S. Evolution of the northwestern Iblean Mountains Sicily: Uplift Plicocene/ Pleistocene sea–level changes paleoenvironment and volcanism. Geol. Rundsch. 1997, 86, 637–669. [Google Scholar] [CrossRef]
- Beccaluva, L.; Siena, F.; Coltorti, M.; Digrande, A.; Lo Giudice, A.; Macciotta, G.; Tassinari, R.; Vaccaro, C. Nephelinitic to tholeiitic magma generation in a transtensional tectonic setting: An integrated model for the Iblean vulcanism, Sicily. J. Petrol. 1998, 39, 1547–1576. [Google Scholar] [CrossRef]
- Trua, T.; Esperança, S.; Mazzuoli, R. The evolution of the lithospheric mantle along the N African Plate: Geochemical and isotopical evidence from the tholeiitic and alkaline volcanic rocks of the Hyblean Plateau Italy. Contrib. Mineral. Petrol. 1998, 131, 307–322. [Google Scholar] [CrossRef]
- Correale, A.; Martelli, M.; Paonita, A.; Scribano, V.; Arienzo, I. A combined study of noble gases trace elements and Sr–Nd isotopes for alkaline and tholeiitic lava from the Hyblean Plateau (Italy). Lithos 2018, 314–315, 59–70. [Google Scholar] [CrossRef]
- Suiting, I.; Schmincke, H.U. Internal vs external forcing in shallow marine diatreme formation: A case study from the Iblean Mountains (SE-Sicily Central Mediterranean). J. Volcanol. Geotherm. Res. 2009, 186, 361–378. [Google Scholar] [CrossRef]
- Scribano, V.; Sapienza, G.T.; Braga, R.; Morten, L. Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: Insights into the nature and composition of the lower crust underneath Southeastern Sicily, Italy. Mineral. Petrol. 2006, 86, 63–88. [Google Scholar] [CrossRef]
- Scribano, V.; Ioppolo, S.; Censi, P. Chlorite/smectite-alkali feldspar metasomatic xenoliths from Hyblean Miocenic diatremes (Sicily, Italy): Evidence for early interaction between hydrothermal brines and ultramafic magmatic rocks at crustal levels. Ofioliti 2006, 31, 161–171. [Google Scholar]
- Manuella, F.C.; Scribano, V.; Carbone, S.; Brancato, A. The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm. Int. J. Earth Sci. 2015, 104, 1317–1336. [Google Scholar] [CrossRef]
- Beccaluva, L.; Bianchini, G.; Coltorti, M.; Natali, C. Comment on Manuella et al “The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm”. Int. J. Earth Sci. 2015, 104, 1679–1684. [Google Scholar] [CrossRef]
- Manuella, F.C.; Scribano, V.; Carbone, S.; Brancato, A. Reply to “Comment on Manuella et al ‘The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm’ by Beccaluva et al 2015”. Int. J. Earth Sci. 2015, 104, 1685–1691. [Google Scholar] [CrossRef]
- Ben Avraham, Z.; Boccaletti, M.; Cello, G.; Grasso, M.; Lentini, F.; Torelli, L.; Tortorici, L. Principali domini strutturali originatisi dalla collisione neogenico–quaternaria nel Mediterraneo centrale. Mem. Soc. Geol. Ital. 1990, 45, 453–462. [Google Scholar]
- Finetti, I.; Lentini, F.; Carbone, S.; Del Ben, A.; Di Stefano, A.; Forlin, E.; Guarnieri, P.; Pipan, M.; Prizzon, A. Geological outline of Sicily and lithospheric tectono-dynamics of its Tyrrhenian margin from new CROP seismic data. In CROP Project: Seismic Exploration of the Central Mediterranean and Italy; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 15, pp. 319–376. [Google Scholar]
- Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Gutscher, M.A. Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results from a Wide-Angle Seismic Survey. J. Geophys. Res. Solid Earth 2018, 123, 2090–2114. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Peacock, S.M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 2003, 212, 417–432. [Google Scholar] [CrossRef]
- Giampiccolo, E.; Brancato, A.; Manuella, F.C.; Carbone, S.; Gresta, S.; Scribano, V. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography. Geophys. J. Int. 2017, 211, 1375–1395. [Google Scholar] [CrossRef]
- Musumeci, C.; Scarfì, L.; Palano, M.; Patanè, D. Foreland segmentation along an active convergent margin: New constraints in southeastern Sicily (Italy) from seismic and geodetic observations. Tectonophysics 2014, 630, 137–149. [Google Scholar] [CrossRef]
- Burollet, F.P. Structures and tectonics of Tunisia. Tectonophysics 1991, 195, 359–369. [Google Scholar] [CrossRef]
- Thibault, N.; Galbrun, B.; Gardin, S.; Minoletti, F.; Le Callonnec, L. The end-Cretaceous in the southwestern Tethys (Elles Tunisia): Orbital calibration of paleoenvironmental events before the mass extinction. Int. J. Earth Sci. 2016, 105, 771–795. [Google Scholar] [CrossRef]
- Manuella, F.C.; Brancato, A.; Carbone, S.; Gresta, S. A crustal- upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. J. Geodyn. 2013, 66, 92–102. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Mangano, G.; D’Anna, G.; Scudero, S. Evidence for serpentinization of the Ionian upper mantle from simultaneous inversion of P- and S-wave arrival times. J. Geodyn. 2016, 102, 115–120. [Google Scholar] [CrossRef]
- Polonia, A.; Torelli, L.; Gasperini, L.; Cocchi, L.; Muccini, F.; Bonatti, E.; Hensen, C.; Schmidt, M.; Romano, S.; Artoni, A.; et al. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nat. Commun. 2017, 8, 2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Guidi, G.; Imposa, S.; Scudero, S.; Palano, M. New evidence for Late Quaternary deformation of the substratum of Mt Etna volcano (Sicily Italy): Clues indicate active crustal doming. Bull. Volcanol. 2014, 76, 816–829. [Google Scholar] [CrossRef]
- Manuella, F.C.; Ottolini, L.; Carbone, S.; Scavo, L. Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: New contributions from Hyblean peridotite xenoliths (southeastern Sicily). Lithos 2016, 264, 405–421. [Google Scholar] [CrossRef]
- Manuella, F.C.; Della Ventura, G.; Galdenzi, F.; Carbone, S. Sr-rich aragonite veins in Hyblean serpentinized peridotite xenoliths (Sicily, Italy): Evidence for abyssal-type carbonate metasomatism. Lithos 2019, 326–327, 200–212. [Google Scholar] [CrossRef]
- Scribano, V. Natural partial melting of pyroxenite nodules and megacrysts from Sicily: A preliminary report. Period Miner. 1988, 57, 65–72. [Google Scholar]
- Scribano, V.; Viccaro, M.; Cristofolini, R.; Ottolini, L. Metasomatic events recorded in ultramafic xenoliths from the Hyblean area (Southeastern Sicily Italy). Mineral. Petrol. 2009, 95, 235–250. [Google Scholar] [CrossRef]
- Perinelli, C.; Sapienza, G.T.; Armienti, P.; Morten, L. Metasomatism of the upper mantle beneath the Hyblean Plateau (Sicily): Evidence from pyroxenes and glass in peridotite xenoliths. Geol. Soc. 2008, 293, 197–221. [Google Scholar] [CrossRef]
- Frost, R.B.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef]
- Evans, B.W. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- Palandri, J.L.; Reed, M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization rodingitization and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 2004, 68, 1115–1133. [Google Scholar] [CrossRef]
- Blackman, D.K.; Karson, J.A.; Kelley, D.S.; Cann, J.R.; Früh-Green, G.L.; Gee, J.S.; Hurst, S.D.; John, B.E.; Morgan, J.; Nooner, S.L.; et al. Geology of the Atlantis Massif (Mid-Atlantic Ridge 30°N): Implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res. 2004, 23, 443–469. [Google Scholar] [CrossRef]
- Silantyev, S.A.; Bortnikov, N.S.; Shatagin, K.N.; Bel’tenev, V.E.; Kononkova, N.N.; Bychkova, Y.V.; Krasnova, E.A. Petrogenetic conditions at at 18°–20°N MAR: Interaction between hydrothermal and magmatic systems. Petrology 2016, 24, 336–366. [Google Scholar] [CrossRef]
- Le Bas, M.J. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2000, 41, 1467–1470. [Google Scholar] [CrossRef]
- Kerr, A.C.; Arndt, N.T. A note on the IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 2001, 42, 2169–2171. [Google Scholar] [CrossRef]
- Vasil’ev, Yu.R.; Gora, M.P. Meimechite–picrite associations in Siberia, Primorye, and Kamchatka (comparative analysis and petrogenesis). Russ. Geol. Geophys. 2014, 55, 959–970. [Google Scholar] [CrossRef]
- Clague, D.A.; Weber, W.S.; Dixon, J.E. Picritic glasses from Hawaii. Nature 1991, 353, 553–555. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. Geochemical fingerprint of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Fitton, J. The OIB paradox. Geol. Soc. Am. 2007, 430, 387–412. [Google Scholar] [CrossRef]
- Arndt, N.; Lehnert, K.; Vasil’ev, Y. Meimechites: Highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos 1995, 34, 41–59. [Google Scholar] [CrossRef]
- Heinonen, J.S.; Luttinen, A.V. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: Geochemical tracing of ferropicrite sources. Lithos 2008, 105, 347–364. [Google Scholar] [CrossRef]
- Clague, D.A.; Moore, J.G.; Dixon, J.E.; Friesen, W.B. Petrology of submarine lavas from Kilauea’ Puna Ridge, Hawaii. J. Petrol. 1995, 36, 299–349. [Google Scholar] [CrossRef]
- Natland, J.H. Capture of mantle helium by growing olivine phenocrysts in picritic basalts from the Juan Fernandez Islands, SE Pacific. J. Petrol. 2003, 44, 421–456. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Ryabchikov, I.D. Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J. Asian Earth Sci. 2000, 18, 195–203. [Google Scholar] [CrossRef]
- Milidragovic, D.; Chapman, J.B.; Bichlmaier, S.; Canil, D.; Zagorevskic, A. H2O-driven generation of picritic melts in the Middle to Late Triassic Stuhini arc of the Stikine terrane, British Columbia, Canada. Earth Planet. Sci. Lett. 2016, 454, 65–77. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Sobolev, S.V.; Kuzmin, D.V.; Malitch, K.N.; Petrunin, A.G. Siberian meimechites: Origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 2009, 50, 999–1033. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Alt, J.C.; Shanks, W.C. Serpentinization of abyssal peridotites from the MARK area Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling. Geochim. Cosmochim. Acta 2003, 67, 641–653. [Google Scholar] [CrossRef]
- Frost, R.B. On the stability of sulphides oxides and native metals in serpentinite. J. Petrol. 1985, 26, 31–63. [Google Scholar] [CrossRef]
- Yoder, H.S., Jr.; Tilley, C. Origin of basalt magmas: Experimental study of natural and synthetic rock systems. J. Petrol. 1962, 3, 342–532. [Google Scholar] [CrossRef]
- Wright, T.L.; Okamura, R.T. Cooling and Crystallization of Tholeiitic Basalt, 1965 Makaopuhi Lava Lake, Hawaii; Geological Survey Professional Paper 1004; United States Government Printing Office: Washington, DC, USA, 1977; pp. 1–47.
- Rudge, J.F.; Kelemen, P.B.; Spiegelman, M. A simple model of reaction induced cracking applied to serpentinization, carbonation of peridotite. Earth Planet. Sci. Lett. 2010, 291, 215–227. [Google Scholar] [CrossRef]
- Wohletz, K.; Zimanowski, B.; BuÃàttner, R. Magma–water interactions. In Modeling Volcanic Processes: The Physics and Mathematics of Volcanism; Sarah, A., Fagents, S.A., Gregg, T.K.P., Lopes, R.M.C., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 231–257. [Google Scholar]
- Viti, C. Serpentine minerals discrimination by thermal analysis. Am. Mineral. 2010, 95, 631–638. [Google Scholar] [CrossRef]
- Seipold, U.; Schilling, F.R. Heat transport in serpentinites. Tectonophysics 2003, 370, 147–162. [Google Scholar] [CrossRef]
- Peltonen, P. Metamorphic olivine in picritic metavolcanics from Southern Finland. Bull. Geol. Soc. Finl. 1990, 62, 99–114. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Giacobbe, C.; Viti, C. The dehydroxylation of serpentine group minerals. Am. Mineral. 2012, 97, 666–680. [Google Scholar] [CrossRef]
- Dunbar, R.C.; Petrie, S. Magnesium Monocationic Complexes: A Theoretical Study of Metal Ion Binding Energies and Gas-Phase Association Kinetics. J. Phys. Chem. 2005, 109, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cruz, S.E.; Jockusch, R.A.; Williams, E.R. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba. J. Am. Chem. Soc. 1999, 121, 8898–8906. [Google Scholar] [CrossRef]
- Mysen, B.O.; Boettcher, A.L. Melting of a hydrous mantle. I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 1975, 33, 347–375. [Google Scholar] [CrossRef]
- Ferlito, C.; Coltorti, M.; Lanzafame, G.; Giacomoni, P. The volatile flushing triggers eruptions at open conduit volcanoes: Evidence from Mount Etna volcano (Italy). Lithos 2014, 184, 447–455. [Google Scholar] [CrossRef]
- Zimanowski, B.; Böttner, R. Dynamic mingling of magma and liquefied sediments. J. Volcanol. Geotherm. Res. 2002, 114, 37–44. [Google Scholar] [CrossRef]
- De Rosa, R.; Donato, P.; Ventura, G. Fractal analysis of mingled/mixed magmas: An example from the Upper Pollara eruption (Salina Island southern Tyrrhenian Sea Italy). Lithos 2002, 65, 299–311. [Google Scholar] [CrossRef]
- Morgavi, D.; Perugini, D.; De Campos, C.; Ertel-Ingrisch, W.; Dingwell, D. Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts. Contrib. Mineral. Petrol. 2013, 166, 615–638. [Google Scholar] [CrossRef]
- Perugini, D.D.; Campos, C.P.; Petrelli, M.; Morgavi, D.; Vetere, F.P.; Dingwel, D.B. Quantifying magma mixing with the Shannon entropy: Application to simulations and experiments. Lithos 2015, 236, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Correale, A.; Paonita, A.; Martelli, M.; Rizzo, A.; Rotolo, S.G.; Corsaro, R.A.; Di Renzo, V. A two component mantle source feeding Mt Etna magmatism: Insights from the geochemistry of primitive magmas. Lithos 2014, 184, 243–258. [Google Scholar] [CrossRef]
- Arndt, N.T.; Nisbet, E.G. What is a komatiite? In Komatiites; Arndt, N.T., Nisbet, E.G., Eds.; Allen & Unwin: London, UK, 1989; pp. 19–28. [Google Scholar]
- Agee, C.B.; Walker, D. Static compression and olivine flotation in ultrabasic silicate liquid. J. Geophys. Res. 1988, 93, 3437–3449. [Google Scholar] [CrossRef]
- Cox, K.G. A model for flood basalt volcanism. J. Petrol. 1980, 21, 629–650. [Google Scholar] [CrossRef]
- Falloon, T.J.; Green, D.H.; Danushevsky, L. Crystallization temperatures of tholeiite parental liquids: Implications for the existence of thermally driven mantle plumes. In Plates Plumes and Planetary Processes; Foulger, G.R., Jurdy, D.M., Eds.; Geological Society of America: Boulder, CO, USA; pp. 235–260.
- Hammouda, T.; Laporte, D. Ultrafast mantle impregnation by carbonatite melts. Geology 2000, 28, 283–285. [Google Scholar] [CrossRef]
- Nixon, P.H. Mantle Xenoliths; John Willey & Sons: London, UK, 1987; p. 640. [Google Scholar]
- Punturo, R.; Scribano, S. Dati geochimici e petrografici su xenoliti di clinopirossenite a grana ultragrossa e websteriti nelle vulcanoclastiti mioceniche dell’alta Valle Guffari (Monti Iblei, Sicilia). Miner. Petrogr. Acta 1997, 40, 95–116. [Google Scholar]
- Thorpe, A.K. Evidence from Experimental Petrology for Olivine Addition in Meimechite Magma Generation. Ph.D. Thesis, Department of Geological Sciences, Brown University, Providence, RI, USA, 2004. Available online: http://www.geog.ucsb.edu/~akthorpe/documents/Andrew_K_Thorpe_Honors_Thesis.pdf (accessed on 6 June 2018).
- Boudier, F.; Nicolas, A.; Ildefonse, B. Magma chambers in the Oman Ophiolite: Fed from the top and the bottom. Earth Planet. Sci. Lett. 1996, 144, 239–250. [Google Scholar] [CrossRef]
- Scribano, V.; Carbone, S.; Manuella, F.C. Tracking the Serpentinite Feet of the Mediterranean Salt Giant. Geosciences 2018, 8, 352. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
wt% | Cpx | Cpx | Cpx | Ol | Sap | Harzb | Serp (Av) | Lava |
SiO2 | 47.43 | 45.37 | 49.33 | 39.63 | 37.18 | 41.70 | 41.14 | 38.42 |
TiO2 | 2.66 | 3.14 | 2.21 | 0.38 | 0.10 | 0.02 | 0.02 | 1.93 |
Al2O3 | 6.81 | 8.02 | 4.74 | bdl | 13.46 | 1.92 | 1.52 | 12.47 |
FeO * | 6.35 | 6.79 | 5.91 | 12.33 | 8.82 | nd | 8.63 | nd |
Fe2O3 * | nd | nd | nd | nd | nd | 8.60 | nd | 12.21 |
MnO | 0.10 | 0.19 | 0.24 | 0.36 | bdl | 0.10 | 0.10 | 0.19 |
MgO | 14.58 | 13.96 | 15.42 | 45.80 | 23.94 | 36.90 | 33.13 | 9.44 |
CaO | 19.68 | 19.94 | 20.38 | 0.15 | 0.96 | 3.90 | 0.09 | 14.09 |
Na2O | 0.68 | 0.70 | 0.54 | bdl | 0.14 | 0.01 | 0.02 | 2.55 |
K2O | bdl | bdl | bdl | bdl | 0.08 | bdl | 0.02 | 1.15 |
P2O5 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | 2.41 |
Cr2O3 | 0.62 | 0.32 | 0.57 | 0.17 | bdl | 0.03 | nd | nd |
NiO | bdl | bdl | bdl | 0.31 | bdl | 0.02 | nd | nd |
CO2 | nd | nd | nd | nd | nd | 1.70 | nd | nd |
LOI | nd | nd | nd | nd | nd | 5.20 | nd | 4.92 |
Total | 98.91 | 98.43 | 99.34 | 99.13 | 84.67 | 100.10 | 99.78 | |
Mg# | 81 | 78 | 82 | 87 | 83 | 89.50 | 87.30 | 60.70 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
wt% | Average | Min | Max | STDEV | Av.Anhy | Average | Min | Max | STDEV | Av.Anhy |
SiO2 | 33.85 | 30.06 | 37.88 | 2.55 | 39.95 | 37.19 | 32.55 | 42.88 | 2.61 | 43.41 |
TiO2 | 2.78 | 1.90 | 3.29 | 0.37 | 3.28 | 1.58 | bdl | 2.9 | 1.15 | 1.84 |
Al2O3 | 9.92 | 8.85 | 10.60 | 0.56 | 11.71 | 10.45 | 7.04 | 12.95 | 1.73 | 12.20 |
FeO* | 9.63 | 8.26 | 11.73 | 1.13 | 11.37 | 12.22 | 7.91 | 14.23 | 2.20 | 14.26 |
MgO | 20.35 | 17.29 | 22.91 | 1.64 | 24.02 | 22.81 | 19.65 | 26.49 | 1.75 | 26.63 |
CaO | 5.64 | 4.00 | 6.50 | 0.82 | 6.66 | 1.14 | 0.84 | 1.27 | 0.13 | 1.33 |
Na2O | 0.12 | 0.03 | 0.27 | 0.07 | 0.14 | 0.09 | 0.04 | 0.19 | 0.04 | 0.11 |
K2O | 0.11 | bdl | 0.21 | 0.06 | 0.13 | 0.13 | 0.06 | 0.23 | 0.06 | 0.15 |
P2O5 | 2.32 | 1.36 | 2.86 | 0.41 | 2.74 | 0.06 | bdl | 0.26 | 0.08 | 0.07 |
Total | 84.71 | 81.29 | 88.15 | 2.76 | 100 | 85.67 | 81.75 | 87.23 | 1.57 | 100 |
* tot. | n=16 | n=15 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Glass | Harzbur. | Host Lava | Serpent. | ||||
ppm | AVER. | MIN | MAX | STDV | |||
Cr | 153.73 | 48.79 | 413.94 | 108.13 | 2867 | 380 | 306 |
Co | 45.20 | 28.45 | 63.08 | 11.76 | 113.20 | 51 | nd |
Ni | 262.18 | 110.77 | 478.66 | 132.67 | 2046 | 269 | nd |
Rb | 2.64 | 1.09 | 7.23 | 2.07 | 0.66 | 23 | 3.41 |
Sr | 602.17 | 453.76 | 933.08 | 159.70 | 195.10 | 1960 | 8.02 |
Y | 34.18 | 27.90 | 49.62 | 7.19 | 0.61 | 26 | 0.17 |
Zr | 275.61 | 221.69 | 383.72 | 59.53 | 2.03 | 135 | 0.52 |
Nb | 116.50 | 82.52 | 158.61 | 31.44 | 0.71 | 141 | 0.16 |
Ba | 82.01 | 39.68 | 228.33 | 64.54 | 1.50 | 1290 | nd |
La | 122.63 | 83.63 | 163.47 | 28.48 | 1.31 | 140 | 0.16 |
Ce | 225.97 | 164.67 | 324.28 | 50.37 | 2.12 | 281 | 0.36 |
Pr | 23.99 | 18.18 | 33.79 | 5.10 | 0.26 | 33 | nd |
Nd | 88.12 | 70.28 | 125.02 | 17.93 | 0.80 | 119 | 0.20 |
Sm | 14.46 | 11.96 | 19.97 | 2.63 | 0.11 | 20 | 0.03 |
Eu | 4.22 | 3.37 | 6.00 | 0.78 | 0.02 | 5.5 | 0.04 |
Gd | 15.75 | 12.87 | 22.33 | 3.15 | 0.12 | 15 | 0.03 |
Tb | 1.55 | 1.33 | 2.17 | 0.29 | 0.01 | 1.49 | nd |
Dy | 8.07 | 6.39 | 11.75 | 1.78 | 0.02 | 8.00 | 0.02 |
Ho | 1.34 | 1.07 | 2.01 | 0.33 | 0.01 | 1.30 | nd |
Er | 3.34 | 2.72 | 4.54 | 0.63 | 0.13 | 3.30 | 0.02 |
Tm | 0.43 | 0.33 | 0.59 | 0.10 | 0.01 | 0.39 | nd |
Yb | 2.60 | 2.02 | 3.88 | 0.61 | 0.1 | 3.00 | 0.03 |
Lu | 0.36 | 0.28 | 0.50 | 0.08 | 0.01 | 0.40 | nd |
Hf | 5.42 | 4.18 | 7.12 | 1.07 | 0.09 | 4.55 | nd |
Ta | 5.24 | 3.81 | 7.20 | 1.36 | 0.03 | 5.30 | nd |
Pb | 3.84 | 1.58 | 8.99 | 2.43 | 0.31 | 4.21 | nd |
Th | 11.45 | 8.57 | 16.86 | 2.65 | 0.11 | 11.1 | nd |
U | 3.55 | 2.43 | 5.48 | 0.93 | 0.05 | 2.91 | nd |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correale, A.; Scribano, V.; Paonita, A. A Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily). Geosciences 2019, 9, 150. https://doi.org/10.3390/geosciences9040150
Correale A, Scribano V, Paonita A. A Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily). Geosciences. 2019; 9(4):150. https://doi.org/10.3390/geosciences9040150
Chicago/Turabian StyleCorreale, Alessandra, Vittorio Scribano, and Antonio Paonita. 2019. "A Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily)" Geosciences 9, no. 4: 150. https://doi.org/10.3390/geosciences9040150
APA StyleCorreale, A., Scribano, V., & Paonita, A. (2019). A Volcanological Paradox in a Thin-Section: Large Explosive Eruptions of High-Mg Magmas Explained Through a Vein of Silicate Glass in a Serpentinized Peridotite Xenolith (Hyblean Area, Sicily). Geosciences, 9(4), 150. https://doi.org/10.3390/geosciences9040150