Distinguishing the Mélange-Forming Processes in Subduction-Accretion Complexes: Constraints from the Anisotropy of Magnetic Susceptibility (AMS)
Abstract
:1. Introduction
2. Geological Setting
3. Meso-Structural Fabrics of Chaotic Rock Units
3.1. The Broken Formation
3.2. The Tectonic Mélange
3.3. The Sedimentary Mélange
3.4. The Polygenetic Mélange
4. Methods
5. AMS Results and Magnetic Fabric of Chaotic Rock Units
5.1. The Broken Formation
- A neutral subfabric (L ≈ F) showing a sub-horizontal magnetic foliation east-southeast-dipping and a cluster of k1 axes east-southeast-striking (subfabric1 in Figure 5C);
- A prolate subfabric with a sub-vertical magnetic foliation and a cluster of k1 axes east-southeast–west-northwest-oriented (subfabric2 in Figure 5C).
5.2. The Tectonic Mélange
- Subfabric 1 showed a sub-vertical magnetic foliation and a sub-horizontal k3 axis, east-southeast- and north-northeast-striking, respectively, while the magnetic lineation is east-southeast-striking;
- Subfabric 2 displayed a north-northeast-striking sub-vertical magnetic foliation, sub-horizontal k1 and k3 axes north-northeast- and west-southwest-striking, respectively, and a sub-vertical k2 axis, which weakly deviated from the magnetic foliation;
- Subfabric 3 showed a sub-vertical magnetic foliation, north-northeast-striking, and a k1 axis plunging at a high angle towards the south.
5.3. The Sedimentary Mélange
- The basal shear zone (subfabric2 in Figure 6C) showed a neutral to oblate subfabric with the k1 axis southwest-striking, the k3 axis northwest-plunging at a low angle, and the k2 axis laying on the sub-vertical magnetic foliation, which is northeast-striking;
- The isotropic portion (subfabric1 in Figure 6C) showed a oblate ellipsoid characterized by a well-defined magnetic foliation, southwest-dipping, containing statistically-distinct k1 and k2 axes, southeast- and southwest-striking, respectively.
5.4. The Polygenetic Mélange
6. Discussion: Correlation of the Magnetic Fabric with Mélange Forming Processes
6.1. The Broken Formation
6.2. The Tectonic Mélange
6.3. The Sedimentary Mélange
6.4. The Polygenetic Mélange
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dilek, Y.; Festa, A.; Ogawa, Y.; Pini, G.A. Chaos and Geodynamics: Mélanges, Mélange-Forming Processes and Their Significance in the Geological Record. Tectonophysics 2012, 568–569, 1–6. [Google Scholar] [CrossRef]
- Festa, A.; Ogata, K.; Pini, G.A. Mélanges: 100th Anniversary of the Inception of the Term and Concept. Gondwana Res. 2019, 74, 1–6. [Google Scholar] [CrossRef]
- Karig, D.E.; Sharman, G.F. Subduction and Accretion in Trenches. GSA Bull. 1975, 86, 377–389. [Google Scholar] [CrossRef]
- Cloos, M. Flow Melanges: Numerical Modeling and Geologic Constraints on Their Origin in the Franciscan Subduction Complex, California. GSA Bull. 1982, 93, 330–345. [Google Scholar] [CrossRef]
- Moore, J.C.; Byrne, T. Thickening of Fault Zones: A Mechanism of Melange Formation in Accreting Sediments. Geology 1987, 15, 1040–1043. [Google Scholar] [CrossRef]
- Taira, A.; Hill, I.; Firth, J.; Berner, U.; Brückmann, W.; Byrne, T.; Chabernaud, T.; Fisher, A.; Foucher, J.-P.; Gamo, T.; et al. Sediment Deformation and Hydrogeology of the Nankai Trough Accretionary Prism: Synthesis of Shipboard Results of ODP Leg 131. Earth Planet. Sci. Lett. 1992, 109, 431–450. [Google Scholar] [CrossRef]
- Collot, J.-Y.; Ribodetti, A.; Agudelo, W.; Sage, F. The South Ecuador Subduction Channel: Evidence for a Dynamic Mega-Shear Zone from 2D Fine-Scale Seismic Reflection Imaging and Implications for Material Transfer. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Fagereng, Å.; Remitti, F.; Sibson, R. Incrementally Developed Slickenfibers—Geological Record of Repeating Low Stress-Drop Seismic Events? Tectonophysics 2011, 510, 381–386. [Google Scholar] [CrossRef]
- Codegone, G.; Festa, A.; Dilek, Y. Formation of Taconic Mélanges and Broken Formations in the Hamburg Klippe, Central Appalachian Orogenic Belt, Eastern Pennsylvania. Tectonophysics 2012, 568–569, 215–229. [Google Scholar] [CrossRef]
- Mittempergher, S.; Cerchiari, A.; Remitti, F.; Festa, A. From Soft Sediment Deformation to Fluid Assisted Faulting in the Shallow Part of a Subduction Megathrust Analogue: The SestolaVidiciatico Tectonic Unit (Northern Apennines, Italy). Geol. Mag. 2018, 155, 438–450. [Google Scholar] [CrossRef]
- Lallemand, S.; Collot, J.-Y.; Pelletier, B.; Rangin, C.; Cadet, J.P. Impact of Oceanic Asperities on the Tectogenesis of Modern Convergent Margins. Oceanol. Acta 1990, 10, 17–30. [Google Scholar]
- Goldfinger, C.; Kulm, L.D.; McNeill, L.C.; Watts, P. Super-Scale Failure of the Southern Oregon Cascadia Margin. Pure Appl. Geophys. 2000, 157, 1189–1226. [Google Scholar] [CrossRef]
- von Huene, R.; Ranero, C.R.; Weinrebe, W.; Hinz, K. Quaternary Convergent Margin Tectonics of Costa Rica, Segmentation of the Cocos Plate, and Central American Volcanism. Tectonics 2000, 19, 314–334. [Google Scholar] [CrossRef]
- Collot, J.-Y.; Lewis, K.; Lamarche, G.; Lallemand, S. The Giant Ruatoria Debris Avalanche on the Northern Hikurangi Margin, New Zealand: Result of Oblique Seamount Subduction. J. Geophys. Res. Solid Earth 2001, 106, 19271–19297. [Google Scholar] [CrossRef]
- Sage, F.; Collot, J.-Y.; Ranero, C.R. Interplate Patchiness and Subduction-Erosion Mechanisms: Evidence from Depth-Migrated Seismic Images at the Central Ecuador Convergent Margin. Geology 2006, 34, 997–1000. [Google Scholar] [CrossRef]
- Ogawa, Y.; Anma, R.; Dilek, Y. Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin: Modern Approaches in Solid Earth Sciences; Springer: Dordrecht, The Netherlands, 2011; Volume 8, p. 277. [Google Scholar]
- Ogawa, Y. Conceptual Consideration and Outcrop Interpretation on Early Stage Deformation of Sand and Mud in Accretionary Prisms for Chaotic Deposit Formation. Gondwana Res. 2019, 74, 31–50. [Google Scholar] [CrossRef]
- Remitti, F.; Vannucchi, P.; Bettelli, G.; Fantoni, L.; Panini, F.; Vescovi, P. Tectonic and Sedimentary Evolution of the Frontal Part of an Ancient Subduction Complex at the Transition from Accretion to Erosion: The Case of the Ligurian Wedge of the Northern Apennines, Italy. GSA Bull. 2011, 123, 51–70. [Google Scholar] [CrossRef]
- Strasser, M.; Moore, G.F.; Kimura, G.; Kopf, A.J.; Underwood, M.B.; Guo, J.; Screaton, E.J. Slumping and Mass Transport Deposition in the Nankai Fore Arc: Evidence from IODP Drilling and 3-D Reflection Seismic Data. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Kawamura, K.; Sasaki, T.; Kanamatsu, T.; Sakaguchi, A.; Ogawa, Y. Large Submarine Landslides in the Japan Trench: A New Scenario for Additional Tsunami Generation. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Ogata, K.; Mountjoy, J.J.; Pini, G.A.; Festa, A.; Tinterri, R. Shear Zone Liquefaction in Mass Transport Deposit Emplacement: A Multi-Scale Integration of Seismic Reflection and Outcrop Data. Mar. Geol. 2014, 356, 50–64. [Google Scholar] [CrossRef]
- Ogata, K.; Festa, A.; Pini, G.A.; Pogačnik, Z.; Lucente, C.C. Substrate Deformation and Incorporation in Sedimentary mélanges (Olistostromes): Examples from the Northern Apennines (Italy) and NorthwesternDinarides (Slovenia). Gondwana Res. 2019, 74, 101–125. [Google Scholar] [CrossRef]
- Ogata, K.; Pogačnik, Ž.; Tunis, G.; Pini, G.A.; Festa, A.; Senger, K. A Geophysical-Geochemical Approach to the Study of the Paleogene Julian—Slovenian Basin “Megabeds” (Southern Alps—NorthwesternDinarides, Italy/Slovenia). Geosciences 2019, 9, 155. [Google Scholar] [CrossRef]
- Festa, A.; Dilek, Y.; Gawlick, H.-J.; Missoni, S. Mass-Transport Deposits, Olistostromes and Soft-Sediment Deformation in Modern and Ancient Continental Margins, and Associated Natural Hazards. Mar. Geol. 2014, 356, 1–4. [Google Scholar] [CrossRef]
- Festa, A.; Ogata, K.; Pini, G.A.; Dilek, Y.; Alonso, J.L. Origin and Significance of Olistostromes in the Evolution of Orogenic Belts: A Global Synthesis. Gondwana Res. 2016, 39, 180–203. [Google Scholar] [CrossRef]
- Festa, A.; Dilek, Y.; Mittempergher, S.; Ogata, K.; Pini, G.A.; Remitti, F. Does Subduction of Mass Transport Deposits (MTDs) Control Seismic Behavior of Shallow–Level Megathrusts at Convergent Margins? Gondwana Res. 2018, 60, 186–193. [Google Scholar] [CrossRef]
- Kawamura, K.; Ogawa, Y. Internal Structure, Active Tectonics and Dynamic Topography of the Eastern Nankai Accretionary Prism Toe, Japan, and Its Tsunamigenic Potential. Geol. Mag. 2018, 1–9. [Google Scholar] [CrossRef]
- Festa, A.; Cavagna, S.; Barbero, E.; Catanzariti, R.; Pini, G.A. Mid-Eocene giant slope failure (sedimentary mélanges) in the Ligurian accretionary wedge (NW Italy) and relationships with tectonics, global climate change and the dissociation of gas hydrates. J. Geol. Soc. 2019. [Google Scholar] [CrossRef]
- Brown, K.; Westbrook, G.K. Mud Diapirism and Subcretion in the Barbados Ridge Accretionary Complex: The Role of Fluids in Accretionary Processes. Tectonics 1988, 7, 613–640. [Google Scholar] [CrossRef]
- Moore, J.; Vrolijk, P. Fluids in Accretionary Prism. Rev. Geophys. 1992, 30, 113–135. [Google Scholar] [CrossRef]
- Kopf, A.J. Significance of Mud Volcanism. Rev. Geophys. 2002, 40, 2-1–2-52. [Google Scholar] [CrossRef]
- Camerlenghi, A.; Pini, G.A. Mud Volcanoes, Olistostromes and Argille Scagliose in the Mediterranean Region. Sedimentology 2009, 56, 319–365. [Google Scholar] [CrossRef]
- Codegone, G.; Festa, A.; Dilek, Y.; Pini, G.A. Small-Scale Polygenetic mélanges in the Ligurian Accretionary Complex, Northern Apennines, Italy, and the Role of Shale Diapirism in Superposed Mélange Evolution in Orogenic Belts. Tectonophysics 2012, 568–569, 170–184. [Google Scholar] [CrossRef]
- Festa, A.; Dilek, Y.; Codegone, G.; Cavagna, S.; Pini, G.A. Structural Anatomy of the Ligurian Accretionary Wedge (Monferrato, NW Italy), and Evolution of Superposed Mélanges. GSA Bull. 2013, 125, 1580–1598. [Google Scholar] [CrossRef]
- Moore, G.F.; Aung, L.T.; Fukuchi, R.; Sample, J.C.; Hellebrand, E.; Kopf, A.; Naing, W.; Than, W.M.; Tun, T.N. Tectonic, Diapiric and Sedimentary Chaotic Rocks of the Rakhine Coast, Western Myanmar. Gondwana Res. 2019, 74, 126–143. [Google Scholar] [CrossRef]
- Raymond, L.A. Classification of Melanges. In Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 1984; Volume 198, pp. 7–20. [Google Scholar]
- Raymond, L.A. Designating Tectonostratigraphic Terranes versus Mapping Rock Units in Subduction Complexes: Perspectives from the Franciscan Complex of California, USA. Int. Geol. Rev. 2015, 57, 801–823. [Google Scholar] [CrossRef]
- Raymond, L.A. Perspectives on the Roles of Melanges in Subduction Accretionary Complexes: A Review. Gondwana Res. 2019, 74, 68–89. [Google Scholar] [CrossRef]
- Cowan, D.S. Structural Styles in Mesozoic and Cenozoic Mélanges in the Western Cordillera of North America. GSA Bull. 1985, 96, 451–462. [Google Scholar] [CrossRef]
- Pini, G.A. Tectonosomes and Olistostromes in the Argille Scagliose of the Northern Apennines, Italy; Geological Society of America: Boulder, CO, USA, 1999; Volume 335. [Google Scholar]
- Osozawa, S.; Morimoto, J.; Flower, M. “Block-in-Matrix” Fabrics That Lack Shearing but Possess Composite Cleavage Planes: A Sedimentary Melange Origin for the Yuwan Accretionary Complex in the Ryukyu Island Arc, Japan. GSA Bull. 2009, 121, 1190–1203. [Google Scholar] [CrossRef]
- Wakabayashi, J. Anatomy of a Subduction Complex: Architecture of the Franciscan Complex, California, at Multiple Length and Time Scales. Int. Geol. Rev. 2015, 57, 1–78. [Google Scholar] [CrossRef]
- Tartarotti, P.; Festa, A.; Benciolini, L.; Balestro, G. Record of Jurassic mass transport processes through the orogenic cycle: Understanding chaotic rock units in the high-pressure Zermatt-Saas ophiolite (W-Alps). Lithosphere 2017, 9, 399–407. [Google Scholar] [CrossRef]
- Tartarotti, P.; Guerini, S.; Rotondo, F.; Festa, A.; Balestro, G.; Bebout, G.E.; Cannaò, E.; Epstein, G.S.; Scambelluri, M. Superposed sedimentary and tectonic block-in-matrix fabrics in a subductedserpentinite mélange (High-Pressure Zermatt Saas Ophiolite, Western Alps). Geosciences 2019, 9, 358. [Google Scholar] [CrossRef]
- Hsü, K.J. Principles of Mélanges and Their Bearing on the Franciscan-Knoxville Paradox. GSA Bull. 1968, 79, 1063–1074. [Google Scholar] [CrossRef]
- Lash, G.G. Diverse Melanges of an Ancient Subduction Complex. Geology 1987, 15, 652–655. [Google Scholar] [CrossRef]
- Bettelli, G.; Panini, F. I Mélanges Dell’Appennino Settentrionale Dal T. Tresinaro al T. Sillaro. Mem. Della Soc. Geol. Ital. 1987, 39, 187–214. [Google Scholar]
- Bettelli, G.; Bonazzi, U.; Panini, F. Schema introduttivo alla geologia delle Liguridi dell’Appennino Modenese e delle aree limitrofe. Mem. Della Soc. Geol. Ital. 1989, 39, 91–125. [Google Scholar]
- Bettelli, G.; Conti, S.; Panini, F.; Vannucchi, P.; Fioroni, C.; Fregni, P.; Bonacci, M.; Gibellini, R.; Mondani, C. The mapping of chaotic rocks in Abruzzo (Central Italy): Comparison with selected examples from Northern Apennines. In Mapping Geology in Italy; Pasquarè, G., Venturini, C., Groppelli, G., Eds.; APAT–SELCA: Firenze, Italy, 2004; pp. 199–206. [Google Scholar]
- Orange, D.L. Criteria Helpful in Recognizing Shear-Zone and Diapiric Mélanges: Examples from the Hoh Accretionary Complex, Olympic Peninsula, Washington. GSA Bull. 1990, 102, 935–951. [Google Scholar] [CrossRef]
- Alonso, J.L. Structure and Organization of the Porma Melange: Progressive Denudation of a Submarine Nappe Toe by Gravitational Collapse. Am. J. Sci. 2006, 306, 32–65. [Google Scholar] [CrossRef]
- Dela Pierre, F.; Festa, A.; Irace, A. Interaction of Tectonic, Sedimentary, and Diapiric Processes in the Origin of Chaotic Sediments: An Example from the Messinian of Torino Hill (Tertiary Piedmont Basin, Northwestern Italy). GSA Bull. 2007, 119, 1107–1119. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nidaira, M.; Ohta, Y.; Ogawa, Y. Formation of Chaotic Rock Units during Primary Accretion Processes: Examples from the Miura–Boso Accretionary Complex, Central Japan. Isl. Arc 2009, 18, 496–512. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Tonogai, K.; Anma, R. Fabric-Based Criteria to Distinguish Tectonic from Sedimentary mélanges in the Shimanto Accretionary Complex, Yakushima Island, SW Japan. Tectonophysics 2011, 568. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Dilek, Y.; Codegone, G. Mélanges and Mélange-Forming Processes: A Historical Overview and New Concepts. Int. Geol. Rev. 2010, 52, 1040–1105. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Ogata, K.; Dilek, Y. Diagnostic Features and Field-Criteria in Recognition of Tectonic, Sedimentary and Diapiric Mélanges in Orogenic Belts and Exhumed Subduction-Accretion Complexes. Gondwana Res. 2019, 74, 7–30. [Google Scholar] [CrossRef]
- Vannucchi, P.; Bettelli, G. Myths and Recent Progress Regarding the Argille Scagliose, Northern Apennines, Italy. Int. Geol. Rev. 2010, 52, 1106–1137. [Google Scholar] [CrossRef]
- Festa, A. Tectonic, Sedimentary, and Diapiric Formation of the Messinian Mélange: Tertiary Piedmont Basin (Northwestern Italy). In Mélanges: Processes of Formation and Societal Significance; Wakabayashi, J., Dilek, Y., Eds.; Geological Society of America: Boulder, CO, USA, 2011; Volume 480, pp. 215–232. [Google Scholar]
- Wakabayashi, J. Mélanges of the Franciscan Complex, California: Diverse Structural Setting, Evidence for Sedimentary Mixing, and Their Connection to Subduction Processes. In Mélanges: Processes of Formation and Societal Significance; Wakabayashi, J., Dilek, Y., Eds.; Geological Society of America: Boulder, CO, USA, 2011; Volume 480, pp. 117–141. [Google Scholar]
- Wakabayashi, J. Sedimentary Compared to Tectonically-Deformed Serpentinites and Tectonic Serpentinite Mélanges at Outcrop to Petrographic Scales: Unambiguous and Disputed Examples from California. Gondwana Res. 2019, 74, 51–67. [Google Scholar] [CrossRef]
- Wakita, K. OPS Mélange: A New Term for Mélanges of Convergent Margins of the World. Int. Geol. Rev. 2015, 57, 529–539. [Google Scholar] [CrossRef]
- Fagereng, Å.; Sibson, R.H. Mélange Rheology and Seismic Style. Geology 2010, 38, 751–754. [Google Scholar] [CrossRef]
- Fagereng, Å.; Diener, J.F.A.; Ellis, S.; Remitti, F. Fluid-Related Deformation Processes at the up- and Downdip Limits of the Subduction Thrust Seismogenic Zone: What Do the Rocks Tell Us? In Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura; Byrne, T., Underwood, M.B., III, Fisher, D., McNeill, L., Saffer, D., Ujiie, K., Yamaguchi, A., Eds.; Geological Society of America: Boulder, CO, USA, 2018; Volume 534. [Google Scholar]
- Bürgmann, R. The Geophysics, Geology and Mechanics of Slow Fault Slip. Earth Planet. Sci. Lett. 2018, 495, 112–134. [Google Scholar] [CrossRef]
- Boccaletti, M.; Coli, M.; Decandia, F.A.; Giannini, E.; Lazzarotto, A. Evoluzione dell’Appennino settentrionale secondo un nuovo modello strutturale. Mem. Della Soc. Geol. Ital. 1980, 21, 359–373. [Google Scholar]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the Western Mediterranean. Geol. Soc. Lond. Spec. Publ. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Castellarin, A. Strutturazione eo-mesoalpina dell’Appennino Settentrionale attorno al nodo ligure. In Studi preliminari all’acquisizione dati del profilo CROP 1–1A La Spezia–Alpi orientali; Capozzi, R., Castellarin, A., Eds.; Studi Geol. Camerti; Università degli Studi di Camerino: Camerino, Italy, 1994; Volume 1992/2, pp. 99–108. [Google Scholar]
- Marroni, M.; Molli, G.; Montanini, A.; Tribuzio, R. The Association of Continental Crust Rocks with Ophiolites in the Northern Apennines (Italy): Implications for the Continent-Ocean Transition in the Western Tethys. Tectonophysics 1998, 292, 43–66. [Google Scholar] [CrossRef]
- Elter, P.; Grasso, M.; Parotto, M.; Vezzani, L. Structural Setting of the Apennine-Maghrebian Thrust Belt. Episodes 2003, 26, 205–211. [Google Scholar]
- Lucente, C.C.; Pini, G.A. Basin-Wide Mass-Wasting Complexes as Markers of the Oligo-Miocene Foredeep-Accretionary Wedge Evolution in the Northern Apennines, Italy. Basin Res. 2008, 20, 49–71. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Dilek, Y.; Codegone, G.; Vezzani, L.; Ghisetti, F.; Lucente, C.C.; Ogata, K. Peri-Adriatic Mélanges and Their Evolution in the Tethyan Realm. Int. Geol. Rev. 2010, 52, 369–403. [Google Scholar] [CrossRef]
- Festa, A.; Balestro, G.; Borghi, A.; De Caroli, S.; Succo, A. The Role of Structural Inheritance in Continental Break-up and Exhumation of Alpine Tethyan Mantle (Canavese Zone, Western Alps). Geosci. Front. 2019. [Google Scholar] [CrossRef]
- Barbero, E.; Festa, A.; Saccani, E.; Catanzariti, R.; D’Onofrio, R. Redefinition of the Ligurian Units at the Alps-Apennines Junction (NW Italy) and Their Role in the Evolution of the Ligurian Accretionary Wedge: Constraints from Mélanges and Broken Formations. J. Geol. Soc. 2019. [Google Scholar] [CrossRef]
- Bettelli, G.; Vannucchi, P. Structural Style of the Offscraped Ligurian Oceanic Sequences of the Northern Apennines: New Hypothesis Concerning the Development of Mélange Block-in-Matrix Fabric. J. Struct. Geol. 2003, 25, 371–388. [Google Scholar] [CrossRef]
- CerrinaFeroni, A.; Ottria, G.; Ellero, A. The northern Apennine, Italy: Geological structure and transpressive evolution. In Geology of Italy; Crescenti, U., d’Offizi, S., Merlino, S., Sacchi, L., Eds.; Special Volume for the IGC 32; Geological Society of Italy: Florence, Italy, 2004; pp. 15–32. [Google Scholar]
- Marroni, M.; Meneghini, F.; Pandolfi, L. Anatomy of the Ligure-Piemontese Subduction System: Evidence from Late Cretaceous–Middle Eocene Convergent Margin Deposits in the Northern Apennines, Italy. Int. Geol. Rev. 2010, 52, 1160–1192. [Google Scholar] [CrossRef]
- Festa, A.; Codegone, G. Geological Map of the External Ligurian Units in Western Monferrato (Tertiary Piedmont Basin, NW Italy). J. Maps 2013, 9, 84–97. [Google Scholar] [CrossRef]
- Barbero, E.; Festa, A.; Fioraso, G.; Catanzariti, R. Geology of the Curone and Staffora Valleys (NW Italy): Field Constraints for the Late Cretaceous—Pliocene Tectono-Stratigraphic Evolution of Northern Apennines. J. Maps 2017, 13, 879–891. [Google Scholar] [CrossRef]
- Bettelli, G.; Bonazzi, U.; Fazzini, P.; Gasperi, G.; Gelmini, R.; Panini, F. Nota illustrativa alla Carta geologica dell’Appennino modenese e delle aree limitrofe. Mem. Della Soc. Geol. Ital. 1989, 39, 487–498. [Google Scholar]
- Bettelli, G.; Bonazzi, U.; Fazzini, P.; Panini, F. Schema introduttivo alla geologia delle Epiliguridi dell’Appennino modenese e delle aree limitrofe. Mem. Della Soc. Geol. Ital. 1989, 39, 215–244. [Google Scholar]
- Mutti, E.; Papani, L.; Di Biase, D.; Davoli, G.; Mora, S.; Segadelli, S.; Tinterri, R. Il Bacino Terziario Epimesoalpino e Le Sue Implicazioni Sui Rapporti Tra Alpi Ed Appennino. Mem. Di Sci. Geol. Di Padova 1995, 47, 217–244. [Google Scholar]
- Panini, F.; Fioroni, C.; Fregni, P.; Bonacci, M. Le Rocce Caotiche Dell’Oltrepo Pavese: Note Illustrative Della Carta Geologica Dell’Appennino Vogherese Tra Borgo Priolo e Ruino. Atti Ticinensi Di Sci. Della Terra 2002, 43, 83–109. [Google Scholar]
- Panini, F.; Fioroni, C.; Fregni, P. Le Brecce Argillose Di Musigliano (Appennino Vogherese–Tortonese): Dati Stratigrafici Preliminari. Rend. Online Della Soc. Geol. Ital. 2013, 26, 21–31. [Google Scholar]
- Pini, G.; Lucente, C.; Cowan, D.; De Libero, C.; Dellisanti, F.; Landuzzi, A.; Negri, A.; Tateo, F.; Del Castello, M.M.M.; Cantelli, L. The Role of Olistostromes and Argille Scagliose in the Structural Evolution of the Nothern Apennines. In Field Trip Guidebooks, Proceedings of the 32nd IGC, Florence, Italy, 20–28 August 2004; Memorie Descrittive della Carta Geologica d’Italia 63; Guerrieri, L., Rischia, I., Serva, L., Eds.; APAT: Roma, Italy, 2004; B13; pp. 1–40. [Google Scholar]
- Ogata, K.; Tinterri, R.; Pini, G.A.; Mutti, E. The Specchio Unit (Northern Apennines, Italy): An Ancient Mass Transport Complex Originated from Near-Coastal Areas in an Intra-Slope Setting. In Submarine Mass Movements and Their Consequences; Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M., Eds.; Advances in Natural and Technological Hazards Research; Springer: Dordrecht, The Netherlands, 2012; pp. 595–605. [Google Scholar]
- Festa, A.; Fioraso, G.; Bissacca, E.; Petrizzo, M.R. Geology of the Villalvernia—Varzi Line Between Scrivia and Curone Valleys (NW Italy). J. Maps 2015, 11, 39–55. [Google Scholar] [CrossRef]
- Festa, A.; Ogata, K.; Pini, G.A.; Dilek, Y.; Codegone, G. Late Oligocene–Early Miocene Olistostromes (Sedimentary mélanges) as Tectono-Stratigraphic Constraints to the Geodynamic Evolution of the Exhumed Ligurian Accretionary Complex (Northern Apennines, NW Italy). Int. Geol. Rev. 2015, 57, 540–562. [Google Scholar] [CrossRef]
- Balestro, G.; Festa, A.; Dilek, Y.; Tartarotti, P. Pre-Alpine Extensional Tectonics of a Peridotite-Localized Oceanic Core Complex in the Late Jurassic, High-Pressure Monviso Ophiolite (Western Alps). Episodes 2015, 38, 266–282. [Google Scholar] [CrossRef]
- Boccaletti, M.; Coli, M. Carta strutturale dell’Appennino settentrionale. In Progetto Finalizzato Geodinamica, Sottoprogetto 5; Cnrpubblicazione 429. S.El.Ca. Scale 1:250,000 3 Sheets; CNR: Firenze, Italy, 1982. [Google Scholar]
- Kusky, T.M.; Bradley, D.C. Kinematic Analysis of Mélange Fabrics: Examples and Applications from the McHugh Complex, Kenai Peninsula, Alaska. J. Struct. Geol. 1999, 21, 1773–1796. [Google Scholar] [CrossRef]
- Naylor, M.A.; Mandl, G.; Supesteijn, C.H.K. Fault Geometry in Basement-Induced Wrench Faulting under Different Initial Stress States. J. Struct. Geol. 1986, 8, 737–752. [Google Scholar] [CrossRef]
- Pini, G.A.; Ogata, K.; Camerlenghi, A.; Festa, A.; Lucente, C.C.; Codegone, G. Sedimentary mélanges and Fossil Mass-Transport Complexes: A Key for Better Understanding Submarine Mass Movements? In Submarine Mass Movements and Their Consequences; Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M., Eds.; Advances in Natural and Technological Hazards Research; Springer: Dordrecht, The Netherlands, 2012; pp. 585–594. [Google Scholar]
- Middleton, G.V.; Hampton, M.A. Part I. Sediment Gravity Flows: Mechanics of Flow and Deposition. In Turbidites and Deep-Water Sedimentation: Lecture Notes for a Short Course; Middleton, G.V., Bouma, A.H., Eds.; Society of Economic Paleontologists and Mineralogists, Pacific Section: Tulsa, OK, USA, 1973; pp. 1–88. [Google Scholar]
- Lowe, D.R. Sediment Gravity Flows; II, Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. J. Sediment. Res. 1982, 52, 279–297. [Google Scholar]
- Mulder, T.; Alexander, J. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology 2001, 48, 269–299. [Google Scholar] [CrossRef]
- Jelinek, V. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and its Application; Geofyzika Brno.: Ječná, Czech Republic, 1977. [Google Scholar]
- Chadima, M.; Jelínek, V. Anisoft 4.2—Anisotropy Data Browser. Contrib. Geophys. Geod. 2008, 38, 41. [Google Scholar]
- Tarling, D.H.; Hrouda, F. The Magnetic Anisotropy of Rocks; Chapman and Hall: London, UK, 1993. [Google Scholar]
- Maxbauer, D.P.; Feinberg, J.M.; Fox, D.L. MAX UnMix: A Web Application for Unmixing Magnetic Coercivity Distributions. Comput. Geosci. 2016, 95, 140–145. [Google Scholar] [CrossRef]
- Hrouda, F. The Use of the Anisotropy of Magnetic Remanence in the Resolution of the Anisotropy of Magnetic Susceptibility into Its Ferromagnetic and Paramagnetic Components. Tectonophysics 2002, 347, 269–281. [Google Scholar] [CrossRef]
- Borradaile, G.J.; Jackson, M. Structural Geology, Petrofabrics and Magnetic Fabrics (AMS, AARM, AIRM). J. Struct. Geol. 2010, 32, 1519–1551. [Google Scholar] [CrossRef]
- Jelinek, V. Characterization of the Magnetic Fabric of Rocks. Tectonophysics 1981, 79, T63–T67. [Google Scholar] [CrossRef]
- Borradaile, G.; Jackson, M. Anisotropy of Magnetic Susceptibility (AMS): Magnetic Petrofabrics of Deformed Rocks. Geol. Soc. Lond. Spec. Publ. 2004, 238, 299–360. [Google Scholar] [CrossRef]
- Sagnotti, L. Magnetic Anisotropy. In Encyclopedia of Solid Earth Geophysics; Gupta, H.K., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 717–729. [Google Scholar]
- Weil, A.B.; Yonkee, A. Anisotropy of Magnetic Susceptibility in Weakly Deformed Red Beds from the Wyoming Salient, Sevier Thrust Belt: Relations to Layer-Parallel Shortening and Orogenic CurvatureAnisotropy of Magnetic Susceptibility in Weakly Deformed Red Beds. Lithosphere 2009, 1, 235–256. [Google Scholar] [CrossRef]
- Tokiwa, T.; Yamamoto, Y. Relationship between Magnetic Fabrics and Shear Direcrtions in Mélange within the Miyama Formation Shimanto Accretionary Complex, Japan. Tectonophysics 2012, 568–569, 53–64. [Google Scholar] [CrossRef]
- Sagnotti, L.; Faccenna, C.; Funiciello, R.; Mattei, M. Magnetic Fabric and Structural Setting of Plio-Pleistocene Clayey Units in an Extensional Regime: The Tyrrhenian Margin of Central Italy. J. Struct. Geol. 1994, 16, 1243–1257. [Google Scholar] [CrossRef]
- Plenier, G.; Camps, P.; Henry, B.; Ildefonse, B. Determination of Flow Directions by Combining AMS and Thin-Section Analyses: Implications for Oligocene Volcanism in the Kerguelen Archipelago (Southern Indian Ocean). Geophys. J. Int. 2005, 160, 63–78. [Google Scholar] [CrossRef]
- Aubourg, C.; Smith, B.; Eshraghi, A.; Lacombe, O.; Authemayou, C.; Amrouch, K.; Bellier, O.; Mouthereau, F. New Magnetic Fabric Data and Their Comparison with Palaeostress Markers in the Western Fars Arc (Zagros, Iran): Tectonic Implications. Geol. Soc. Lond. Spec. Publ. 2010, 330, 97–120. [Google Scholar] [CrossRef]
- Caricchi, C.; Cifelli, F.; Kissel, C.; Sagnotti, L.; Mattei, M. Distinct Magnetic Fabric in Weakly Deformed Sediments from Extensional Basins and Fold-and-Thrust Structures in the Northern Apennine Orogenic Belt (Italy). Tectonics 2016, 35, 238–256. [Google Scholar] [CrossRef]
- Kimura, G.; Mukai, A. Underplated Units in an Accretionary Complex: Melange of the Shimanto Belt of Eastern Shikoku, Southwest Japan. Tectonics 1991, 10, 31–50. [Google Scholar] [CrossRef]
- Cronin, M.; Tauxe, L.; Constable, C.; Selkin, P.; Pick, T. Noise in the Quiet Zone. Earth Planet. Sci. Lett. 2001, 190, 13–30. [Google Scholar] [CrossRef]
- Schwehr, K.; Tauxe, L. Characterization of Soft-Sediment Deformation: Detection of Cryptoslumps Using Magnetic Methods. Geology 2003, 31, 203–206. [Google Scholar] [CrossRef]
- Kuranaga, M.; Kawamura, K.; Kanamatsu, T. The Progressive Development of Microfabrics from Initial Deposition to Slump Deformation: An Example from a Modern Sedimenary Mélange on the Nankai Prism. J. Geol. Soc. 2019. [Google Scholar] [CrossRef]
Site | n/N | Km (±σ) | L (±σ) | F (±σ) | T (±σ) | Pj (±σ) | Magnetic Lineation | Magnetic Foliation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(µSI) | k1/k2 | k2/k3 | D | I | E1-2 | E1-3 | D | I | E1-2 | E1-3 | ||||
(°) | (°) | (°) | (°) | (°) | (°) | (°) | (°) | |||||||
BrFm1 | 7/7 | 64 | 1.011 | 1.001 | −0.820 | 1.013 | 113 | 26 | 12.0 | 4.8 | 10 | 25 | 71.0 | 10.7 |
(±4) | (±0.003) | (±0.003) | (±0.269) | (±0.004) | ||||||||||
Sf 1 | 4/7* | 65 | 1.007 | 1.005 | −0.216 | 1.012 | 105 | 26 | - | - | 318 | 60 | - | - |
(±3) | (±0.002) | (±0.003) | (±0.351) | (±0.001) | ||||||||||
Sf 2 | 3/7* | 64 | 1.011 | 1.007 | −0.186 | 1.018 | 117 | 24 | - | - | 27 | 1 | - | - |
(±4) | (±0.002) | (±0.001) | (±0.038) | (±0.003) | ||||||||||
TMé1 | 18/20 | 106 | 1.005 | 1.011 | 0.351 | 1.016 | 261 | 59 | 16.6 | 4.9 | 63 | 30 | 25.7 | 4.5 |
(±13) | (±0.002) | (±0.002) | (±0.173) | (±0.003) | ||||||||||
Sf 1 | 9/20 | 110 | 1.004 | 1.015 | 0.597 | 1.020 | 254 | 56 | 22.1 | 4.5 | 86 | 33 | 12.4 | 4.6 |
(±17) | (±0.002) | (±0.003) | (±0.199) | (±0.003) | ||||||||||
Sf 2 | 9/20 | 102 | 1.003 | 1.014 | 0.664 | 1.018 | 258 | 62 | 14.0 | 3.0 | 40 | 23 | 6.2 | 4.1 |
(±6) | (±0.001) | (±0.001) | (±0.152) | (±0.001) | ||||||||||
TMé2 | 41/42 | 93 | 1.001 | 1.007 | 0.746 | 1.009 | 189 | 7 | 62.3 | 18.9 | 281 | 9 | 24.4 | 19.1 |
(±21) | (±0.002) | (±0.004) | (±0.217) | (±0.004) | ||||||||||
Sf 1 | 5/42 | 78 | 1.003 | 1.007 | 0.414 | 1.010 | 108 | 7 | 20.8 | 17.2 | 199 | 9 | 31.7 | 19.5 |
(±19) | (±0.001) | (±0.004) | (±0.165) | (±0.005) | ||||||||||
Sf 2 | 24/42 | 90 | 1.004 | 1.007 | 0.282 | 1.011 | 9 | 4 | 16.3 | 13.3 | 279 | 6 | 27.1 | 14.1 |
(±20) | (±0.002) | (±0.004) | (±0.245) | (±0.004) | ||||||||||
Sf 3 | 12/42 | 105 | 1.003 | 1.010 | 0.557 | 1.013 | 173 | 62 | 18.4 | 12.8 | 289 | 13 | 20.1 | 12.2 |
(±17) | (±0.001) | (±0.003) | (±0.165) | (±0.004) | ||||||||||
SMé1 | 17/24 | 180 | 1.013 | 1.015 | 0.059 | 1.028 | 229 | 40 | 25.8 | 13.8 | 6 | 41 | 39.6 | 14.0 |
(±32) | (±0.007) | (±0.011) | (±0.233) | (±0.015) | ||||||||||
Sf 1 | 11/24 | 170 | 1.007 | 1.034 | 0.639 | 1.044 | 119 | 12 | 36.3 | 10.2 | 19 | 40 | 10.6 | 8.5 |
(±33) | (±0.006) | (±0.008) | (±0.244) | (±0.009) | ||||||||||
Sf 2 | 6/24 | 199 | 1.020 | 1.035 | 0.264 | 1.057 | 223 | 26 | 20.9 | 8.4 | 129 | 8 | 15.7 | 9.6 |
(±22) | (±0.004) | (±0.015) | (±0.160) | (±0.018) | ||||||||||
PMè1 | 17/18 | 96 | 1.010 | 1.009 | −0.077 | 1.019 | 326 | 12 | 10.3 | 6.1 | 69 | 48 | 21.8 | 8.8 |
(±19) | (±0.004) | (±0.006) | (±0.340) | (±0.006) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robustelli Test, C.; Festa, A.; Zanella, E.; Codegone, G.; Scaramuzzo, E. Distinguishing the Mélange-Forming Processes in Subduction-Accretion Complexes: Constraints from the Anisotropy of Magnetic Susceptibility (AMS). Geosciences 2019, 9, 381. https://doi.org/10.3390/geosciences9090381
Robustelli Test C, Festa A, Zanella E, Codegone G, Scaramuzzo E. Distinguishing the Mélange-Forming Processes in Subduction-Accretion Complexes: Constraints from the Anisotropy of Magnetic Susceptibility (AMS). Geosciences. 2019; 9(9):381. https://doi.org/10.3390/geosciences9090381
Chicago/Turabian StyleRobustelli Test, Claudio, Andrea Festa, Elena Zanella, Giulia Codegone, and Emanuele Scaramuzzo. 2019. "Distinguishing the Mélange-Forming Processes in Subduction-Accretion Complexes: Constraints from the Anisotropy of Magnetic Susceptibility (AMS)" Geosciences 9, no. 9: 381. https://doi.org/10.3390/geosciences9090381
APA StyleRobustelli Test, C., Festa, A., Zanella, E., Codegone, G., & Scaramuzzo, E. (2019). Distinguishing the Mélange-Forming Processes in Subduction-Accretion Complexes: Constraints from the Anisotropy of Magnetic Susceptibility (AMS). Geosciences, 9(9), 381. https://doi.org/10.3390/geosciences9090381