Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS
Abstract
:1. Introduction
2. Monazite Reference Materials
2.1. USGS 44069
2.2. 94-222
2.3. MAdel
2.4. Moacir (or Moacyr)
2.5. Thompson Mine Monazite (TMM)
3. Methods
3.1. Sample Preparataion
3.2. Analytical Set-Up and Sequence
3.3. Instrumental Data Assessment and Age Calculations
4. Results and Discussion
4.1. Optimisation of Running Parameters
4.2. Analytical and Inter-Lab Comparison for U-Th/Pb Dating of Monazite
4.3. Evaluation of Monazite Reference Samples
4.3.1. Chemical Homogeneity
4.3.2. Precision and Accuracy of the U-Th/Pb Ages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clavier, N.; Podor, R.; Dacheux, N. Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 2011, 31, 941–976. [Google Scholar] [CrossRef]
- Engi, M. Petrochronology based on ree-minerals: Monazite, allanite, xenotime, apatite. Rev. Mineral. Geochem. 2017, 83, 365–418. [Google Scholar] [CrossRef]
- Spear, F.S.; Pyle, J.M. Apatite, monazite and xenotime in metamorphic rocks. Rev. Mineral. Geochem. 2002, 48, 293–335. [Google Scholar] [CrossRef]
- Parrish, R.R. U–pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 1990, 27, 1431–1450. [Google Scholar] [CrossRef]
- Tobgay, T.; McQuarrie, N.; Long, S.; Kohn, M.J.; Corrie, S.L. The age and rate of displacement along the main central thrust in the western bhutan himalaya. Earth Planet. Sci. Lett. 2012, 319–320, 146–158. [Google Scholar] [CrossRef]
- Wawrzenitz, N.; Krohe, A.; Rhede, D.; Romer, R.L. Dating rock deformation with monazite: The impact of dissolution precipitation creep. Lithos 2012, 134–135, 52–74. [Google Scholar] [CrossRef]
- Iizuka, T.; McCulloch, M.T.; Komiya, T.; Shibuya, T.; Ohta, K.; Ozawa, H.; Sugimura, E.; Collerson, K.D. Monazite geochronology and geochemistry of meta-sediments in the narryer gneiss complex, western australia: Constraints on the tectonothermal history and provenance. Contrib. Mineral. Petrol. 2010, 160, 803–823. [Google Scholar] [CrossRef]
- Buick, I.S.; Clark, C.; Rubatto, D.; Hermann, J.; Pandit, M.; Hand, M. Constraints on the proterozoic evolution of the aravalli–delhi orogenic belt (nw india) from monazite geochronology and mineral trace element geochemistry. Lithos 2010, 120, 511–528. [Google Scholar] [CrossRef]
- Corrie, S.L.; Kohn, M.J. Trace-element distributions in silicates during prograde metamorphic reactions: Implications for monazite formation. J. Metamorph. Geol. 2008, 26, 451–464. [Google Scholar] [CrossRef]
- Kohn, M.J.; Vervoort, J.D. U-th-pb dating of monazite by single-collector icp-ms: Pitfalls and potential. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Schaltegger, U.; Schmitt, A.K.; Horstwood, M.S.A. U–th–pb zircon geochronology by id-tims, sims, and laser ablation icp-ms: Recipes, interpretations, and opportunities. Chem. Geol. 2015, 402, 89–110. [Google Scholar] [CrossRef]
- Corrie, S.L.; Kohn, M.J. Resolving the timing of orogenesis in the western blue ridge, southern appalachians, via in situ id-tims monazite geochronology. Geology 2007, 35, 627. [Google Scholar] [CrossRef]
- Košler, J.; Sláma, J.; Belousova, E.; Corfu, F.; Gehrels, G.E.; Gerdes, A.; Horstwood, M.S.A.; Sircombe, K.N.; Sylvester, P.J.; Tiepolo, M.; et al. U-pb detrital zircon analysis—Results of an inter-laboratory comparison. Geostand. Geoanal. Res. 2013, 37, 243–259. [Google Scholar] [CrossRef]
- Fletcher, I.R.; McNaughton, N.J.; Davis, W.J.; Rasmussen, B. Matrix effects and calibration limitations in ion probe u–pb and th–pb dating of monazite. Chem. Geol. 2010, 270, 31–44. [Google Scholar] [CrossRef]
- Peterman, E.M.; Hacker, B.R.; Grove, M.; Gehrels, G.E.; Mattinson, J.M. A Multi-Method Approach to Improve Monazite Geochronology: TIMS, LA-ICP-MS, SIMS and EPMA; American Geophysical Union: Washington, DC, USA, 2006. [Google Scholar]
- Paquette, J.L.; Tiepolo, M. High resolution (5 μm) u–th–pb isotope dating of monazite with excimer laser ablation (ela)-icpms. Chem. Geol. 2007, 240, 222–237. [Google Scholar] [CrossRef]
- Košler, J.; Tubrett, M.N.; Sylvester, P.J. Application of laser ablation icp-ms to u-th-pb dating of monazite. Geostand. Geoanal. Res. 2001, 25, 375–386. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Foster, G.L.; Parrish, R.R.; Noble, S.R.; Nowell, G.M. Common-pb corrected in situ u? Pb accessory mineral geochronology by la-mc-icp-ms. J. Anal. At. Spectrom. 2003, 18, 837. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H. Deciphering igneous and metamorphic events in high-grade rocks of the wilmington complex, delaware: Morphology, cathodoluminescence and backscattered electron zoning, and shrimp u-pb geochronology of zircon and monazite. Geol. Soc. Am. Bull. 2006, 118, 39–64. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.-M.; Paquette, J.-L.; Wiedenbeck, M.; Montel, J.-M.; Heinrich, W. Experimental resetting of the u-th-pb systems in monazite. Chem. Geol. 2002, 191, 165–181. [Google Scholar] [CrossRef]
- Palin, R.M.; Searle, M.P.; Waters, D.J.; Parrish, R.R.; Roberts, N.M.W.; Horstwood, M.S.A.; Yeh, M.W.; Chung, S.L.; Anh, T.T. A geochronological and petrological study of anatectic paragneiss and associated granite dykes from the day nui con voi metamorphic core complex, north vietnam: Constraints on the timing of metamorphism within the red river shear zone. J. Metamorph. Geol. 2013, 31, 359–387. [Google Scholar] [CrossRef]
- Payne, J.L.; Hand, M.; Barovich, K.M.; Wade, B.P. Temporal constraints on the timing of high-grade metamorphism in the northern gawler craton: Implications for assembly of the australian proterozoic. Aust. J. Earth Sci. 2008, 55, 623–640. [Google Scholar] [CrossRef]
- Williams, I.S.; Buick, I.S.; Cartwright, I. An extended episode of early mesoproterozoic metamorphic flow in the reynoldsrange, central australia. J. Metamorph. Geol. 1996, 14, 29–47. [Google Scholar] [CrossRef]
- Didier, A.; Putlitz, B.; Baumgartner, L.P.; Bouvier, A.-S.; Vennemann, T.W. Evaluation of potential monazite reference materials for oxygen isotope analyses by sims and laser assisted fluorination. Chem. Geol. 2017, 450, 199–209. [Google Scholar] [CrossRef]
- Burger, A.J.; von Knorring, O.; Clifford, T.N. Mineralogical and radiometric studies of monazite and sphene occurrences in the namib desert, south-west africa. Mineral. Mag. J. Mineral. Soc. 1965, 35, 519–528. [Google Scholar] [CrossRef]
- Payne, J.L. Palaeo- to Mesoproterozoic Evolution of the Gawler Craton, Australia: Geochronological, Geochemical and Isotopic constraints. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2008. [Google Scholar]
- Gonçalves, G.O.; Lana, C.; Scholz, R.; Buick, I.S.; Gerdes, A.; Kamo, S.L.; Corfu, F.; Rubatto, D.; Wiedenbeck, M.; Nalini, H.A., Jr.; et al. The diamantina monazite: A new low-th reference material for microanalysis. Geostand. Geoanal. Res. 2018, 42, 25–47. [Google Scholar] [CrossRef]
- Tomascak, P.B.; Krogstad, E.J.; Walker, R.J. U-pb monazite geochronology of granitic rocks from maine: Implications for late paleozoic tectonics in the northern appalachians. J. Geol. 1996, 104, 185–195. [Google Scholar] [CrossRef]
- Alagna, K.E.; Petrelli, M.; Perugini, D.; Poli, G. Micro-analytical zircon and monazite u-pb isotope dating by laser ablation-inductively coupled plasma-quadrupole mass spectrometry. Geostand. Geoanal. Res. 2008, 32, 103–120. [Google Scholar] [CrossRef]
- Peterman, E.M. Monazite standard assessment by la-icp-ms. Geol. Soc. Am. Abstr. Programs 2005, 37, 448. [Google Scholar]
- Gasquet, D.; Bertrand, J.-M.; Pquette, J.-L.; Lehmann, J.; Ratzov, G.; De Ascencao Guedes, R.; Tiepolo, M.; Boullier, A.-M.; Scaillet, S.; Nomade, S. Miocene to messinian deformation and hydrothermal activity in a pre-alpine basement massif of the french western alps: New u-th-pb and argon ages from the lauzière massif. Bull. Soc. Géol. Fr. 2010, 181, 227–241. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wu, F.-Y.; Yang, Y.-H.; Yang, J.-H.; Wilde, S.A. Neodymium isotopic compositions of the standard monazites used in uthpb geochronology. Chem. Geol. 2012, 334, 221–239. [Google Scholar] [CrossRef]
- Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M. Grenvillian magmatism in the northern virginia blue ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic a-type charnockite. Precambrian Res. 2006, 151, 224–264. [Google Scholar] [CrossRef]
- Gerbi, C.; West, D.P., Jr. Use of u/pb geochronology to identify successive, spatially overlapping tectonic episodes during silurian–devonian orogenesis in south-central maine, USA. Geol. Soc. Am. Bull. 2007, 119, 1218–1231. [Google Scholar] [CrossRef]
- Pullen, A.; Kapp, P.; Gehrels, G.E.; DeCelles, P.G.; Brwon, E.H.; Fabijanic, J.M.; Ding, L. Gangdese retroarc thrust belt and foreland basin deposits in the damxung area, southern tibet. J. Asian Earth Sci. 2008, 33, 323–336. [Google Scholar] [CrossRef]
- Buick, I.S.; Lana, C.; Gregory, C. A la-icp-ms and shrimp u/pb age constraint on the timing of ree mineralisation associated with bushveld granites. S. Afr. J. Geol. 2011, 114, 1–14. [Google Scholar] [CrossRef]
- Morrissey, L.; Payne, J.L.; Kelsey, D.E.; Hand, M. Grenvillian-aged reworking in the north australian craton, central australia: Constraints from geochronology and modelled phase equilibria. Precambrian Res. 2011, 191, 141–165. [Google Scholar] [CrossRef]
- Anderson, J.R.; Payne, J.L.; Kelsey, D.E.; Hand, M.; Collins, A.S.; Santosh, M. High-pressure granulites at the dawn of the proterozoic. Geology 2012, 40, 431–434. [Google Scholar] [CrossRef]
- Maidment, D.W.; Hand, M.; Williams, I.S. Tectonic cycles in the strangways metamorphic complex, arunta inlier, central australia: Geochronological evidence for exhumation and basin formation between two high-grade metamorphic events*. Aust. J. Earth Sci. 2005, 52, 205–215. [Google Scholar] [CrossRef]
- Payne, J.L.; Barovich, K.M.; Hand, M. Provenance of metasedimentary rocks in the northern gawler craton, australia: Implications for palaeoproterozoic reconstructions. Precambrian Res. 2006, 148, 275–291. [Google Scholar] [CrossRef]
- Hand, M.; Mawby, J.; Miller, J. U– pb ages from the harts range, central australia; evidence for early ordovician extension and constraints on carboniferous metamorphism. J. Geol. Soc. Lond. 1999, 156, 715–730. [Google Scholar] [CrossRef]
- Maidment, D.W. Paleozoic High-Grade Metamorphism within Centralian Superbasin, Harts Range Region, Central Australia. Ph.D. Thesis, Australian National University, Canberra, Australia, 2005. [Google Scholar]
- Cutts, K.; Hand, M.; Kelsey, D.E. Evidence for early mesoproterozoic (ca. 1590 ma) ultrahigh-temperature metamorphism in southern australia. Lithos 2011, 124, 1–16. [Google Scholar] [CrossRef]
- Szupunar, M.; Wade, B.; Hand, M.P.; Barovich, K.M. Timing of proterozoic high-grade metamorphism in the barossa complex, southern south australia: Exploring the extent of the 1590 ma event. MESA J. 2007, 47, 21–27. [Google Scholar]
- Howard, K.E.; Hand, M.; Barovich, K.M.; Payne, J.L.; Cutts, K.; Belousova, E. U-pb zircon, zircon hf and whole-rock sm-nd isotopic constraints on the evolution of paleoproterozoic rocks in the northern gawler craton. Aust. J. Earth Sci. 2011, 58, 615–638. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.-M.; Wirth, R.; Deutsch, A.; Schärer, U. Microstructure of 24-1928 ma concordant monazites; implications for geochronology and nuclear waste deposits. Geochim. Cosmochim. Acta 2004, 68, 2517–2527. [Google Scholar] [CrossRef]
- Cruz, M.J.; Cunha, J.C.; Merlet, C.; Sabate, P. Datacao pontual das monazitas da regiao de itambé, bahia, através da microssonda electronica. In XXXIX Congresso Brasileiro de Geologia; Sociedade Brasileira de Geologià–Núcleo Bahià: Salvador, Brazil, 1996; pp. 206–209. [Google Scholar]
- Gonçalves, G.O.; Lana, C.; Scholz, R.; Buick, I.S.; Gerdes, A.; Kamo, S.L.; Corfu, F.; Marinho, M.M.; Chaves, A.O.; Valeriano, C.; et al. An assessment of monazite from the itambé pegmatite district for use as u–pb isotope reference material for microanalysis and implications for the origin of the “moacyr” monazite. Chem. Geol. 2016, 424, 30–50. [Google Scholar] [CrossRef]
- Bleeker, W. Evolution of the Thompson Nickel Belt and Its Nickel Deposits, Manitoba, Canada. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 1990. [Google Scholar]
- Burnham, O.M.; Halden, N.; Layton-Matthews, D.; Lesher, C.M.; Liwanag, J.; Heaman, L.; Hulbert, L.; Machado, N.; Michalak, D.; Pacey, M.; et al. Camiro project 97e-02, thompson nickel belt: Final report march 2002, revised and updated 2003; manitoba science, technology, energy and mines. Manit. Geol. Surv. 2009, 434. [Google Scholar]
- Taylor, J. The Anatectic History of Archean Metasediemntary Granulites from the Ancient Gneiss Complex, Swaziland. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2012. [Google Scholar]
- Groppo, C.; Rubatto, D.; Rolfo, F.; Lombardo, B. Early oligocene partial melting in the main central thrust zone (arun valley, eastern nepal himalaya). Lithos 2010, 118, 287–301. [Google Scholar] [CrossRef]
- Rutland, R.R.; Williams, I.S.; Korsman, K. Pre-1.91 ga deformation and metamorphism in the palaeo-proterozoic vammla migmatite belt, southern finland, and implications for svecofennian tectonics. Bull. Geol. Soc. Finl. 2004, 76, 93–140. [Google Scholar] [CrossRef]
- Williams, I.S. Response of detrital zircon and monazite, and their u-pb isotopic systems, to regional metamorphism and host-rock partial melting, cooma complex, southeastern australia. Aust. J. Earth Sci. 2001, 48, 557–580. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Wirth, R.; Nasdala, L.; Gottschalk, M.; Montel, J.M.; Heinrich, W. An xrd, tem and raman study of experimentally annealed natural monazite. Phys. Chem. Miner. 2002, 29, 240–253. [Google Scholar] [CrossRef]
- Simonetti, A.; Heaman, L.M.; Chacko, T.; Banerjee, N.R. In situ petrographic thin section u–pb dating of zircon, monazite, and titanite using laser ablation–mc–icp-ms. Int. J. Mass Spectrom. 2006, 253, 87–97. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation u-pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Hiess, J.; Condon, D.J.; McLean, N.; Noble, S.R. 238u/235u systematics in terrestrial uranium-bearing minerals. Science 2012, 335, 1610–1614. [Google Scholar] [CrossRef] [PubMed]
- Eggins, S.M.; Kinsley, L.P.J.; Shelly, J.M.G. Deposition and element fractionation process during atmospheric pressure laser sampling for analysis by icp-ms. Appl. Surf. Sci. 1998, 127–129, 278–286. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ u–pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In situ u–pb rutile dating by la-icp-ms: 208pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/ex: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2012; p. 53. [Google Scholar]
- McFarlane, C.; Luo, Y. Modern analytical facilities. Geosci. Can. 2012, 39, 158–172. [Google Scholar]
- Guillong, M.; Heinrich, C.A. Sensitivity enhancement in laser ablation icp-ms using small amounts of hydrogen in the carrier gas. J. Anal. At. Spectrom. 2007, 22, 1488–1494. [Google Scholar] [CrossRef]
- Crowley, J.L.; Ghent, E.D. An electron microprobe study of the u–th–pb systematics of metamorphosed monazite: The role of pb diffusion versus overgrowth and recrystallization. Chem. Geol. 1999, 157, 285–302. [Google Scholar] [CrossRef]
- Harlov, D.E.; Förster, H.J.; Nijland, T.G. Fluid-induced nucleation of (y+ree)-phosphate minerals within apatite: Nature and experiment. Part i. Chlorapatite. Am. Mineral. 2002, 87, 245–261. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J.; Harlov, D.E.; Budzyn, B.; Hetherington, C.J. Resetting monazite ages during fluid-related alteration. Chem. Geol. 2011, 283, 218–225. [Google Scholar] [CrossRef]
- Pyle, J.M.; Spear, F.S.; Rudnick, R.L.; MCDonough, W.F. Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J. Petrol. 2001, 42, 2083–2107. [Google Scholar] [CrossRef]
- Klötzli, U.; Klötzli, E.; Günes, Z.; Kosler, J. Accuracy of laser ablation u-pb zircon dating: Results from a test using five different reference zircon. Geostand. Geoanal. Res. 2009, 33, 5–15. [Google Scholar] [CrossRef]
Reference Sample | Characteristics a | ThO2 [wt.%] b | UO2 [wt.%] b | Age ± 2s Uncertainty [Ma] | Dating Method | Locality | Reference Age |
---|---|---|---|---|---|---|---|
94-222 | golden in color 1; inclusion free 1; size ranges between 200–500 µm 1; minor compositional heterogeneity between core and rim 1 | 5.52–10.41 6 | 0.23–0.62 6 | 449.7 ± 3.0 | LA-ICP-MS | Harts Range Metamorphic Complex (Central Australia) | [26] |
[42] | |||||||
[41] | |||||||
USGS 44069 | discoidal to subhedral grains 2; pale yellow in color 2; grain size ~100 µm 2; most grains having no zonation 2,3 while others show chemical inhomogeneity 4,5 | 2.00–5.00 2 | 0.30–1.00 2 | 424.9 ± 0.8 | TIMS | Wilmington Complex (Delaware, USA) | [19] |
424.0 ± 6.0 | SHRIMP | ||||||
MAdel | yellowish brown in color 5; grain size between 200 and 400 µm 5; most grains have chemical zonation 5; two age domains with an age difference of 4 Ma 6 | 8.98 6 | 0.43 6 | 511.0 ± 2.6 | TIMS | Madagascar | [22] |
513.9 ± 3.2 | |||||||
Moacir | yellow-orange in color and non-metamict 7; crystal size is between 200–400 µm 7; chemically homogenous 8, free of inclusions 8 | 6.92 7 | 0.13 7 | 504.3 ± 0.4 | TIMS | Itambè Pegmatite District (Brazil) | [31] |
TMM | yellow to orange in color 5; size vary between 100 to 300 µm 5; grains show chemical zoning (patchy, oscillatory) 5 | 7.0–19.0 9 | 0.23 10 | 1766.0 ± 26.0 | LA-ICP-MS | Thompson Mine (Manitoba, Canada) | [8] |
1766.0 ± 0.6 | TIMS | [23] |
Analytical Session | 120605 | 130111 | 130115 | 130320 | 130807 | 130905 | 160511 | 160606 |
---|---|---|---|---|---|---|---|---|
GENERAL INFORMATION | ||||||||
Laboratory | Mainz | Gothenburg | Gothen-burg | Gothen-burg | Mainz | Mainz | Isotopia Laboratory | Isotopia Laboratory |
ICP-MS series | Agilent 7500ce | Agilent 7500a | Agilent 7500a | Agilent 7500a | Agilent 7500ce | Agilent 7500ce | Thermo Fisher Scientific ICAP-Q | Thermo Fisher Scientific ICAP-Q |
Laser model | ESI - ArF Excimer NWR 193, Two Vol 1 ablation cell | NWR 213, Two Vol ablation cell | NWR 213, Two Vol ablation cell | NWR 213, Two Vol ablation cell | ESI—ArF Excimer NWR 193, Two Vol 1 ablation cell | ESI—ArF Excimer NWR 193, Two Vol 1 ablation cell | ASI RESOlution SE 193 nm Laurin Technique S-155 | ASI RESOlution SE 193 nm Laurin Technique S-155 |
OPERATIONAL SETTINGS | ||||||||
Energy density | 3.9–5.4 J/cm² | 4.2–5.7 J/cm² | 5.0 J/cm² | 4.8–5.1 J/cm² | 4.7–5.2 J/cm2 | 4.8 J/cm2 | 4.8–5.0 J/cm2 | 4.8–5.0 J/cm2 |
Repetition rate | 5 Hz/10 Hz | 10 Hz | 10 Hz | 10 Hz | 10 Hz | 10 Hz | 10 Hz | 10 Hz |
Spot size | 5 µm/10 µm/20 µm | 5 µm/10 µm/20 µm | 10 µm | 10 µm | 10 µm | 10 µm | 11 µm | 11 µm |
Background | 20 s | 20 s | 15 s | 12 s | 20 s | 20 s | 20 s | 20 s |
Ablation time | 30 s | 30 s | 15 s | 15 s | 15 s | 15 s | 15 s | 15 s |
Washout delay | 15 s | 10 s | 15 s | 15 s | 20 s | 20 s | 20 s | 20 s |
INTEGRATION TIME | ||||||||
202Hg | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s |
204Pb | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s | 0.03 s |
206Pb | 0.04 s | 0.04 s | 0.04 s | 0.04 s | 0.04 s | 0.04 s | 0.04 s | 0.04 s |
207Pb | 0.06 s | 0.06 s | 0.06 s | 0.06 s | 0.06 s | 0.06 s | 0.06 s | 0.06 s |
208Pb | 0.01 s | 0.02 s | 0.02 s | 0.02 s | 0.02 s | 0.02 s | 0.02 s | 0.02 s |
232Th | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s |
238U | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s | 0.01 s |
Monazite Reference Sample | Analytical Session | Spot Size [µm] | Repetition Rate [Hz] | Concordia Age | 208Pb/232Th Weighted Mean Age | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age [Ma] | 2s | Age Uncertainty | Deviation from Literature Value | MSWD | Probability | Age [Ma] | 2s | Age Uncertainty | Deviation from Literature Value | MSWD | Probability | ||||
94-222 | 120605 | 5 | 5 | 471 | 18 | 3.8% | 4.7% | 0.02 | 0.89 | 463 | 12 | 2.6% | 2.9% | 0.53 | 0.76 |
5 | 10 | 456 | 14 | 3.1% | 1.3% | 0.38 | 0.54 | 474 | 12 | 2.5% | 5.3% | 0.22 | 0.95 | ||
10 | 10 | 466 | 6 | 1.3% | 3.6% | 0.51 | 0.47 | 466 | 8 | 1.6% | 3.6% | 0.10 | 0.96 | ||
20 | 10 | 452 | 9 | 2.0% | 0.4% | 0.02 | 0.88 | 434 | 8 | 1.8% | 3.6% | 1.20 | 0.30 | ||
130111 | 5 | 10 | 405 | 16 | 4.0% | 11.1% | 1.12 | 0.29 | 425 | 13 | 3.1% | 5.9% | 0.35 | 0.89 | |
10 | 10 | 419 | 11 | 2.6% | 7.4% | 2.30 | 0.13 | 420 | 15 | 3.6% | 7.1% | 0.12 | 0.99 | ||
20 | 10 | 445 | 13 | 2.9% | 1.1% | 0.09 | 0.76 | 405 | 13 | 3.2% | 11.1% | 0.14 | 0.98 | ||
130115 | 10 | 10 | 454 | 8 | 1.9% | 0.9% | 3.90 | 0.048 | 445 | 8 | 1.9% | 1.1% | 0.54 | 0.90 | |
130320 | 10 | 10 | 452 | 8 | 1.7% | 0.5% | 2.30 | 0.13 | 452 | 7 | 1.6% | 0.5% | 0.26 | 0.98 | |
MAdel | 120605 | 5 | 5 | 542 | 23 | 4.2% | 5.4% | 0.42 | 0.52 | 534 | 16 | 3.0% | 3.9% | 0.95 | 0.44 |
5 | 10 | 521 | 18 | 3.5% | 1.4% | 2.50 | 0.12 | 543 | 15 | 2.8% | 5.6% | 0.79 | 0.53 | ||
10 | 10 | 515 | 7 | 1.4% | 0.2% | 0.00 | 0.98 | 515 | 8 | 1.6% | 0.2% | 0.43 | 0.78 | ||
20 | 10 | 515 | 12 | 2.3% | 0.2% | 1.50 | 0.22 | 505 | 11 | 2.2% | 1.8% | 0.52 | 0.72 | ||
130111 | 5 | 10 | 546 | 25 | 4.6% | 6.2% | 0.04 | 0.85 | 595 | 26 | 4.4% | 15.8% | 0.28 | 0.89 | |
10 | 10 | 519 | 16 | 3.1% | 1.0% | 3.40 | 0.07 | 533 | 20 | 3.8% | 3.7% | 0.04 | 0.99 | ||
20 | 10 | 502 | 18 | 3.6% | 2.3% | 3.30 | 0.07 | 481 | 22 | 4.6% | 6.4% | 0.07 | 0.93 | ||
130115 | 10 | 10 | 505 | 11 | 2.2% | 1.8% | 2.60 | 0.11 | 500 | 11 | 2.2% | 2.7% | 0.16 | 1.00 | |
130320 | 10 | 10 | 506 | 11 | 2.2% | 1.6% | 0.80 | 0.37 | 504 | 10 | 2.0% | 1.9% | 1.40 | 0.23 | |
130807 | 10 | 10 | 515 | 10 | 1.8% | 0.2% | 0.47 | 0.49 | 516 | 14 | 2.7% | 0.4% | 0.37 | 0.78 | |
130905 | 10 | 10 | 513 | 16 | 3.1% | 0.2% | 0.15 | 0.70 | 526 | 28 | 5.3% | 2.3% | 0.03 | 0.99 | |
160511 | 11 | 10 | 517 | 8 | 1.6% | 0.6% | 0.75 | 0.39 | 507 | 9 | 1.7% | 1.4% | 0.02 | 1.00 | |
160606 | 11 | 10 | 522 | 7 | 1.3% | 1.5% | 6.60 | 0.01 | 519 | 8 | 1.5% | 1.0% | 0.19 | 0.94 | |
Moacir | 120605 | 5 | 5 | 524 | 22 | 4.2% | 4.0% | 0.02 | 0.88 | 501 | 14 | 2.8% | 0.6% | 2.20 | 0.06 |
5 | 10 | 520 | 17 | 3.3% | 3.2% | 0.03 | 0.87 | 509 | 12 | 2.4% | 1.0% | 1.80 | 0.11 | ||
10 | 10 | 523 | 7 | 1.4% | 3.8% | 3.90 | 0.048 | 524 | 25 | 4.8% | 4.0% | 2.90 | 0.03 | ||
20 | 10 | 517 | 12 | 2.3% | 2.6% | 5.60 | 0.02 | 481 | 34 | 7.1% | 4.8% | 6.70 | 0.00 | ||
130111 | 5 | 10 | 529 | 26 | 4.9% | 5.0% | 0.00 | 0.96 | 555 | 25 | 4.5% | 10.1% | 0.29 | 0.89 | |
10 | 10 | 504 | 15 | 3.0% | 0.0% | 2.10 | 0.15 | 507 | 18 | 3.6% | 0.6% | 0.06 | 0.99 | ||
20 | 10 | 491 | 19 | 3.9% | 2.6% | 2.70 | 0.10 | 464 | 19 | 4.1% | 8.6% | 0.14 | 0.94 | ||
130115 | 10 | 10 | 518 | 11 | 2.1% | 2.8% | 1.01 | 0.32 | 512 | 12 | 2.3% | 1.6% | 0.46 | 0.90 | |
130320 | 10 | 10 | 520 | 9 | 1.8% | 3.1% | 3.10 | 0.08 | 503 | 13 | 2.6% | 0.2% | 2.00 | 0.03 | |
130807 | 10 | 10 | 521 | 12 | 2.3% | 3.4% | 3.10 | 0.08 | 523 | 13 | 2.5% | 3.8% | 2.00 | 0.09 | |
130905 | 10 | 10 | 512 | 19 | 3.7% | 1.6% | 0.03 | 0.85 | 530 | 34 | 6.4% | 5.2% | 0.14 | 0.87 | |
160511 | 11 | 10 | 523 | 15 | 2.9% | 3.8% | 1.01 | 0.31 | 511 | 12 | 2.3% | 1.4% | 0.01 | 0.998 | |
160606 | 11 | 10 | 521 | 12 | 2.3% | 3.4% | 1.6 | 0.21 | 518 | 8 | 1.6% | 2.7% | 0.55 | 0.65 | |
TMM | 120605 | 5 | 5 | 1708 | 47 | 2.8% | 3.4% | 3.00 | 0.08 | 1656 | 48 | 2.9% | 6.6% | 0.16 | 0.96 |
5 | 10 | 1743 | 44 | 2.5% | 1.3% | 0.06 | 0.81 | 1769 | 44 | 2.5% | 0.2% | 0.39 | 0.81 | ||
10 | 10 | 1792 | 20 | 1.1% | 1.5% | 2.70 | 0.10 | 1762 | 27 | 1.5% | 0.2% | 0.90 | 0.46 | ||
20 | 10 | 1786 | 37 | 2.1% | 1.1% | 4.60 | 0.03 | 1726 | 40 | 2.3% | 2.3% | 0.94 | 0.44 | ||
130111 | 5 | 10 | 1673 | 69 | 4.1% | 5.6% | 13.00 | 0.00 | 1644 | 66 | 4.0% | 7.4% | 0.32 | 0.86 | |
10 | 10 | 1735 | 31 | 1.8% | 1.8% | 1.60 | 0.21 | 1622 | 54 | 3.3% | 8.9% | 0.06 | 0.99 | ||
20 | 10 | 1740 | 19 | 1.1% | 1.5% | 0.43 | 0.51 | 1602 | 56 | 3.5% | 10.2% | 0.39 | 0.82 | ||
130115 | 10 | 10 | 1764 | 21 | 1.2% | 0.1% | 14.00 | 0.00 | 1703 | 40 | 2.3% | 3.7% | 0.23 | 0.99 | |
130320 | 10 | 10 | 1769 | 25 | 1.4% | 0.2% | 0.09 | 0.76 | 1812 | 71 | 3.9% | 2.6% | 2.20 | 0.05 | |
130807 | 10 | 10 | 1767 | 19 | 1.1% | 0.1% | 0.20 | 0.66 | 1752 | 36 | 2.1% | 0.8% | 0.92 | 0.47 | |
130905 | 10 | 10 | 1736 | 23 | 1.3% | 1.7% | 0.89 | 0.35 | 1739 | 75 | 4.3% | 1.6% | 0.08 | 1.00 | |
160511 | 11 | 10 | 1778 | 35 | 2.0% | 0.7% | 0.24 | 0.62 | 1502 | 75 | 5.0% | 17.6% | 0.19 | 0.83 | |
160606 | 11 | 10 | 1766 | 19 | 1.1% | 0.0% | 3.8 | 0.05 | 1834 | 27 | 1.5% | 3.7% | 0.31 | 0.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, M.; Nebel-Jacobsen, Y.; Nebel, O.; Zack, T.; Mertz-Kraus, R.; Raveggi, M.; Rösel, D. Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS. Geosciences 2019, 9, 391. https://doi.org/10.3390/geosciences9090391
Richter M, Nebel-Jacobsen Y, Nebel O, Zack T, Mertz-Kraus R, Raveggi M, Rösel D. Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS. Geosciences. 2019; 9(9):391. https://doi.org/10.3390/geosciences9090391
Chicago/Turabian StyleRichter, Marianne, Yona Nebel-Jacobsen, Oliver Nebel, Thomas Zack, Regina Mertz-Kraus, Massimo Raveggi, and Delia Rösel. 2019. "Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS" Geosciences 9, no. 9: 391. https://doi.org/10.3390/geosciences9090391
APA StyleRichter, M., Nebel-Jacobsen, Y., Nebel, O., Zack, T., Mertz-Kraus, R., Raveggi, M., & Rösel, D. (2019). Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS. Geosciences, 9(9), 391. https://doi.org/10.3390/geosciences9090391