Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia
Abstract
:1. Introduction
2. Early Studies
3. Measurements and Samples
4. Results and Discussion
4.1. Essentially Paramagnetic Glass: Tektites and Darwin Glass
4.2. Magnetic Properties of Impact Glasses from Siberia
4.2.1. El’gygytgyn Impact Glasses
4.2.2. Popigai Impact Glasses
4.2.3. Urengoites
4.2.4. South-Ural Glass
4.3. Overview of Impact Glasses with Variable Ferromagnetic Content
5. Synthesis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glass, B.P. Glass: The Geologic Connection. Int. J. Appl. Glass Sci. 2016, 7, 435–445. [Google Scholar] [CrossRef]
- Essene, E.J.; Fisher, D.C. Lightning Strike Fusion: Extreme Reduction and Metal-Silicate Liquid Immiscibility. Science 1986, 234, 189–193. [Google Scholar] [CrossRef]
- Mameli, V.; Musinu, A.; Niznansky, D.; Peddis, D.; Ennas, G.; Ardu, A.; Luglie, C.; Cannas, C. Much More Than a Glass: The Complex Magnetic and Microstructural Properties of Obsidian. J. Phys. Chem. 2016, 120, 27635–27645. [Google Scholar] [CrossRef]
- Xu, H.; Lee, S.; Xu, H. Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field. Amer. Mineral. 2017, 102, 711–719. [Google Scholar] [CrossRef]
- Dressler, B.O.; Reimold, W.U. Terrestrial impact melt rocks and glasses. Earth Sci. Rev. 2001, 56, 205–284. [Google Scholar] [CrossRef]
- Gilder, S.A.; Pohl, J.; Eitel, M. Magnetic Signatures of Terrestrial Meteorite Impact Craters: A Summary. In Magnetic Fields in the Solar System; Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 357–382. [Google Scholar]
- Folco, L.; Rochette, P.; Perchiazzi, N.; d’Orazio, M.; Laurenzi, M.A.; Tiepolo, M. Microtektites from Victoria Land Transantarctic Mountains. Geology 2008, 36, 291–294. [Google Scholar] [CrossRef]
- Glass, B.P. Tektites and microtektites: Key facts and inferences. Tectonophysics 1990, 171, 393–404. [Google Scholar] [CrossRef]
- Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N.S.; Cournède, C.; Scaillet, B. Magnetic properties of tektites and other related impact glasses. Earth Planet. Sci. Lett. 2015, 432, 381–390. [Google Scholar] [CrossRef]
- Sergienko, E.S.; Kosterov, A.; Kharitonskii, P.V. Two types of impact melts with contrasting magnetic mineralogy from Jänisjärvi impact structure, Russian Karelia. Geophys. J. Int. 2017, 209, 1080–1094. [Google Scholar] [CrossRef]
- Rochette, P.; Alaç, R.; Beck, P.; Brocard, G.; Cavosie, A.J.; Debaille, V.; Devouard, B.; Jourdan, F.; Mougel, B.; Moustard, F.; et al. Pantasma: A Pleistocene circa 14 km diameter impact crater in Nicaragua. Meteorit. Planet. Sci. 2019, 4, 880–901. [Google Scholar] [CrossRef]
- Starunov, V.A.; Kosterov, A.; Sergienko, E.S.; Yanson, S.Y.; Markov, G.P.; Kharitonskii, P.V.; Sakhatskii, A.S.; Lezova, I.E.; Shevchenko, E.V. Magnetic properties of tektite-like impact glasses from Zhamanshin astrobleme, Kazakhstan. In Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism; Nurgaliev, D.K., Shcherbakov, V.P., Kosterov, A., Spassov, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 445–465. [Google Scholar]
- Deutsch, A.; Ostermann, M.; Masaitis, V.L. Geochemistry and neodymium-strontium isotope signature of tektite-like objects from Siberia (urengoites, South-Ural glass). Meteorit. Planet. Sci. 1997, 32, 679–686. [Google Scholar] [CrossRef]
- Sigamony, A. The magnetic behavior of a tektite. Proc. Acad. Sci. India 1944, A20, 15–17. [Google Scholar] [CrossRef]
- Senftle, F.E.; Thorpe, A. Magnetic susceptibility of tektites and some other glasses. Geochim. Cosmochim. Acta 1959, 17, 234–247. [Google Scholar] [CrossRef]
- Glass, B.P.; Koeberl, C.; Blum, J.D.; Senftle, F.; Izett, G.A.; Evans, B.J.; Thorpe, A.N.; Povenmire, H.; Strange, R.L. A Muong Nong-type Georgia tektite. Geochim. Cosmochim. Acta 1995, 59, 4071–4082. [Google Scholar] [CrossRef]
- Senftle, F.E.; Thorpe, A.N.; Sullivan, S. Magnetic properties of microtektites. J. Geophys. Res. 1969, 74, 6825–6833. [Google Scholar] [CrossRef]
- Senftle, F.E.; Thorpe, A.N.; Grant, J.R.; Hildebrand, A.; Moholy-Nagy, H.; Evans, B.J.; May, L. Magnetic measurements of glass from Tikal, Guatemala: Possible tektites. J. Geophys. Res. 2000, 105, 18921–18925. [Google Scholar] [CrossRef]
- De Gasparis, A.A. Magnetic Properties of Tektites and Impact Glasses. Ph.D. Thesis, The University of Pittsburgh, Pittsburgh, PA, USA, 1973. [Google Scholar]
- Donofrio, R.R. The Magnetic Environment of Tektites. Ph.D. Thesis, The University of Oklahoma, Norman, OK, USA, 1977. [Google Scholar]
- Werner, T.; Borradaile, G.J. Homogeneous magnetic susceptibilities of tektites: Implications for extreme homogenization of source material. Phys. Earth Planet. Inter. 1998, 108, 235–243. [Google Scholar] [CrossRef]
- D’Acapito, F.; Lepore, G.O.; Puri, A.; Laloni, A.; La Mannna, F.; Dettona, E.; De Luisa, A.; Martin, A. The LISA beamline at ESRF. J. Synchrotron Radiat. 2019, 26, 551–558. [Google Scholar] [CrossRef]
- Puri, A.; Lepore, G.O.; Acapito, F. The New Beamline LISA at ESRF: Performances and Perspectives for Earth and Environmental Sciences. Condens. Matter 2019, 4, 12. [Google Scholar] [CrossRef]
- Lee, P.A.; Citrin, P.H.; Eisenberger, P.T.; Kincaid, B.M. Extended X-ray absorption fine structure - its strengths and limitations as a structural tool. Rev. Mod. Phys. 1981, 53, 769–806. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Wilke, M.; Farges, F.; Petit, P.E.; Brown, G.E.; Martin, F. Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Amer. Mineral. 2001, 86, 714–730. [Google Scholar] [CrossRef]
- Giuli, G.; Pratesi, G.; Cipriani, C.; Paris, E. Iron local structure in tektites and impact glasses by extended X-ray absorption fine structure and high-resolution X-ray absorption near-edge structure spectroscopy. Geochim. Cosmochim. Acta 2002, 66, 4347–4353. [Google Scholar] [CrossRef]
- Giuli, G.; Paris, E.; Hess, K.U.; Dingwell, D.B.; Cicconi, M.R.; Eckhout, S.G.; Fehr, K.T.; Valenti, P. 2011 XAS determination of the Fe local environment and oxidation state in phonolite glasses. Amer. Mineral. 2011, 96, 631–636. [Google Scholar] [CrossRef]
- Giuli, G.; Eeckhout, S.G.; Cicconi, M.R.; Koeberl, C.; Pratesi, G.; Paris, E. Iron oxidation state and local structure in North American tektites. In Large Meteorite Impacts and Planetary Evolution IV; Gibson, R., Reimold, W.U., Eds.; Geological Society of America: Boulder, CO, USA, 2010; Special Paper 465; pp. 645–652. [Google Scholar] [CrossRef]
- Giuli, G.; Pratesi, G.; Eeckhout, S.G.; Koeberl, C.; Paris, E. Iron reduction in silicate glass produced during the 1945 nuclear test at the trinity site (Alamogordo, New Mexico, USA). In Large Meteorite Impacts and Planetary Evolution IV; Gibson, R., Reimold, W.U., Eds.; Geological Society of America: Boulder, CO, USA, 2010; Special Paper 465, Chapter 32; pp. 653–660. [Google Scholar] [CrossRef]
- Giuli, G.; Cicconi, M.R.; Stabile, P.; Trapananti, A.; Pratesi, G.; Cestelli-Guidi, M.; Koeberl, C. New Data on the Fe Oxidation State and Water Content of Belize Tektites. In Proceedings of the 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014; LPI: Houston, TX, USA, 2014. LPI Contribution No. 1777. p. 2322. [Google Scholar]
- Chao, E.C.T.; Dwornik, E.J.; Littler, J. New data on the nickel-iron spherules from south-east Asian tektites and their implications. Geochim. Cosmochim. Acta 1964, 28, 971–980. [Google Scholar] [CrossRef]
- Ganapathy, R.; Larimer, J.W. Nickel-iron spherules in tektites: non-meteoritic origin. Earth Planet. Sci. Lett. 1983, 65, 225–228. [Google Scholar] [CrossRef]
- Kleinmann, B. Magnetite bearing spherules in tektites. Geochim. Cosmochim. Acta 1969, 33, 1113–1120. [Google Scholar] [CrossRef]
- Rochette, P.; Braucher, R.; Folco, L.; Horng, C.S.; Aumaître, G.; Bourlès, D.L.; Keddadouche, K. 10Be in Australasian microtektites compared to tektites: Size and geographic controls. Geology 2018, 46, 803–806. [Google Scholar] [CrossRef]
- Masaitis, V.L. Impact structures of northeastern Eurasia: the territories of Russia and adjacent countries. Meteorit. Planet. Sci. 1999, 34, 691–711. [Google Scholar] [CrossRef]
- Gurov, E.P.; Koeberl, C. Shocked rocks and impact glasses from the El’gygytgyn impact structure, Russia. Meteorit. Planet. Sci. 2004, 39, 1495–1508. [Google Scholar] [CrossRef]
- Pittarello, L.; Koeberl, C. Petrography of impact glasses and melt breccias from the El’gygytgyn impact structure, Russia. Meteorit. Planet. Sci. 2013, 48, 1236–1250. [Google Scholar] [CrossRef]
- Masaitis, V.L. Popigai Impact Structure and Its Diamond-Bearing Rocks, 1st ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Whitehead, J.; Grieve, R.A.F.; Spray, J.G. Mineralogy and petrology of melt rocks from the Popigai impact structure, Siberia. Meteorit. Planet. Sci. 2002, 37, 623–647. [Google Scholar] [CrossRef]
- Rochette, P.; Gattacceca, J.; Chevrier, V.; Lorand, J.P. Matching Martian crustal magnetization and meteorite magnetic properties. Meteorit. Planet. Sci. 2005, 40, 529–540. [Google Scholar] [CrossRef]
- Masaitis, V.L.; Ivanov, M.A.; Ezersky, V.A.; Kozlov, V.S.; Reshetnyak, N.B. Finds of Tektite Glasses in West Siberia. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 1988; Volume 19, p. 728. [Google Scholar]
- Beran, A.; Koeberl, C. Water in tektites and impact glasses by Fourier-transform infrared spectroscopy. Meteorit. Planet. Sci. 1997, 32, 211–216. [Google Scholar] [CrossRef]
- Dunlap, R.A.; McGraw, J.D. A Mössbauer effect study of Fe environments in impact glasses. J. Non-Cryst. Solids 2007, 353, 2201–2205. [Google Scholar] [CrossRef]
- Giuli, G.; Paris, E.; Pratesi, G.; Koeberl, C.; Cipriani, C. Iron oxidation state in the Fe-rich layer and silica matrix of Libyan Desert Glass: A high-resolution XANES study. Meteorit. Planet. Sci. 2003, 38, 1181–1186. [Google Scholar] [CrossRef]
- Koroteev, V.A.; Loginov, V.N.; Masaitis, V.L.; Kozlov, V.S.; Boriskov, F.F. Tektite from Astaf’evskaya Placer Deposit, Southern Urals. Proc. Rus. Mineral. Soc. 1994, 123, 44–48. (In Russian) [Google Scholar]
- Kravstova, A.N.; Guda, L.V.; Guda, A.A.; Trigub, A.L.; Badyukov, D.D.; Soldatov, A.V. Iron oxidation state of impact glasses from the Zhamanshin crater studied by X-ray absorption spectroscopy. Rad. Phys. Chem. 2019, (in press). [Google Scholar] [CrossRef]
- Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W. Nickel–iron spherules from Aouelloul glass. Science 1966, 154, 759–760. [Google Scholar] [CrossRef]
- Hamman, C.; Hecht, L.; Ebert, M.; Wirth, R. Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia. Geochim. Cosmochim. Acta 2013, 121, 291–310. [Google Scholar] [CrossRef]
- Pesonen, L.; Marcos, N.; Pipping, F. Palaeomagnetism of the Lappajärvi impact structure, western Finland. Tectonophysics 1992, 216, 123–142. [Google Scholar] [CrossRef]
- Misra, S.; Newsom, H.E.; Shyam Prasad, M.; Geissman, J.W.; Dube, A.; Sengupta, D. Geochemical identification of impactor for Lonar crater, India. Meteorit. Planet. Sci. 2009, 44, 1001–1018. [Google Scholar] [CrossRef]
- Weiss, B.P.; Pedersen, S.; Garrick-Bethell, I.; Stewart, S.B.; Louzada, K.L.; Maloof, A.C.; Swanson-Hysell, N.L. Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields. Earth Planet. Sci. Lett. 2010, 298, 66–76. [Google Scholar] [CrossRef]
- Hervé, G.; Gilder, S.; Marion, C.L.; Osinski, G.R.; Pohl, J.; Petersen, N.; Sylvester, P.J. Paleomagnetic and rock magnetic study of the Mistastin Lake impact structure: Implications for geomagnetic perturbation and shock effects. Earth Planet. Sci. Lett. 2015, 417, 151–163. [Google Scholar] [CrossRef]
- Wasson, J.T. Large aerial bursts: an important class of terrestrial accretionary events. Astrobiology 2003, 3, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Cavosie, A.J.; Timms, N.E.; Ferrière, L.; Rochette, P. FRIGN zircon, the only terrestrial mineral diagnostic of high-pressure and high-temperature of shock deformation. Geology 2018, 46, 891–894. [Google Scholar] [CrossRef]
- Gibbons, R.V.; Horz, F.; Thompson, T.D.; Brownlee, D.E. Metal spherules in Wabar, Monturaqui, and Henbury impactites. In Proceedings of the Seventh Lunar Science Conference, Houston, TX, USA, 15–19 March 1976; pp. 863–880. [Google Scholar]
- Fazio, A.; D’Orazio, M.; Cordier, C.; Folco, L. Target-projectile interaction during impact melting at Kamil Crater, Egypt. Geochim. Cosmochim. Acta 2016, 180, 33–50. [Google Scholar] [CrossRef]
- Plado, J.; Pesonen, L.J.; Koeberl, C.; Elo, S. The Bosumtwi meteorite impact structure, Ghana: A magnetic model. Meteorit. Planet. Sci. 2000, 35, 723–732. [Google Scholar] [CrossRef]
- Elbra, T.; Kontny, A.; Pesonen, L.; Schleifer, N.; Schell, C. Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana. Meteorit. Planet. Sci. 2007, 42, 829–838. [Google Scholar] [CrossRef]
- Roperch, P.; Gattacceca, J.; Valenzuela, M.; Devouard, B.; Lorand, J.-P.; Arriagada, C.; Rochette, P.; Latorre, C.; Beck, P. Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert. Earth Planet. Sci. Lett. 2017, 469, 15–26. [Google Scholar] [CrossRef]
- Ghilardi, M.; Colleu, M.; Pavlopoulos, K.; Fachard, S.; Psomiadis, D.; Rochette, P.; Demory, F.; Knodell, A.; Triantaphyllou, M.; Delanghe-Sabatier, D.; et al. Geoarchaeology of Ancient Aulis (Boeotia, Central Greece): Human occupation and Holocene landscape changes. J. Archaeol. Sci. 2013, 40, 2071–2083. [Google Scholar] [CrossRef]
- De Gasparis, A.A.; Fuller, M.; Cassidy, W. Natural remanent magnetism of tektites of the Muong-Nong type and its bearing on models of their origin. Geology 1975, 3, 605–607. [Google Scholar] [CrossRef]
- Suavet, C.; Gattacceca, J.; Rochette, P.; Folco, L. Constraining the age of micrometeorites using their paleomagnetic record. Geology 2011, 39, 123–126. [Google Scholar] [CrossRef]
- Pilkington, M.; Grieve, R.A.F. The geophysical signature of terrestrial impact craters. Rev. Geophys. 1992, 30, 161–181. [Google Scholar] [CrossRef]
- Quesnel, Y.; Gattacceca, J.; Osinski, G.; Rochette, P. Origin of the central magnetic anomaly at the Haughton impact structure, Canada. EPSL 2013, 367, 116–122. [Google Scholar] [CrossRef]
Strewnfield | Mean χ (10−9 m3/kg) | Coefficient of Variation (%) | χ Range | N |
---|---|---|---|---|
Moldavite (24) | 31 | 19 | 25 to 60 | 39 |
Moldavite * | 26 | 19 | 15 to 60 | 31 |
Moldavite ** | 35 | 34 | 23 to 78 | 15 |
Darwin (1.2) | 53 | 23 | 34 to 79 | 45 |
Bediasite-Georgiaite (40) | 65 | 23 | 43 to 129 | 65 |
Bediasite-Georgiaite * | 70 | 32 | 49 to 88 | 12 |
Australasite S. China | 87 | 3 | 74 to 94 | 668 |
Muong Nong | 93 | 10 | 81 to 107 | 20 |
Cambodgia, Laos and Thailand | 88 | 7 | 76 to 104 | 40 |
Vietnam | 93 | 10 | 82 to 128 | 55 |
Indonesia | 102 | 7 | 81 to 125 | 215 |
Phillipines | 94 | 7 | 79 to 129 | 77 |
Australia | 86 | 8 | 73 to 94 | 22 |
Australasite * | 79 | 8 | 54 to 94 | 111 |
Australasite ** | 82 | 10 | 57 to 103 | 152 |
Ivoirite | 103 | 12 | 62 to 138 | 109 |
Ivoirite * (10) | 103 | 4 | 99 to 107 | 4 |
Belizite (14?) | 125 | 3 | 112–193 | 1120 |
Name (N) | χ × 10−9 (m3/kg) | Fd (%) | MS × 10−3 (Am2/kg) | MRS/MS | BC (mT) | BCR (mT) | χHF × 10−9 (m3/kg) | χHF/χ0 (%) |
---|---|---|---|---|---|---|---|---|
Popigai Glasses | ||||||||
PO-1 | 280 | 2.9 | 28.8 | 0.440 | 47 | 82 | 132 | 37 |
PO-4 | 170 | 5.8 | 3.6 | 0.330 | 30 | 65 | 128 | 60 |
PO-6 | 914 | 5.2 | 16.8 | 0.142 | 10 | 35 | 78 | 7 |
PO-7 | 335 | 5.1 | 61.2 | 0.350 | 48 | 115 | 141 | 33 |
PO-9 | 211 | 2.4 | 41.6 | 0.350 | 45 | 70 | 109 | 41 |
PO-15 | 227 | 1.7 | 22.6 | 0.250 | 43 | 65 | 117 | 41 |
PO-22 | 270 | 2.0 | 361 | 0.177 | 13 | 29 | 72 | 21 |
PO-23 | 4970 | 2.6 | 344 | 0.226 | 22 | 48 | 125 | 2 |
PO-24 | 572 | 13.8 | 67.7 | 0.337 | 28 | 42 | 133 | 18 |
PO-27 | 381 | 2.1 | 79.2 | 0.317 | 29 | 48 | 137 | 29 |
PO-29 | 220 | 1.7 | 21.8 | 0.297 | 38 | 71 | 135 | 49 |
El Gygytgyn Glasses | ||||||||
elg-1 (5) | 2035±492 | 9–12 | 61.9 | 0.027 | 2.9 | 31 | 60 | 5 |
elg-2 (3) | 2464±281 | 10–11 | 79.9 | 0.047 | 3.9 | 36 | 57 | - |
elg-3 (4) | 473±42 | 6–7 | 41.6 | 0.040 | 6.6 | 35 | 88 | - |
Uregoites | ||||||||
U-1 | 19.2 | 3 | - | - | - | - | - | - |
U-2 | 9.98 | - | - | - | - | 69.0 | - | - |
U-3 | 19.9 | - | 0.535 | 0.083 | 12.5 | 68.5 | - | - |
South-Ural Glass | ||||||||
A-1 | 4.7 | - | - | - | - | - | - |
Glass | Mean χ (10−9 m3/kg) | CF (%) | Range | N | Fd% | MS (10−3 Am2/kg) | MRS (10−3 Am2/kg) |
---|---|---|---|---|---|---|---|
LDG (?) normal | −2.3 | 39 | −3.3 to −0.6 | 10 | |||
LDG (?) dark | 4.4 | 71 | −0.1 to 10.8 | 8 | 11 | 0.01 | |
Aouelloul (0.4) | 82 | 89 | 38 to 463 | 65 | 14 | 0.3–19.6 | 0.04–2.9 |
Irghizite (6-14) | 167 | 126 | 45 to 3320 | 835 | 3 to 20 | 1 to 278 | 0.006 to 23 |
Wabar (0.1) | 468 | 58 | 125 to 1025 | 14 | 20 | 12 | 1.9 |
Atacamaite (?) | 302 | 286 | 84 to 20500 | 3291 | 7 to 16 | 0.4–2350 | 0.02–280 |
Ries (24) | 417 | 44 | 262 to 685 | 6 | 7 to 10 | 1.5 | |
El’gygytgyn (18) | 1712 | 90 | 180 to 4459 | 7 | 6 to 12 | 42 to 80 | 2.1 to 2.4 |
Henbury (0.2) | 3316 | 36 | 2190 to 4550 | 3 | 5 to 20 | ||
Lonar (1.8) | 5100 | 61 | 288 to 9705 | 20 | 2.5 to 4.5 | 8.2 to 1290 | 0.3 to 558 |
Kamil (0.05) | 8710 | 141 | 146 to 26 100 | 7 | 3 to 11 | 18 to 4511 | 5 to 225 |
Monturaqui (0.5) | 12 000 | 30 | 7 600 to 17 200 | 10 | 2 | 67 to 1629 | 3 to 65 |
Pantasma (14) | 13 600 | 72 | 370 to 25 600 | 3 | 3 to 23 | 26 to 926 | 5.5 to 111 |
Melt sheets | |||||||
Lappajärvi (23) | 277 | 20 | 210 to 420 | 23 | 1.4 | 80 to 230 | 34 to 58 |
Popigai (90) | 427 | 212 | 90 to 4965 | 28 | 0 to 14 | 4 to 361 | 1 to 78 |
Jänisjärvi (17) | 1978 | 82 | 74 to 2769 | 29 | 1.9 to 184 | 0.06 to 33 | |
Mistastin (28) | 3390 | 53 | 580- 8400 | 115 | 65 to 1460 | 12 to 400 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rochette, P.; Bezaeva, N.S.; Kosterov, A.; Gattacceca, J.; Masaitis, V.L.; Badyukov, D.D.; Giuli, G.; Lepore, G.O.; Beck, P. Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia. Geosciences 2019, 9, 225. https://doi.org/10.3390/geosciences9050225
Rochette P, Bezaeva NS, Kosterov A, Gattacceca J, Masaitis VL, Badyukov DD, Giuli G, Lepore GO, Beck P. Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia. Geosciences. 2019; 9(5):225. https://doi.org/10.3390/geosciences9050225
Chicago/Turabian StyleRochette, Pierre, Natalia S. Bezaeva, Andrei Kosterov, Jérôme Gattacceca, Victor L. Masaitis, Dmitry D. Badyukov, Gabriele Giuli, Giovani Orazio Lepore, and Pierre Beck. 2019. "Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia" Geosciences 9, no. 5: 225. https://doi.org/10.3390/geosciences9050225
APA StyleRochette, P., Bezaeva, N. S., Kosterov, A., Gattacceca, J., Masaitis, V. L., Badyukov, D. D., Giuli, G., Lepore, G. O., & Beck, P. (2019). Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia. Geosciences, 9(5), 225. https://doi.org/10.3390/geosciences9050225