Advantages of Array-Based Technologies for Pre-Emptive Pharmacogenomics Testing
Abstract
:1. Introduction
2. Pharmacogenomics in Practice
3. Minimum Criteria for a Clinically Useful Pharmacogenomics Platform
3.1. Analytical Validity
3.2. Clinical Validity and Utility
4. Additional Technical Issues
5. Ethical, Legal, and Social Issues (ELSI)
6. Using Microarrays for Pre-Emptive Pharmacogenomics Testing
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Precision Medicine Initiative (PMI) Working Group Report to the Advisory Committee to the Director, NIH. The Precision Medicine Initiative Cohort Program-Building a Research Foundation for 21st Century Medicine; NIH: Bethesda, MD, USA, 2016. [Google Scholar]
- Wang, D.G.; Fan, J.B.; Siao, C.J.; Berno, A.; Young, P.; Sapolsky, R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998, 280, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.J.; Zwick, M.E.; Carrasquillo, M.M.; Yohn, C.T.; Tobin, K.P.; Kashuk, C.; Mathews, D.J.; Shah, N.A.; Eichler, E.E.; Warrington, J.A.; et al. High-throughput variation detection and genotyping using microarrays. Genome Res. 2001, 11, 1913–1925. [Google Scholar] [PubMed]
- Sund, K.L.; Zimmerman, S.L.; Thomas, C.; Mitchell, A.L.; Prada, C.E.; Grote, L.; Bao, L.; Martin, L.J.; Smolarek, T.A. Regions of homozygosity identified by SNP microarray analysis aid in the diagnosis of autosomal recessive disease and incidentally detect parental blood relationships. Genet. Med. 2013, 15, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Al-Shafai, M.; Al Muftah, W.A.; Chalhoub, N.; Elsaid, M.F.; Aleem, A.A.; Suhre, K. Evaluation of SNP calling using single and multiple-sample calling algorithms by validation against array base genotyping and mendelian inheritance. BMC Res. Notes 2014, 7, 747. [Google Scholar] [CrossRef] [PubMed]
- Perez-Enciso, M.; Rincon, J.C.; Legarra, A. Sequence- vs. Chip-assisted genomic selection: Accurate biological information is advised. Genet. Sel. Evol. 2015, 47, 43. [Google Scholar] [CrossRef] [PubMed]
- Sboner, A.; Mu, X.J.; Greenbaum, D.; Auerbach, R.K.; Gerstein, M.B. The real cost of sequencing: Higher than you think! Genome Biol. 2011, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Fang, H.; Hong, H.; Shi, L.; Zhang, W.; Zhang, W.; Zhang, Y.; Dong, Z.; Lancashire, L.J.; Bessarabova, M.; et al. An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol. 2014, 15, 523. [Google Scholar] [CrossRef] [PubMed]
- Bates, S. The role of gene expression profiling in drug discovery. Curr. Opin. Pharmacol. 2011, 11, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Milward, E.A.; Daneshi, N.; Johnstone, D.M. Emerging real-time technologies in molecular medicine and the evolution of integrated “pharmacomics” approaches to personalized medicine and drug discovery. Pharmacol. Ther. 2012, 136, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.C.; Kodukula, K. Biomarkers in pharmacology and drug discovery. Biochem. Pharmacol. 2014, 87, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Savers, S. Guidance for industry E15 definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data, and sample coding categories. Biotechnol. Law Rep. 2008, 27, 359–363. [Google Scholar]
- PharmGKB. Pharmacogenomics Knowledge Implementation. Available online: https://www.pharmgkb.org/ (accessed on 23 May 2016).
- Martin, M.A.; Klein, T.E.; Dong, B.J.; Pirmohamed, M.; Haas, D.W.; Kroetz, D.L. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin. Pharmacol. Ther. 2012, 91, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Hershfield, M.S.; Callaghan, J.T.; Tassaneeyakul, W.; Mushiroda, T.; Thorn, C.F.; Klein, T.E.; Lee, M.T. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin. Pharmacol. Ther. 2013, 93, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.E.; Rettie, A.E.; Whirl-Carrillo, M.; Smith, L.H.; Mintzer, S.; Lee, M.T.; Klein, T.E.; Callaghan, J.T. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin. Pharmacol. Ther. 2014, 96, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leckband, S.G.; Kelsoe, J.R.; Dunnenberger, H.M.; George, A.L., Jr.; Tran, E.; Berger, R.; Muller, D.J.; Whirl-Carrillo, M.; Caudle, K.E.; Pirmohamed, M. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin. Pharmacol. Ther. 2013, 94, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Swen, J.J.; Thorn, C.F.; Sangkuhl, K.; Kharasch, E.D.; Ellingrod, V.L.; Skaar, T.C.; Muller, D.J.; Gaedigk, A.; Stingl, J.C. Clinical pharmacogenetics implementation consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. Ther. 2013, 93, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.A.; Sangkuhl, K.; Gardner, E.E.; Stein, C.M.; Hulot, J.S.; Johnson, J.A.; Roden, D.M.; Klein, T.E.; Shuldiner, A.R. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin. Pharmacol. Ther. 2011, 90, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Muller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; A, L.L.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crews, K.R.; Gaedigk, A.; Dunnenberger, H.M.; Klein, T.E.; Shen, D.D.; Callaghan, J.T.; Kharasch, E.D.; Skaar, T.C. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin. Pharmacol. Ther. 2012, 91, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Gammal, R.S.; Court, M.H.; Haidar, C.E.; Iwuchukwu, O.F.; Gaur, A.H.; Alvarellos, M.; Guillemette, C.; Lennox, J.L.; Whirl-Carrillo, M.; Brummel, S.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for UGT1A1 and Atazanavir prescribing. Clin. Pharmacol. Ther. 2016, 99, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Klein, T.E. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 2011, 89, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Hicks, J.K.; et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 2013, 93, 324–325. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.E.; Thorn, C.F.; Klein, T.E.; Swen, J.J.; McLeod, H.L.; Diasio, R.B.; Schwab, M. Clinical pharmacogenetics implementation consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin. Pharmacol. Ther. 2013, 94, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.P.; Johnson, S.G.; Yee, S.W.; McDonagh, E.M.; Caudle, K.E.; Klein, T.E.; Cannavo, M.; Giacomini, K.M. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype. Clin. Pharmacol. Ther. 2014, 95, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.; Pirmohamed, M.; et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 2011, 90, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; McDonagh, E.M.; Chang, T.; Caudle, K.E.; McLeod, H.L.; Haidar, C.E.; Klein, T.; Luzzatto, L. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin. Pharmacol. Ther. 2014, 96, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Wilke, R.A.; Ramsey, L.B.; Johnson, S.G.; Maxwell, W.D.; McLeod, H.L.; Voora, D.; Krauss, R.M.; Roden, D.M.; Feng, Q.; Cooper-Dehoff, R.M.; et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 2012, 92, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 Update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, A.J.; Gong, L.; Johnson, S.G.; Lee, M.T.; Williams, M.S.; Klein, T.E.; Caudle, K.E.; Nelson, D.R. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin. Pharmacol. Ther. 2014, 95, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Mizzi, C.; Peters, B.; Mitropoulou, C.; Mitropoulos, K.; Katsila, T.; Agarwal, M.R.; van Schaik, R.H.; Drmanac, R.; Borg, J.; Patrinos, G.P. Personalized pharmacogenomics profiling using whole-genome sequencing. Pharmacogenomics 2014, 15, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.W.; Cree, S.L.; Ton, K.N.; Lehnert, K.; Shepherd, P.; Helsby, N.; Kennedy, M.A. Cross-comparison of exome analysis, next-generation sequencing of amplicons, and the iPLEX® ADME PGx panel for pharmacogenomic profiling. Front. Pharmacol. 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C. Milestone approval lifts Illumina’s NGS from research into clinic. Nat. Biotechnol. 2014, 32, 111–112. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Khoury, M.J. What is the clinical utility of genetic testing? Genet. Med. 2006, 8, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Haddow, J.E.; Palomaki, G.E. ACCE: A model process for evaluating data on emerging genetic tests. Hum. Genome Epidemiol. 2004, 217–233. [Google Scholar]
- Yang, X.; Chockalingam, S.P.; Aluru, S. A survey of error-correction methods for next-generation sequencing. Brief. Bioinform. 2013, 14, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.D.; Tang, L.F.; Zerbe, B.; Kvale, M.N.; Kwok, P.Y.; Schaefer, C.; Risch, N. Estimating genotype error rates from high-coverage next-generation sequence data. Genome Res. 2014, 24, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Daber, R.; Sukhadia, S.; Morrissette, J.J. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet. 2013, 206, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Taub, M.A.; Corrada Bravo, H.; Irizarry, R.A. Overcoming bias and systematic errors in next generation sequencing data. Genome Med. 2010, 2, 87. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Smith, M.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Hackl, T.; Hedrich, R.; Schultz, J.; Forster, F. Proovread: Large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 2014, 30, 3004–3011. [Google Scholar] [CrossRef] [PubMed]
- Dohm, J.C.; Lottaz, C.; Borodina, T.; Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008, 36, e105. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.A.; Kermani, B.G.; Sparks, A.B.; Alferov, O.; Hong, P.; Alexeev, A.; Jiang, Y.; Dahl, F.; Tang, Y.T.; Haas, J.; et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 2012, 487, 190–195. [Google Scholar] [CrossRef] [PubMed]
- O’Rawe, J.; Jiang, T.; Sun, G.; Wu, Y.; Wang, W.; Hu, J.; Bodily, P.; Tian, L.; Hakonarson, H.; Johnson, W.E.; et al. Low concordance of multiple variant-calling pipelines: Practical implications for exome and genome sequencing. Genome Med. 2013, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Asai, K.; Hamada, M. PBSIM: PacBio reads simulator—Toward accurate genome assembly. Bioinformatics 2013, 29, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Alic, A.S.; Tomas, A.; Medina, I.; Blanquer, I. Muffinec: Error correction for de novo assembly via greedy partitioning and sequence alignment. Inf. Sci. 2016, 329, 206–219. [Google Scholar] [CrossRef]
- Nakamura, K.; Oshima, T.; Morimoto, T.; Ikeda, S.; Yoshikawa, H.; Shiwa, Y.; Ishikawa, S.; Linak, M.C.; Hirai, A.; Takahashi, H.; et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011, 39, e90. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Otto, C.; Kurtz, S.; Sharma, C.M.; Khaitovich, P.; Vogel, J.; Stadler, P.F.; Hackermuller, J. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol. 2009, 5, e1000502. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, A.D.; Mulley, J.F. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing. PeerJ. 2015, 3, e1441. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Burkley, B.M.; Langaee, T.Y.; Clare-Salzler, M.J.; Klein, T.E.; Altman, R.B. Implementing personalized medicine: Development of a cost-effective customized pharmacogenetics genotyping array. Clin. Pharmacol. Ther. 2012, 92, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Genomic Testing. Available online: http://www.cdc.gov/genomics/gtesting/acce/index.htm (accessed on 23 May 2016).
- Van Driest, S.L.; Shi, Y.; Bowton, E.A.; Schildcrout, J.S.; Peterson, J.F.; Pulley, J.; Denny, J.C.; Roden, D.M. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 2014, 95, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, D.M.; Riveros, C.; Heidari, M.; Graham, R.M.; Trinder, D.; Berretta, R.; Olynyk, J.K.; Scott, R.J.; Moscato, P.; Milward, E.A. Evaluation of different normalization and analysis procedures for Illumina gene expression microarray data involving small changes. Microarrays 2013, 2, 131–152. [Google Scholar] [CrossRef]
- Baker, M. De novo genome assembly: What every biologist should know. Nat. Method 2012, 9, 333. [Google Scholar] [CrossRef]
- Oxford Nanopore Technologies. Learn About Minion. Available online: https://www.nanoporetech.com/products-services/minion-mki (accessed on 23 May 2016).
- LaFramboise, T. Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Res. 2009, 37, 4181–4193. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, M. Big data: The power of petabytes. Nature 2015, 527, S2–S4. [Google Scholar] [CrossRef] [PubMed]
- Ethics and Genetics Committee. Ethics and Genetics Report 2013—A Shift in Privacy Law and the Attendant Risks; Ethics and Genetics: Glascow, Scotland, 2013. [Google Scholar]
- The U-PGx Consortium. Ubiquitous Pharmacogenomics. Available online: upgx.eu (accessed 23 May 2016).
- Mitropoulos, K.; Al Jaibeji, H.; Forero, D.A.; Laissue, P.; Wonkam, A.; Lopez-Correa, C.; Mohamed, Z.; Chantratita, W.; Lee, M.T.; Llerena, A.; et al. Success stories in genomic medicine from resource-limited countries. Hum. Genomics 2015, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asian Network For Pharmacogenomics Research. Overview. Available online: http://www.asianpr.org/ (accessed on 23 May 2016).
- Rotimi, C.; Abayomi, A.; Abimiku, A.; Adabayeri, V.M.; Adebamowo, C.; Adebiyi, E.; Ademola, A.D.; Adeyemo, A.; Adu, D.; Affolabi, D.; et al. Research capacity. Enabling the genomic revolution in Africa. Science 2014, 344, 1346–1348. [Google Scholar] [PubMed]
- Dunnenberger, H.M.; Crews, K.R.; Hoffman, J.M.; Caudle, K.E.; Broeckel, U.; Howard, S.C.; Hunkler, R.J.; Klein, T.E.; Evans, W.E.; Relling, M.V. Preemptive clinical pharmacogenetics implementation: Current programs in five US medical centers. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 89–106. [Google Scholar] [CrossRef] [PubMed]
Genes | Drugs | CPIC | PharmGKB | CPIC Publications |
---|---|---|---|---|
HLA-B | Abacavir; allopurinol; phenytoin; carbamazepine | A | 1A | [14,15,16,17] |
CYP2C19 | Amitriptyline; clopidogrel; imipramine *; trimipramine *; citalopram; escitalopram | A | 1A | [18,19,20] |
CYP2D6 | Amitriptyline; codeine; desipramine; doxepin; fluvoxamine; imipramine; nortriptyline; paroxetine; trimipramine | A | 1A | [18,20,21] |
UGT1A1 | Atazanavir | A | 1A | [22] |
TPMT | Azathioprine; mercaptopurine; thioguanine | A | 1A | [23,24] |
DPYD | Capecitabine;fluorouracil; tegafur | A | 1A | [25] |
CFTR | Ivacaftor | A | 1A | [26] |
CYP2C9 | Warfarin; phenytoin ** | A | 1A | [16,27] |
G6PD | Rasburicase | A | 1A | [28] |
SLCO1B1 | Simvastatin | A | 1A | [29,30] |
CYP3A5 | Tacrolimus | A | 1A | [31] |
VKORC1 | Warfarin | A | 1A | [27] |
IFNL3 | Peginterferon alfa-2a; peginterferon alfa-2b; ribavirin; telaprevir | A | 1A | [32] |
CYP2B6 | Efavirenz | B | 1B | |
CYP4F2 | Warfarin | B | 1B | |
ANKK1 | Bupropion | D | 1B | |
GRIK4 | Citalopram | D | 1B |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahandeh, A.; Johnstone, D.M.; Atkins, J.R.; Sontag, J.-M.; Heidari, M.; Daneshi, N.; Freeman-Acquah, E.; Milward, E.A. Advantages of Array-Based Technologies for Pre-Emptive Pharmacogenomics Testing. Microarrays 2016, 5, 12. https://doi.org/10.3390/microarrays5020012
Shahandeh A, Johnstone DM, Atkins JR, Sontag J-M, Heidari M, Daneshi N, Freeman-Acquah E, Milward EA. Advantages of Array-Based Technologies for Pre-Emptive Pharmacogenomics Testing. Microarrays. 2016; 5(2):12. https://doi.org/10.3390/microarrays5020012
Chicago/Turabian StyleShahandeh, Al, Daniel M. Johnstone, Joshua R. Atkins, Jean-Marie Sontag, Moones Heidari, Nilofar Daneshi, Elvis Freeman-Acquah, and Elizabeth A. Milward. 2016. "Advantages of Array-Based Technologies for Pre-Emptive Pharmacogenomics Testing" Microarrays 5, no. 2: 12. https://doi.org/10.3390/microarrays5020012
APA StyleShahandeh, A., Johnstone, D. M., Atkins, J. R., Sontag, J.-M., Heidari, M., Daneshi, N., Freeman-Acquah, E., & Milward, E. A. (2016). Advantages of Array-Based Technologies for Pre-Emptive Pharmacogenomics Testing. Microarrays, 5(2), 12. https://doi.org/10.3390/microarrays5020012