DNA Microarray‐Based Screening and Characterization of Traditional Chinese Medicine
Abstract
:1. Introduction
2. Herbal Medicine, Effective Chemicals, and Their Effects
2.1. Herbs, Mushrooms, and Dietary Plants Analyzed by DNA Microarray Assays
2.2. Effective Chemicals Characterized by DNA Microarray Assays
2.3. Biological/Physiological Effects Identified by DNA Microarray Assays
3. Mechanisms of Action by Traditional Chinese Medicine
3.1. Genes and Pathways Responsible for the Action
3.2. Cell Functions Involved in the Action
3.3. Activities Found by DNA Microarray Assays (Silent Estrogens)
4. Applications of DNA Microarray Assays for Traditional Chinese Medicine
4.1. DNA Microarray Assays for Quality Control of Traditional Chinese Medicine
4.2. Protocols of DNA Microarray Assays for Quality Control
5. Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Tseng, A.; Yang, S. Chinese Herbal Medicine: Modern Applications of Traditional Formulas; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Luo, G.; Wang, Y.; Liang, Q.; Liu, Q. Systems Biology for Traditional Chinese Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hard to swallow. Nature 2007, 448, 105–106.
- Shang, A.; Huwiler, K.; Nartey, L.; Jüni, P.; Egger, M. Placebo-controlled trials of Chinese herbal medicine and conventional medicine comparative study. Int. J. Epidemiol. 2007, 36, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-P.; Wang, Y.-T. Pharmacological Activity-Based Quality Control of Chinese Herbs; Nova Science Publishers: New York, NY, USA, 2008. [Google Scholar]
- Rong, J.; Tilton, R.; Shen, J.; Ng, K.M.; Liu, C.; Tam, P.K.; Lau, A.S.; Cheng, Y.C. Genome-wide biological response fingerprinting (BioReF) of the Chinese botanical formulation ISF-1 enables the selection of multiple marker genes as a potential metric for quality control. J. Ethnopharmacol. 2007, 113, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.; Altamirano, M. The application of DNA micro-arrays (gene arrays) to the study of herbal medicines. J. Ethnopharmacol. 2006, 108, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Heubl, G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med. 2010, 76, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- Naoghare, P.K.; Song, J.M. Chip-based high-throughput screening of herbal medicines. Comb. Chem. High Throughput Screen. 2010, 13, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.Y.; Li, C.C.; Huang, H.C.; Lin, L.J.; Hsiang, C.Y.; Ho, T.Y. Application of transcriptomics in Chinese herbal medicine studies. J. Tradit. Complement. Med. 2012, 2, 105–114. [Google Scholar] [CrossRef]
- Sarwat, M.; Yamdagni, M.M. DNA barcoding, microarrays and next generation sequencing: Recent tools for genetic diversity estimation and authentication of medicinal plants. Crit. Rev. Biotechnol. 2016, 36, 191–203. [Google Scholar] [CrossRef] [PubMed]
- National Center for Complementary and Integrative Health. Traditional Chinese Medicine: An Introduction. 2013. Available online: https://nccih.nih.gov/health/whatiscam/chinesemed.htm (accessed on 26 January 2017). [Google Scholar]
- Kiyama, R.; Zhu, Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell. Mol. Life Sci. 2014, 71, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Einbond, L.S.; Soffritti, M.; Esposti, D.D.; Wu, H.A.; Tibaldi, E.; Lauriola, M.; He, K.; Park, T.; Su, T.; Huggins, L.; et al. Pharmacological mechanisms of black cohosh in Sprague-Dawley rats. Fitoterapia 2012, 83, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Deneau, J.; Che, G.O.; Li, S.; Vagnini, F.; Azadi, P.; Sonon, R.; Ramjit, R.; Lee, S.M.; Bojanowski, K. Angelica sinensis isolate SBD.4: Composition, gene expression profiling, mechanism of action and effect on wounds, in rats and humans. Eur. J. Dermatol. 2012, 22, 58–67. [Google Scholar] [PubMed]
- Yang, N.S.; Shyur, L.F.; Chen, C.H.; Wang, S.Y.; Tzeng, C.M. Medicinal herb extract and a single-compound drug confer similar complex pharmacogenomic activities in MCF-7 cells. J. Biomed. Sci. 2004, 11, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wei, F.; Fong, C.C.; Yu, W.K.; Chen, Y.; Koon, C.M.; Lau, K.M.; Leung, P.C.; Lau, C.B.; Fung, K.P.; et al. Transcriptional profiling of human skin fibroblast cell line Hs27 induced by herbal formula Astragali Radix and Rehmanniae Radix. J. Ethnopharmacol. 2011, 138, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Midura, A.J.; Kuscuoglu, N.; Jolad, S.D.; Sólyom, A.M.; Besselsen, D.G.; Timmermann, B.N.; Ghishan, F.K. Effects of Boswellia serrata in mouse models of chemically induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G798–G808. [Google Scholar] [CrossRef] [PubMed]
- El-Readi, M.Z.; Eid, S.; Ashour, M.L.; Tahrani, A.; Wink, M. Modulation of multidrug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine 2013, 20, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Lim, D.J.; Yang, H.J.; Choi, E.K.; Shin, M.H.; Ahn, K.S.; Jung, S.H.; Um, J.Y.; Jung, H.J.; Lee, J.H.; et al. The multi-targeted effects of Chrysanthemum herb extract against Escherichia coli O157:H7. Phytother. Res. 2013, 27, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, H.; Tanaka, J.; Takahara, Y.; Takemoto, K.; Shan, S.J.; Su, M.H. The hypocholesterolemic effects of Cistanche tubulosa extract, a Chinese traditional crude medicine, in mice. Am. J. Chin. Med. 2009, 37, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.Y.; Wu, S.L.; Hsiang, C.Y.; Li, C.C.; Lai, T.Y.; Lo, H.Y.; Shen, W.S.; Lee, C.H.; Chen, J.C.; Wu, H.C.; et al. Relationship Between San-Huang-Xie-Xin-Tang and its herbal components on the gene expression profiles in HepG2 cells. Am. J. Chin. Med. 2008, 36, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, N.; Oka, M.; Yamamoto, K.; Tangoku, A.; Miyamoto, K.; Miyamoto, T.; Uchimura, S.; Hamamoto, Y.; Okita, K. Identification of common or distinct genes related to antitumor activities of a medicinal herb and its major component by oligonucleotide microarray. Int. J. Cancer 2003, 107, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.X.; Liu, J.; Wang, J.; He, C.; Li, F.P. The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis 2005, 26, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Lillehoj, E.P.; Bravo, D. Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult. Sci. 2013, 92, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Aoki, F.; Tanaka, H.; Kishida, H.; Nishiyama, T.; Okada, S.; Matsumoto, I.; Abe, K.; Mae, T. Effects of ingested turmeric oleoresin on glucose and lipid metabolisms in obese diabetic mice: A DNA microarray study. J. Agric. Food Chem. 2006, 54, 9055–9062. [Google Scholar] [CrossRef] [PubMed]
- Mazzio, E.; Badisa, R.; Mack, N.; Deiab, S.; Soliman, K.F. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells. Phytother. Res. 2014, 28, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Chiao, M.T.; Yen, P.J.; Huang, W.C.; Hou, C.C.; Chien, S.C.; Yeh, K.C.; Yang, W.C.; Shyur, L.F.; Yang, N.S. Modulatory effects of Echinacea purpurea extracts on human dendritic cells: A cell- and gene-based study. Genomics 2006, 88, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Staniforth, V.; Chiao, M.T.; Hou, C.C.; Wu, H.M.; Yeh, K.C.; Chen, C.H.; Hwang, P.I.; Wen, T.N.; Shyur, L.F.; et al. Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genom. 2008, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.; Hennell, J.R.; Lee, S.; Khoo, C.S.; Carles, M.C.; Higgins, V.J.; Govindaraghavan, S.; Sucher, N.J. The Saccharomyces cerevisiae transcriptome as a mirror of phytochemical variation in complex extracts of Equisetum arvense from America, China, Europe and India. BMC Genom. 2013, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- Maas, M.; Deters, A.M.; Hensel, A. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. J. Ethnopharmacol. 2011, 137, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.J.; Yang, J.S.; Lu, C.C.; Chiang, S.Y.; Lin, J.G.; Chung, J.G. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray. Environ. Toxicol. 2015, 30, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; O’Kirwan, F.; Hannestad, J.P.; Irizarry, K.J.; Elashoff, D.; Licinio, J. St John’s wort and imipramine-induced gene expression profiles identify cellular functions relevant to antidepressant action and novel pharmacogenetic candidates for the phenotype of antidepressant treatment response. Mol. Psychiatry 2004, 9, 237–251. [Google Scholar] [CrossRef] [PubMed]
- McCue, P.P.; Phang, J.M. Identification of human intracellular targets of the medicinal Herb St. John’s Wort by chemical-genetic profiling in yeast. J. Agric. Food Chem. 2008, 56, 11011–11017. [Google Scholar] [CrossRef] [PubMed]
- Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res. 2011, 31, 185–191. [Google Scholar] [PubMed]
- Sohn, S.H.; Ko, E.; Oh, B.G.; Kim, S.H.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Inhibition effects of Vitex rotundifolia on inflammatory gene expression in A549 human epithelial cells. Ann. Allergy Asthma Immunol. 2009, 103, 152–159. [Google Scholar] [CrossRef]
- Lee, J.H.; Ko, E.; Kim, Y.E.; Min, J.Y.; Liu, J.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Gene expression profile analysis of genes in rat hippocampus from antidepressant treated rats using DNA microarray. BMC Neurosci. 2010, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Li, M.L.; Tse, Y.C.; Leung, S.C.; Lee, M.M.; Tsui, S.K.; Fung, K.P.; Lee, C.Y.; Waye, M.M. Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci. 2002, 71, 2267–2277. [Google Scholar] [CrossRef]
- Yun, C.S.; Choi, Y.G.; Jeong, M.Y.; Lee, J.H.; Lim, S. Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts. J. Nat. Med. 2013, 67, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, C.Z.; Chen, J.; Song, W.X.; Luo, J.; Tang, N.; He, B.C.; Kang, Q.; Wang, Y.; Du, W.; et al. Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells. Int. J. Oncol. 2008, 32, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Shi, Q.; Dial, S.; Xia, Q.; Mei, N.; Li, Q.Z.; Chan, P.C.; Fu, P. Gene expression profiling in male B6C3F1 mouse livers exposed to kava identifies—Changes in drug metabolizing genes and potential mechanisms linked to kava toxicity. Food Chem. Toxicol. 2010, 48, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, Q.; Xia, Q.; Dial, S.; Chan, P.C.; Fu, P. Analysis of gene expression changes of drug metabolizing enzymes in the livers of F344 rats following oral treatment with kava extract. Food Chem. Toxicol. 2009, 47, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.C.; Wei, F.; Chen, Y.; Yu, W.K.; Koon, C.M.; Leung, P.C.; Fung, K.P.; Lau, C.B.; Yang, M. Danshen-Gegen decoction exerts proliferative effect on rat cardiac myoblasts H9c2 via MAPK and insulin pathways. J. Ethnopharmacol. 2011, 138, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Eichhorn, T.; Greten, H.J.; Efferth, T. Effects of Scrophularia ningpoensis Hemsl. on Inhibition of Proliferation, Apoptosis Induction and NF-κB Signaling of Immortalized and Cancer Cell Lines. Pharmaceuticals 2012, 5, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhou, J.; Jie, C.; Xing, D.; Zhang, Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci. 2004, 75, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Stander, B.A.; Marais, S.; Steynberg, T.J.; Theron, D.; Joubert, F.; Albrecht, C.; Joubert, A.M. Influence of Sutherlandia frutescens extracts on cell numbers, morphology and gene expression in MCF-7 cells. J. Ethnopharmacol. 2007, 112, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; Telang, N.; Wong, G.Y. Growth inhibition of estrogen receptor positive human breast cancer cells by Taheebo from the inner bark of Tabebuia avellandae tree. Int. J. Mol. Med. 2009, 24, 253–260. [Google Scholar] [PubMed]
- Zhang, Y.; Jiang, Z.; Xue, M.; Zhang, S.; Wang, Y.; Zhang, L. Toxicogenomic analysis of the gene expression changes in rat liver after a 28-day oral Tripterygium wilfordii multiglycoside exposure. J. Ethnopharmacol. 2012, 141, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.H.; Chung, H.S.; Ko, E.; Jeong, H.J.; Kim, S.H.; Jeong, J.H.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. The genome-wide expression profile of Nelumbinis semen on lipopolysaccharide-stimulated BV-2 microglial cells. Biol. Pharm. Bull. 2009, 32, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.S.; Phung, S.; Wu, X.; Ki, L.; Chen, S. White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr. Cancer 2008, 60, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Ellertsen, L.K.; Hetland, G.; Johnson, E.; Grinde, B. Effect of a medicinal extract from Agaricus blazei Murill on gene expression in a human monocyte cell line as examined by microarrays and immuno assays. Int. Immunopharmacol. 2006, 6, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Grinde, B.; Hetland, G.; Johnson, E. Effects on gene expression and viral load of a medicinal extract from Agaricus blazei in patients with chronic hepatitis C infection. Int. Immunopharmacol. 2006, 6, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Furutani, Y.; Suto, Y.; Furutani, M.; Zhu, Y.; Yoneyama, M.; Kato, T.; Itabe, H.; Nishikawa, T.; Tomimatsu, H.; et al. Estrogen-like activity and dual roles in cell signaling of an Agaricus blazei Murrill mycelia-dikaryon extract. Microbiol. Res. 2012, 167, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Chiang, C.S.; Cheng, W.C.; Wang, S.C.; Cheng, H.T.; Chen, C.R.; Shu, W.Y.; Tsai, M.L.; Hseu, R.S.; Chang, C.W.; et al. Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment. PLoS ONE 2012, 7, e40824. [Google Scholar] [CrossRef] [PubMed]
- Ruimi, N.; Rwashdeh, H.; Wasser, S.; Konkimalla, B.; Efferth, T.; Borgatti, M.; Gambari, R.; Mahajna, J. Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-κB and MAPK activities in RAW 264.7 macrophage cells. Int. J. Mol. Med. 2010, 25, 421–432. [Google Scholar] [PubMed]
- Cheng, K.C.; Huang, H.C.; Chen, J.H.; Hsu, J.W.; Cheng, H.C.; Ou, C.H.; Yang, W.B.; Chen, S.T.; Wong, C.H.; Juan, H.F. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: From gene expression to network construction. BMC Genom. 2007, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, J.; Jiang, J.; Smith, A.; Jedinak, A.; Thyagarajan-Sahu, A.; Sandusky, G.E.; Nakshatri, H.; Sliva, D. The mushroom Ganoderma lucidum suppresses breast-to-lung cancer metastasis through the inhibition of pro-invasive genes. Int. J. Oncol. 2014, 44, 2009–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.H.; Leung, A.Y.; Chen, C.F. The effects of two different Ganoderma species (Lingzhi) on gene expression in human monocytic THP-1 cells. Nutr. Cancer 2010, 62, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tokuji, Y.; Yoneyama, S.; Fujii-Akiyama, K.; Kinoshita, M.; Chiji, H.; Ohnishi, M. Effect of dietary Maitake (Grifola frondosa) mushrooms on plasma cholesterol and hepatic gene expression in cholesterol-fed mice. J. Oleo. Sci. 2013, 62, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tokuji, Y.; Yoneyama, S.; Fujii-Akiyama, K.; Kinoshita, M.; Ohnishi, M. Profiling of hepatic gene expression of mice fed with edible Japanese mushrooms by DNA microarray analysis: Comparison among Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus. J. Agric. Food Chem. 2011, 59, 10723–10731. [Google Scholar] [CrossRef] [PubMed]
- Kawano, M.; Thet, M.M.; Makino, T.; Kushida, T.; Sakagami, H. DNA microarray analysis of signaling pathway in macrophages stimulated by lignin-carbohydrate complex from Lentinus edodes mycelia (LEM) extract. Anticancer Res. 2010, 30, 2567–2576. [Google Scholar] [PubMed]
- Jiang, J.; Sliva, D. Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. Int. J. Oncol. 2010, 37, 1529–1536. [Google Scholar] [PubMed]
- Jedinak, A.; Sliva, D. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway. Int. J. Oncol. 2008, 33, 1307–1313. [Google Scholar] [PubMed]
- Cheng, S.; Eliaz, I.; Lin, J.; Thyagarajan-Sahu, A.; Sliva, D. Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int. J. Oncol. 2013, 42, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.C.; Wu, J.M. Differential control of growth, cell cycle progression, and gene expression in human estrogen receptor positive MCF-7 breast cancer cells by extracts derived from polysaccharopeptide I’m-Yunity and Danshen and their combination. Int. J. Oncol. 2006, 29, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, J.; Ishigaki, Y.; Takano, F.; Takahashi, T.; Yoshida, J.; Moriya, J.; Takata, T.; Tatsuno, T.; Sasaki, K.; Ohta, T.; et al. The Kampo medicines Orengedokuto, Bofutsushosan and Boiogito have different activities to regulate gene expressions in differentiated rat white adipocytes: Comprehensive analysis of genetic profiles. Biol. Pharm. Bull. 2008, 31, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, H.G.; Han, J.M.; Lee, J.S.; Lee, H.W.; Choi, M.K.; Son, C.G. The herbal formula CGX ameliorates the expression of vascular endothelial growth factor in alcoholic liver fibrosis. J. Ethnopharmacol. 2013, 150, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.C.; Gao, Q.T.; Cheung, A.W.; Zhu, J.T.; Lau, F.T.; Li, J.; Li, W.Z.; Chu, G.K.; Duan, R.; Cheung, J.K.; et al. A Chinese herbal decoction, Danggui Buxue Tang, stimulates proliferation, differentiation and gene expression of cultured osteosarcoma cells: Genomic approach to reveal specific gene activation. Evid. Based Complement. Altern. Med. 2011, 2011, 307548. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yang, J.; Yang, X.; Hong, D.; Wu, L.; Yu, J. Effect of Guanxin No.2 decoction on gene expression in different areas of the myocardial infarcted heart of rats using microarray technology. J. Pharm. Pharmacol. 2009, 61, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tohda, M.; Hayashi, H.; Sukma, M.; Tanaka, K. BNIP-3: A novel candidate for an intrinsic depression-related factor found in NG108-15 cells treated with Hochu-ekki-to, a traditional oriental medicine, or typical antidepressants. Neurosci. Res. 2008, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Noguchi, M.; Hayashi, O.; Makino, K.; Yamada, H. Hochuekkito, a Kampo (traditional Japanese herbal) Medicine, Enhances Mucosal IgA Antibody Response in Mice Immunized with Antigen-entrapped Biodegradable Microparticles. Evid. Based Complement. Altern. Med. 2010, 7, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cheng, X.R.; Zhou, W.X.; Zhang, Y.X. Gene expression patterns of hippocampus and cerebral cortex of senescence-accelerated mouse treated with Huang-Lian-Jie-Du decoction. Neurosci. Lett. 2008, 439, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Sakaida, I.; Tsuchiya, M.; Kawaguchi, K.; Kimura, T.; Terai, S.; Okita, K. Herbal medicine Inchin-ko-to (TJ-135) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient l-amino acid-defined diet. J. Hepatol. 2003, 38, 762–769. [Google Scholar] [CrossRef]
- Zheng, H.C.; Noguchi, A.; Kikuchi, K.; Ando, T.; Nakamura, T.; Takano, Y. Gene expression profiling of lens tumors, liver and spleen in α-crystallin/SV40 T antigen transgenic mice treated with Juzen-taiho-to. Mol. Med. Rep. 2014, 9, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Munakata, K.; Takashima, K.; Nishiyama, M.; Asano, N.; Mase, A.; Hioki, K.; Ohnishi, Y.; Yamamoto, M.; Watanabe, K. Microarray analysis on germfree mice elucidates the primary target of a traditional Japanese medicine Juzentaihoto: Acceleration of IFN-α response via affecting the ISGF3-IRF7 signaling cascade. BMC Genomics 2012, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.X.; Zhang, X.Z.; Wu, F.; He, L.Q. The effects of Kangxianling on renal fibrosis as assessed with a customized gene chip. J. Tradit. Chin. Med. 2012, 32, 229–233. [Google Scholar] [CrossRef]
- Hayasaki, T.; Sakurai, M.; Hayashi, T.; Murakami, K.; Hanawa, T. Analysis of pharmacological effect and molecular mechanisms of a traditional herbal medicine by global gene expression analysis: An exploratory study. J. Clin. Pharm. Ther. 2007, 32, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Bonham, M.J.; Galkin, A.; Montgomery, B.; Stahl, W.L.; Agus, D.; Nelson, P.S. Effects of the herbal extract PC-SPES on microtubule dynamics and paclitaxel-mediated prostate tumor growth inhibition. J. Natl. Cancer Inst. 2002, 94, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, X.; Lin, H.; Hu, Y.; Mu, X. Study on the antiendotoxin action of Pulsatillae Decoction using an Affymetrix rat genome array. Cell Immunol. 2009, 257, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Miao, Y.; Pan, P.; Cheng, B.; Bai, G.; Wu, H. Qingfei Xiaoyan Wan alleviates asthma through multi-target network regulation. BMC Complement. Altern. Med. 2013, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Wang, L.; Zhang, S.H.; Liu, J.W.; Zheng, P.Y.; Liu, T. Effect of Chinese medicine Qinggan Huoxuefang on inducing HSC apoptosis in alcoholic liver fibrosis rats. World J. Gastroenterol. 2006, 12, 2047–2052. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yamamoto, T.; Yoshida, M.; Fujiwara, K.; Kageyama-Yahara, N.; Kuramoto, H.; Shimada, Y.; Kadowaki, M. The traditional herbal medicine saireito exerts its inhibitory effect on murine oxazolone-induced colitis via the induction of Th1-polarized immune responses in the mucosal immune system of the colon. Int. Arch. Allergy Immunol. 2010, 151, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Chiu, J.H.; Tsai, T.H.; Tsou, A.P.; Hu, C.P.; Chi, C.W.; Yeh, S.F.; Lui, W.Y.; Wu, C.W.; Chou, C.K. Gene expression profiling predicts liver responses to a herbal remedy after partial hepatectomy in mice. Int. J. Mol. Med. 2005, 16, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Bae, S.; Yoon, Y. The WNT/β-catenin pathway mediates the anti-adipogenic mechanism of SH21B, a traditional herbal medicine for the treatment of obesity. J. Ethnopharmacol. 2011, 133, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Wang, Z.; Wang, S.; Ravula, R.; Yang, L.; Xu, J.; Wang, C.; Zuo, Z.; Chow, M.S.; Shi, L.; et al. Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS ONE 2011, 6, e18278. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Lu, B.; Liu, M.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. Evaluating the pharmacological mechanism of Chinese medicine Si-Wu-Tang through multi-level data integration. PLoS ONE 2013, 8, e72334. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lee, S.M.; Wong, Y.M.; Lau, C.P.; Shaw, P.C.; Qin, L.; Leung, P.C.; Fung, K.P. Dosing effects of an antiosteoporosis herbal formula—A preclinical investigation using a rat model. Phytother. Res. 2008, 22, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.M.; Li, C.C.; Chen, C.Y.; Lo, H.Y.; Cheng, W.Y.; Lee, C.H.; Yang, S.Z.; Wu, S.L.; Hsiang, C.Y.; Ho, T.Y. Application of bioactivity database of Chinese herbal medicine on the therapeutic prediction, drug development, and safety evaluation. J. Ethnopharmacol. 2010, 132, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Iacovidou, M.; Takaoka, A.; Soll, C.E.; Blumenstein, M. A polyacetylene compound from herbal medicine regulates genes associated with thrombosis in endothelial cells. Bioorg. Med. Chem. Lett. 2007, 17, 6879–6882. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Irie, Y.; Murata, T.; Ishige, A.; Anjiki, N.; Watanabe, K. Toki-to protects dopaminergic neurons in the substantia nigra from neurotoxicity of MPTP in mice. Phytother. Res. 2007, 21, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Pan-Hammarström, Q.; Wen, S.; Hammarström, L. Cytokine gene expression profiles in human lymphocytes induced by a formula of traditional Chinese medicine, vigconic VI-28. J. Interferon Cytokine Res. 2006, 26, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Feng, L.; Li, M.; Dong, C.; Zhang, W. Effects of Xiaoqinglong decoction on gene expression profiles in a rat chronic obstructive pulmonary disease model. Biosci. Trends 2012, 6, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, W.Y.; Wu, L.Y.; Zheng, L.P.; Lin, W.; Gao, D.; Kaptchuk, T.J.; Chen, K.J. A microarray analysis of angiogenesis modulation effect of Xuefu Zhuyu Decoction on endothelial cells. Chin. J. Integr. Med. 2012, 18, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.S.; So, C.S.; Kim, Y.O.; Ahn, D.K.; Sharman, K.G.; Sharman, E.H. The herbal prescription youkongdan modulates rodent memory, ischemic damage and cortical mRNA gene expression. Int. J. Neurosci. 2004, 114, 1365–1388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Yao, R.; Li, J.; Yan, Y.; La Regina, M.; Lemon, W.L.; Grubbs, C.J.; Lubet, R.A.; You, M. Cancer chemopreventive activity of a mixture of Chinese herbs (antitumor B) in mouse lung tumor models. Oncogene 2004, 23, 3841–3850. [Google Scholar] [CrossRef] [PubMed]
- Bonnet-Duquennoy, M.; Dumas, M.; Debacker, A.; Lazou, K.; Talbourdet, S.; Franchi, J.; Heusèle, C.; André, P.; Schnebert, S.; Bonté, F.; et al. Transcriptional effect of an Aframomum angustifolium seed extract on human cutaneous cells using low-density DNA chips. J. Cosmet. Dermatol. 2007, 6, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Su, C.C.; Chen, G.W.; Tan, T.W.; Lin, J.G.; Chung, J.G. Crude extract of garlic induced caspase-3 gene expression leading to apoptosis in human colon cancer cells. In Vivo 2006, 20, 85–90. [Google Scholar] [PubMed]
- Frantz, D.J.; Hughes, B.G.; Nelson, D.R.; Murray, B.K.; Christensen, M.J. Cell cycle arrest and differential gene expression in HT-29 cells exposed to an aqueous garlic extract. Nutr. Cancer 2000, 38, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Triebel, S.; Anke, T.; Richling, E.; Erkel, G. Influence of apple polyphenols on inflammatory gene expression. Mol. Nutr. Food Res. 2009, 53, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Ribnicky, D.; Zhang, X.H.; Zuberi, A.; Raskin, I.; Yu, Y.; Cefalu, W.T. An extract of Artemisia dracunculus L. enhances insulin receptor signaling and modulates gene expression in skeletal muscle in KK-A(y) mice. J. Nutr. Biochem. 2011, 22, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Dombkowski, A.A.; Seguin, C.; Rocha, C.; Cukovic, D.; Mukundan, A.; Henry, C.; Stoner, G.D. Mechanistic basis for the chemopreventive effects of black raspberries at a late stage of rat esophageal carcinogenesis. Mol. Carcinogen. 2011, 50, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.S.; Kanaya, N.; Phung, S.; Liu, Z.; Chen, S. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J. Nutr. 2011, 141, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Furniss, C.S.; Bennett, R.N.; Bacon, J.R.; LeGall, G.; Mithen, R.F. Polyamine metabolism and transforming growth factor-β signaling are affected in Caco-2 cells by differentially cooked broccoli extracts. J. Nutr. 2008, 138, 1840–1845. [Google Scholar] [PubMed]
- Suzuki, T.; Kumazoe, M.; Kim, Y.; Yamashita, S.; Nakahara, K.; Tsukamoto, S.; Sasaki, M.; Hagihara, T.; Tsurudome, Y.; Huang, Y.; et al. Green tea extract containing a highly absorbent catechin prevents diet-induced lipid metabolism disorder. Sci. Rep. 2013, 3, 2749. [Google Scholar] [CrossRef] [PubMed]
- Klenow, S.; Jahns, F.; Pool-Zobel, B.L.; Glei, M. Does an extract of carob (Ceratonia siliqua L.) have chemopreventive potential related to oxidative stress and drug metabolism in human colon cells? J. Agric. Food Chem. 2009, 57, 2999–3004. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.S.; Yoo, H.J.; Song, H.J.; Kim, K.K.; Chun, Y.J.; Matsui, T.; Kim, H.B. Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, chungkookjang. Nutr. Cancer 2011, 63, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.; Subirada, F.; Pérez-Enciso, M.; Blanch, F.; Jeusette, I.; Romano, V.; Torre, C. Plant polyphenol intake alters gene expression in canine leukocytes. J. Nutrigenet. Nutrigenom. 2009, 2, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Leow, S.S.; Sekaran, S.D.; Sundram, K.; Tan, Y.; Sambanthamurthi, R. Gene expression changes in spleens and livers of tumour-bearing mice suggest delayed inflammation and attenuated cachexia in response to oil palm phenolics. J. Nutrigenet. Nutrigenom. 2013, 6, 305–326. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Katsumura, T.; Shiozuka, C.; Ooyauchi, K.; Kawasaki, K.; Takigawa, S.; Fukushima, T.; Tokuji, Y.; Kinoshita, M.; Ohnishi, M.; et al. Anti-inflammatory effect of buckwheat sprouts in lipopolysaccharide-activated human colon cancer cells and mice. Biosci. Biotechnol. Biochem. 2008, 72, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, C.M.; Wolffram, S.; Ader, P.; Rimbach, G.; Packer, L.; Maguire, J.J.; Schultz, P.G.; Gohil, K. The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba. Proc. Natl. Acad. Sci. USA 2001, 98, 6577–6580. [Google Scholar] [CrossRef] [PubMed]
- Rimbach, G.; Wolffram, S.; Watanabe, C.; Packer, L.; Gohil, K. Effect of Ginkgo biloba (EGb 761) on differential gene expression. Pharmacopsychiatry 2003, 36 (Suppl. 1), S95–S99. [Google Scholar] [PubMed]
- Yunoki, K.; Sasaki, G.; Tokuji, Y.; Kinoshita, M.; Naito, A.; Aida, K.; Ohnishi, M. Effect of dietary wine pomace extract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis. J. Agric. Food Chem. 2008, 56, 12052–12058. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, M.; Wiles, J.E.; Zhang, X.; Howard, L.R.; Gupta, S.; Smith, A.A.; Ju, Z.Y.; DeLany, J.P. Gene expression microarray analysis of the effects of grape anthocyanins in mice: A test of a hypothesis-generating paradigm. Metabolism 2008, 57 (Suppl. 1), S52–S57. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Sen, C.K.; Ray, S.D.; Das, D.K.; Bagchi, M.; Preuss, H.G.; Vinson, J.A. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat. Res. 2003, 523–524, 87–97. [Google Scholar] [CrossRef]
- De Waard, W.J.; Aarts, J.M.; Peijnenburg, A.A.; Baykus, H.; Talsma, E.; Punt, A.; de Kok, T.M.; van Schooten, F.J.; Hoogenboom, L.A. Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits. Toxicol. In Vitro 2008, 22, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.P.; Wilson, K.; Kawa, A.; Raner, G.M. Effects of green tea extracts on gene expression in HepG2 and Cal-27 cells. Food Chem. Toxicol. 2006, 44, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, S.J.; Roy, N.C.; Davy, M.; Cooney, J.M.; Barnett, M.P.; Zhu, S.; Park, Z.; Love, D.R.; Laing, W.A. Effects of kiwifruit extracts on colonic gene and protein expression levels in IL-10 gene-deficient mice. Br. J. Nutr. 2012, 108, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, S.; Wang, J.; Lin, P.; Liu, G.; Lu, Y.; Zhang, J.; Wang, W.; Wei, Y. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol. Appl. Pharmacol. 2006, 215, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Lee, D.; Kim, H.; Park, J.; Bahn, Y.S. Global transcriptome analysis of eukaryotic genes affected by gromwell extract. J. Sci. Food Agric. 2014, 94, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Castagnini, C.; Luceri, C.; Toti, S.; Bigagli, E.; Caderni, G.; Femia, A.P.; Giovannelli, L.; Lodovici, M.; Pitozzi, V.; Salvadori, M.; et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols. Br. J. Nutr. 2009, 102, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Kobori, M.; Nakayama, H.; Fukushima, K.; Ohnishi-Kameyama, M.; Ono, H.; Fukushima, T.; Akimoto, Y.; Masumoto, S.; Yukizaki, C.; Hoshi, Y.; et al. Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J. Agric. Food Chem. 2008, 56, 4004–4011. [Google Scholar] [CrossRef] [PubMed]
- Croteau, D.L.; de Souza-Pinto, N.C.; Harboe, C.; Keijzers, G.; Zhang, Y.; Becker, K.; Sheng, S.; Bohr, V.A. DNA repair and the accumulation of oxidatively damaged DNA are affected by fruit intake in mice. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Ruano, J.; Fernandez, J.M.; Parnell, L.D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M.; Lopez-Miranda, J.; et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom. 2010, 11, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izuchi, R.; Nakai, Y.; Takahashi, H.; Ushiama, S.; Okada, S.; Misaka, T.; Abe, K. Hepatic gene expression of the insulin signaling pathway is altered by administration of persimmon peel extract: A DNA microarray study using type 2 diabetic Goto-Kakizaki rats. J. Agric. Food Chem. 2011, 59, 3320–3329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kris-Etherton, P.M.; Thompson, J.T.; Vanden Heuvel, J.P. Effect of pistachio oil on gene expression of IFN-induced protein with tetratricopeptide repeats 2: A biomarker of inflammatory response. Mol. Nutr. Food Res. 2010, 54 (Suppl. 1), S83–S92. [Google Scholar] [CrossRef] [PubMed]
- Im, R.; Mano, H.; Nakatani, S.; Shimizu, J.; Wada, M. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays. Biosci. Biotechnol. Biochem. 2008, 72, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Ise, R.; Han, D.; Takahashi, Y.; Terasaka, S.; Inoue, A.; Tanji, M.; Kiyama, R. Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett. 2005, 579, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Tokuji, Y.; Akiyama, K.; Yunoki, K.; Kinoshita, M.; Sasaki, K.; Kobayashi, H.; Wada, M.; Ohnishi, M. Screening for beneficial effects of oral intake of sweet corn by DNA microarray analysis. J. Food Sci. 2009, 74, H197–H203. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.C.; Herzog, B.; Boone, B.; Sims, L.; Waltner-Law, M. An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J. Ethnopharmacol. 2005, 96, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Chia, Y.C.; Rajbanshi, R.; Calhoun, C.; Chiu, R.H. Anti-neoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 2010, 15, 8377–8389. [Google Scholar] [CrossRef] [PubMed]
- Mykkänen, O.T.; Kalesnykas, G.; Adriaens, M.; Evelo, C.T.; Törrönen, R.; Kaarniranta, K. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice. Mol. Vis. 2012, 18, 2338–2351. [Google Scholar] [PubMed]
- Watanabe, A.; Kato, T.; Ito, Y.; Yoshida, I.; Harada, T.; Mishima, T.; Fujita, K.; Watai, M.; Nakagawa, K.; Miyazawa, T. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2014, 453, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, R.G.; Meng, F.Y.; Wang, Z.; Wang, C.M.; Wang, Y.Y.; Zhang, Z.J. Synergism and rules from combination of Baicalin, Jasminoidin and Desoxycholic acid in refined Qing Kai Ling for treat ischemic stroke mice model. PLoS ONE 2012, 7, e45811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zuo, G.; Bai, Q.; Wang, Y.; Yang, R.; Qiu, J. Microarray expression profiling of Yersinia pestis in response to berberine. Planta Med. 2009, 75, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.; Iizuka, N.; Hamamoto, Y.; Uchimura, S.; Miyamoto, T.; Tsunedomi, R.; Miyamoto, K.; Hazama, S.; Okita, K.; Oka, M. Molecular dissection of a medicinal herb with anti-tumor activity by oligonucleotide microarray. Life Sci. 2005, 77, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.J.; Brazeau, D.A.; Morris, M.E. Effects of flavonoids genistein and biochanin A on gene expression and their metabolism in human mammary cells. Nutr. Cancer 2007, 57, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Takahashi, M.; Byun, H.M.; Link, A.; Sharma, N.; Balaguer, F.; Leung, H.C.; Boland, C.R.; Goel, A. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol. Ther. 2012, 13, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Furutani, Y.; Kimura, S.; Zhu, Y.; Kawabata, K.; Furutani, M.; Nishikawa, T.; Tanaka, T.; Masaki, T.; Matsuoka, R.; et al. Brefeldin A is an estrogenic, Erk1/2-activating component in the extract of Agaricus blazei mycelia. J. Agric. Food Chem. 2013, 61, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.N.; Blower, P.E.; Alvarado, O.; Ravula, R.; Gout, P.W.; Huang, Y. Pharmacogenomic approach reveals a role for the x(c)− cystine/glutamate antiporter in growth and celastrol resistance of glioma cell lines. J. Pharmacol. Exp. Ther. 2010, 332, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Venkatesha, S.H.; Moudgil, K.D. Microarray-based gene expression profiling reveals the mediators and pathways involved in the anti-arthritic activity of Celastrus-derived Celastrol. Int. Immunopharmacol. 2012, 13, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, C.; Rodriguez, S.; Ramachandran, R.; Raveendran Nair, P.K.; Fonseca, H.; Khatib, Z.; Escalon, E.; Melnick, S.J. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res. 2005, 25, 3293–3302. [Google Scholar] [PubMed]
- Meja, K.K.; Rajendrasozhan, S.; Adenuga, D.; Biswas, S.K.; Sundar, I.K.; Spooner, G.; Marwick, J.A.; Chakravarty, P.; Fletcher, D.; Whittaker, P.; et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am. J. Respir. Cell. Mol. Biol. 2008, 39, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Lee, B.S.; Semnani, S.; Avanesian, A.; Um, C.Y.; Jeon, H.J.; Seong, K.M.; Yu, K.; Min, K.J.; Jafari, M. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res. 2010, 13, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Powolny, A.A.; Singh, S.V.; Melov, S.; Hubbard, A.; Fisher, A.L. The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp. Gerontol. 2011, 46, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Tilton, S.C.; Hendricks, J.D.; Orner, G.A.; Pereira, C.B.; Bailey, G.S.; Williams, D.E. Gene expression analysis during tumor enhancement by the dietary phytochemical, 3,3′-diindolylmethane, in rainbow trout. Carcinogenesis 2007, 28, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Oshida, K.; Hirakata, M.; Maeda, A.; Miyoshi, T.; Miyamoto, Y. Toxicological effect of emodin in mouse testicular gene expression profile. J. Appl. Toxicol. 2011, 31, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br. J. Pharmacol. 2007, 150, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Kiyama, R. Characterization of estrogenic activity of ginsenosides in MCF-7 cells using a customized DNA microarray. Food Chem. 2009, 113, 672–678. [Google Scholar] [CrossRef]
- Xie, J.T.; Mehendale, S.R.; Li, X.; Quigg, R.; Wang, X.; Wang, C.Z.; Wu, J.A.; Aung, H.H.; Rue, P.A.; Bell, G.I.; et al. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta 2005, 1740, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Inoue, A.; Zhu, Y.; Tanji, M.; Kiyama, R. Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root. Food Chem. Toxicol. 2007, 45, 2470–2478. [Google Scholar] [CrossRef] [PubMed]
- Schröfelbauer, B.; Raffetseder, J.; Hauner, M.; Wolkerstorfer, A.; Ernst, W.; Szolar, O.H. Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem. J. 2009, 421, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Lizarraga, D.; Vinardell, M.P.; Noé, V.; van Delft, J.H.; Alcarraz-Vizán, G.; van Breda, S.G.; Staal, Y.; Günther, U.L.; Carrigan, J.B.; Reed, M.A.; et al. A lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber induces genetic and metabolic alterations in colon mucosa of female C57BL/6J mice. J. Nutr. 2011, 141, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Luo, X.; Li, L.; Shi, Y.; Tan, M.; Weng, X.; Li, W.; Liu, J.; Cao, Y. Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett. 2007, 258, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Shah, H.; Rink, C.; Khanna, S.; Bagchi, D.; Bagchi, M.; Sen, C.K. Transcriptome of primary adipocytes from obese women in response to a novel hydroxycitric acid-based dietary supplement. DNA Cell Biol. 2007, 26, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Shima, G.; Aiuchi, T.; Horie, M.; Hori, K.; Nakajo, S.; Kajimoto, S.; Shibayama-Imazu, T.; Nakaya, K. Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by β-hydroxyisovalerylshikonin. J. Biol. Chem. 2004, 279, 42503–42515. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, D.; Huang, J.; Zhang, W.; Ding, Y.; Wang, S. Preparation of cardiovascular disease-related genes microarray and its application in exploring ligustrazine-induced changes in endothelial gene expression. Pol. J. Pharmacol. 2004, 56, 427–433. [Google Scholar] [PubMed]
- Tan, H.L.; Moran, N.E.; Cichon, M.J.; Riedl, K.M.; Schwartz, S.J.; Erdman, J.W., Jr.; Pearl, D.K.; Thomas-Ahner, J.M.; Clinton, S.K. β-Carotene-9′,10′-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice. J. Nutr. 2014, 144, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, J.; Tanigawa, S.; Hou, D.X. Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myricetin. Mol. Nutr. Food Res. 2013, 57, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Ock, J.; Han, H.S.; Hong, S.H.; Lee, S.Y.; Han, Y.M.; Kwon, B.M.; Suk, K. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br. J. Pharmacol. 2010, 159, 1646–1662. [Google Scholar] [CrossRef] [PubMed]
- Leow, S.S.; Sekaran, S.D.; Sundram, K.; Tan, Y.; Sambanthamurthi, R. Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes. BMC Genom. 2011, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Salunga, T.L.; Tabuchi, Y.; Takasaki, I.; Feril, L.B., Jr.; Zhao, Q.L.; Ohtsuka, K.; Tsuneyama, K.; Kondo, T. Identification of genes responsive to paeoniflorin, a heat shock protein-inducing compound, in human leukemia U937 cells. Int. J. Hyperth. 2007, 23, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Su, S.Y.; Cheng, C.Y.; Tsai, T.H.; Hsiang, C.Y.; Ho, T.Y.; Hsieh, C.L. Paeonol attenuates H2O2-induced NF-κB-associated amyloid precursor protein expression. Am. J. Chin. Med. 2010, 38, 1171–1192. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chang, E.J.; Lee, Y.; Kim, J.S.; Kang, S.S.; Kim, H.H. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflamm. Res. 2008, 57, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.S.; Jeong, S.J.; Kim, J.H.; Lee, H.J.; Song, H.S.; Kim, M.S.; Ko, E.; Lee, H.J.; Khil, J.H.; Jang, H.J.; et al. The genome-wide expression profile of 1,2,3,4,6-penta-O-galloyl-β-d-glucose-treated MDA-MB-231 breast cancer cells: Molecular target on cancer metabolism. Mol. Cells 2011, 32, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Le, K.; Moghadasian, M.H. Long-term phytosterol treatment alters gene expression in the liver of apo E-deficient mice. J. Nutr. Biochem. 2008, 19, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Shuman Moss, L.A.; Jensen-Taubman, S.; Rubinstein, D.; Viole, G.; Stetler-Stevenson, W.G. Dietary intake of a plant phospholipid/lipid conjugate reduces lung cancer growth and tumor angiogenesis. Carcinogenesis 2014, 35, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, R.; Yanagi, H.; Hashimoto-Tamaoki, T.; Morinaga, T.; Nakano, Y.; Noda, M.; Fujiwara, Y.; Okamura, H.; Yamamura, T. Gene expression in response to anti-tumour intervention by polysaccharide-K (PSK) in colorectal carcinoma cells. Oncol. Rep. 2004, 12, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mei, L.; Niu, Y.; Sun, Y.; Huang, H.; Li, Q.; Kong, X.; Liu, L.; Li, Z.; Mei, Q. Low molecular weight apple polysaccharides induced cell cycle arrest in colorectal tumor. Nutr. Cancer 2012, 64, 439–463. [Google Scholar] [CrossRef] [PubMed]
- Kachroo, P.; Ivanov, I.; Davidson, L.A.; Chowdhary, B.P.; Lupton, J.R.; Chapkin, R.S. Classification of diet-modulated gene signatures at the colon cancer initiation and progression stages. Dig. Dis. Sci. 2011, 56, 2595–2604. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.; Edvardsen, R.B.; Tocher, D.R.; Bell, J.G. Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod (Gadus morhua) fed diets with Camelina oil as replacement for fish oil. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 161, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.; Jeong, J.C.; Jeong, Y.S.; Kim, E.J.; Um, S.J. Quercetin potentiates apoptosis by inhibiting nuclear factor-κB signaling in H460 lung cancer cells. Biol. Pharm. Bull. 2013, 36, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.K.; Tucker, G.A.; Brameld, J.M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc. Nutr. Soc. 2008, 67, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Natoli, R.; Zhu, Y.; Valter, K.; Bisti, S.; Eells, J.; Stone, J. Gene and noncoding RNA regulation underlying photoreceptor protection: Microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 2010, 16, 1801–1822. [Google Scholar] [PubMed]
- Yang, Y.; Ge, P.J.; Jiang, L.; Li, F.L.; Zhu, Q.Y. Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B. BMC Complement. Altern. Med. 2011, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Nakashima, Y.; Iida, H.; Yasumoto, S.; Katsuta, M. Lipid metabolism and nutrigenomics—Impact of sesame lignans on gene expression profiles and fatty acid oxidation in rat liver. Forum Nutr. 2009, 61, 10–24. [Google Scholar] [PubMed]
- Bateman, H.R.; Liang, Q.; Fan, D.; Rodriguez, V.; Lessner, S.M. Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells. PLoS ONE 2013, 8, e70500. [Google Scholar] [CrossRef] [PubMed]
- Melchini, A.; Needs, P.W.; Mithen, R.F.; Traka, M.H. Enhanced in vitro biological activity of synthetic 2-(2-pyridyl) ethyl isothiocyanate compared to natural 4-(methylsulfinyl) butyl isothiocyanate. J. Med. Chem. 2012, 55, 9682–9692. [Google Scholar] [CrossRef] [PubMed]
- Aiyar, S.E.; Park, H.; Aldo, P.B.; Mor, G.; Gildea, J.J.; Miller, A.L.; Thompson, E.B.; Castle, J.D.; Kim, S.; Santen, R.J. TMS, a chemically modified herbal derivative of resveratrol, induces cell death by targeting Bax. Breast Cancer Res. Treat. 2010, 124, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sun, W.; Yang, C.H.; Hu, H.Z.; Jiang, Y.H. Tanshinone II a protects against lipopolysaccharides-induced endothelial cell injury via Rho/Rho kinase pathway. Chin. J. Integr. Med. 2014, 20, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Wang, L.; Wu, F.; Huang, L.; Xu, Y.; Ye, J.; Xiao, B.; Meng, F.; Chen, S.; et al. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling. BMC Complement. Altern. Med. 2012, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.M.; Han, F.M.; Du, P.; Xia, Q.S. Gene expression profile analyses of mice livers injured by Leigongteng. World J. Gastroenterol. 2007, 13, 3619–3624. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Tanji, M.; Kiyama, R. Focused Microarray Analysis: Characterization of Phenomes by Gene Expression Profiling. Curr. Pharmacogenom. 2006, 4, 245–260. [Google Scholar] [CrossRef]
- Kiyama, R.; Zhu, Y.; Kawaguchi, K.; Iitake, N.; Wada-Kiyama, Y.; Dong, S. Estrogen-responsive genes for environmental studies. Environ. Technol. Innov. 2014, 1, 16–28. [Google Scholar] [CrossRef]
- Zhu, Y.; Kitamura, K.; Maruyama, A.; Higashihara, T.; Kiyama, R. Estrogenic activity of bio-degradation products of C-heavy oil revealed by gene-expression profiling using an oligo-DNA microarray system. Environ. Pollut. 2012, 168, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R.; Wada-Kiyama, Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. Environ. Int. 2015, 83, 11–40. [Google Scholar] [CrossRef] [PubMed]
- Kiyama, R. Endocrine disruptor actions through receptor crosstalk. Environ. Biotechnol. 2016, 12, 1–16. [Google Scholar]
- Qv, X.Y.; Jiang, J.G.; Piao, J.H. Pharmacodynamic studies of Chinese medicine at levels of whole animal, cell and molecular models. Curr. Med. Chem. 2010, 17, 4521–4537. [Google Scholar] [CrossRef] [PubMed]
- Tanji, M.; Kiyama, R. Expression profiling of estrogen responsive genes using genomic and proteomic techniques for the evaluation of endocrine disruptors. Curr. Pharmacogenom. 2004, 2, 255–266. [Google Scholar] [CrossRef]
- Lee, S.S.; Zhang, B.; He, M.L.; Chang, V.S.; Kung, H.F. Screening of active ingredients of herbal medicine for interaction with CYP450 3A4. Phytother. Res. 2007, 21, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Toxicity Testing in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
Source | Extract or Material Examined | Pathway or Function Examined/Identified | Reference (Assay a) |
---|---|---|---|
Herb | |||
Actaea racemosa (Black cohosh) | Extract | Anti-carcinogenesis | Einbond et al., 2012 [14] (A, C, T) |
Angelica sinensis (Dong quai) | Extract | Wound healing | Zhao et al., 2012 [15] (C, T) |
Anoectochilus formosanus (an orchid) | Extract | Anti-carcinogenesis | Yang et al., 2004 [16] (C, T) |
Astragalus propinquus, Rehmannia glutinosa | Radix extract | Wnt signaling/Angiogenesis | Zhang et al., 2011 [17] (C, P, T) |
Boswellia serrata (Salai) | Extract | Anti-inflammation | Kiela et al., 2005 [18] (A, C, R, T) |
Chelidonium majus (Greater celandine) | Extract (Alkaloids) | Anti-carcinogenesis | El-Readi et al., 2013 [19] (C, T) |
Chrysanthemum lavandulifolium (Mum) | Extract | Antibiotic | Kim et al., 2013 [20] (T) |
Cistanche tubulosa | Root extract | Anti-atherosclerosis | Shimoda et al., 2009 [21] (A, T) |
Coptis chinensis (Chinese goldthread) | Rhizome extract | p53 signaling | Cheng et al., 2008 [22] (C, T) |
Coptis japonica (Goldthread) | Rhizome extract | Anti-carcinogenesis | Iizuka et al., 2003 [23] (C, T) |
Coptis japonica (Goldthread) | Rhizome extract | IFβ/TNF-α/Apoptosis | Kang et al., 2005 [24] (C, P, T) |
Curcuma longa (Turmeric) | Extract | Anti-inflammation | Kim et al., 2013 [25] (A, C, T) |
Curcuma longa (Turmeric) | Essential oil | Anti-diabetic effect | Honda et al., 2006 [26] (A, T) |
Dioscorea villosa (Wild yam), Lithospermum canescens (Alkanet root), Trillium erectum (Beth root) | Extract | Anti-mitotic effect | Mazzio et al., 2014 [27] (C, T) |
Echinacea purpurea (Purple coneflower) | Extract | Immune response | Wang et al., 2006 [28] (C, T) |
Echinacea purpurea (Purple coneflower) | Extract | Immune response | Wang et al., 2008 [29] (C, P, T) |
Equisetum arvense (Field horsetail) | Extract | Metabolism/Stress response | Cook et al., 2013 [30] (C, T) |
Eupatorium perfoliatum (Boneset) | Extract | Anti-inflammation | Maas et al., 2011 [31] (C, P, T) |
Hedyotis diffusa | Extract | Anti-carcinogenesis | Kuo et al., 2015 [32] (C, T) |
Hypericum perforatum (St. John’s wort) | Extract | Antidepressant | Wong et al., 2004 [33] (A, T) |
Hypericum perforatum (St. John’s wort) | Extract | Neurological disease/Angiogenesis | McCue & Phang, 2008 [34] (A, P, T) |
Levisticum officinale (Lovage) | Essential oil | Cell proliferation | Sertel et al., 2011 [35] (C, T) |
Nelumbo nucifera (Lotus) | Seed extract | MAPK/NO/Anti-inflammation | Sohn et al., 2009 [36] (C, P, T) |
Nelumbo nucifera (Lotus) | Seed extract | Neuroprotection | Lee et al., 2010 [37] (A, T) |
Paeonia lactiflora (Chinese peony) | Root extract | Apoptosis | Lee et al., 2002 [38] (C, T) |
Paeonia suffruticosa (Moutan) | Extract | Anti-inflammation | Yun et al., 2012 [39] (C, T) |
Panax quinquefolius (American ginseng) | Extract | Anti-carcinogenesis | Luo et al., 2008 [40] (C, T) |
Piper methysticum (Kava) | Extract | Hepatotoxicity | Guo et al., 2010 [41] (A, T) |
Piper methysticum (Kava) | Extract | Hepatotoxicity | Guo et al., 2009 [42] (A, T) |
Salvia miltiorrhiza, Pueraria lobata | Root extract | MAPK/Insulin signaling | Fong et al., 2011 [43] (C, P, T) |
Scrophularia ningpoensis (Chinese figwort) | Extract | MAPK/NF-κB/Apoptosis | Shen et al., 2012 [44] (C, P, T) |
Scutellaria barbata (Barbed skullcap) | Extract | Anti-carcinogenesis | Yin et al., 2004 [45] (C, T) |
Sutherlandia frutescens (Cancer bush) | Extract | Apoptosis | Stander et al., 2007 [46] (C, T) |
Tabebuia avellandae (Pink Lapacho) | Extract | Apoptosis | Mukherjee et al., 2009 [47] (C, T) |
Tripterygium wilfordii (Leigongteng) | Extract | PPAR/Hepatotoxicity | Zhang et al., 2012 [48] (A, T) |
Vitex rotundifolia (Beach vitex) | Extract | MAPK/Anti-inflammation | Sohn et al., 2009 [49] (C, T) |
Mushroom | |||
Agaricus bisporus (Common mushroom) | Extract | Anti-carcinogenesis | Adams et al., 2008 [50] (C, T) |
Agaricus blazei (Himematsutake) | Extract | Immune response | Ellertsen et al., 2006 [51] (P, T) |
Agaricus blazei | Extract | Anti-carcinogenesis | Grinde et al., 2006 [52] (C, T) |
Agaricus blazei | Mycelia extract | ERK/Anti-atherosclerosis | Dong et al., 2012 [53] (C, P, T) |
Cordyceps sinensis (Caterpillar fungus) | Extract | TLR signaling | Li et al., 2012 [54] (C, T) |
Daedalea gibbosa (Lumpy bracket) | Extract | NF-κB/NO production | Ruimi et al., 2010 [55] (C, R, T) |
Ganoderma lucidum (Lingzhi) | Extract (Polysaccharide-rich) | Apoptosis | Cheng et al., 2007 [56] (C, P, T) |
Ganoderma lucidum (Lingzhi) | Extract | Anti-metastatic effect | Loganathan et al., 2014 [57] (A, C, T) |
Ganoderma sinense (Lingzhi) | Extract | NF-κB/Anti-inflammation | Cheng et al., 2010 [58] (T) |
Grifola frondosa (Maitake) | Extract | Anti-arteriosclerosis | Sato et al., 2013 [59] (A, T) |
Grifola frondosa (Maitake), Hypsizigus marmoreus (Buna-shimeji) | Extract | TLR3/IF/Immune response | Sato et al., 2011 [60] (A, T) |
Lentinus edodes (Shiitake) | Mycelia extract | (Lignin-rich) Immune response | Kawano et al., 2010 [61] (C, P, T) |
Mushroom blend (Agaricus blazei, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Polyporus umbellatus) | Mycelia extract | Anti-carcinogenesis | Jiang & Sliva, 2010 [62] (C, P, T) |
Pleurotus ostreatus (Hiratake) | Extract | p53/Apoptosis | Jedinak & Sliva, 2008 [63] (C, P, T) |
Pleurotus ostreatus (Hiratake), Ganoderma lucidum, Poria cocos (Hoelen) | Extract (Triterpene-rich) | Anti-carcinogenesis | Cheng et al., 2013 [64] (C, P, T) |
Trametes versicolor (Turkey tail) | Extract | Apoptosis | Hsieh & Wu, 2006 [65] (C, P, T) |
TCM/TKM/Kampo | |||
Boiogito, Bofutsushosan, Orengedokuto (Kampo) | Mixtures of herbs | Anti-adipogenesis | Yamakawa et al., 2008 [66] (C, T) |
Chunggan (TKM) | Mixture of 13 herbs | Anti-fibrotic effect | Kim et al., 2013 [67] (C, P, T) |
Danggui Buxue Tang (TCM) | Mixture of two herbs | Proliferation/differentiation | Choi et al., 2011 [68] (C, P, R, T) |
Guanxin No.2 decoction (TCM) | Mixture of five herbs | Cardioprotection | Zeng et al., 2009 [69] (A, T) |
Hochu-ekki-to (Kampo) | Mixture of 10 herbs | Antidepressant | Tohda et al., 2008 [70] (C, T) |
Hochu-ekki-to (Kampo) | Mixture of 10 herbs | Immune response | Matsumoto et al., 2010 [71] (A, P, T) |
Huang-Lian-Jie-Du decoction (TCM) | Mixture of four herbs | Alzheimer’s disease | Zheng et al., 2008 [72] (A, T) |
Inchin-ko-to (Kampo) | Mixture of three herbs | MAPK/Apoptosis | Sakaida et al., 2003 [73] (A, P, T) |
ISF-1 (TCM) | Mixture of seven herbs | Neuroprotection | Rong et al., 2007 [6] (C, T) |
Juzen-taiho-to (Kampo) | Mixture of 10 herbs | MAPK/Anti-carcinogenesis | Zheng et al., 2014 [74] (A, T) |
Juzen-taiho-to (Kampo) | Mixture of 10 herbs | ISGF3-IRF7/IFα signaling | Munakata et al., 2012 [75] (A, P, T) |
Kangxianling (TCM) | Mixture five herbs | TGF-β1/Smad signaling | Dong et al., 2012 [76] (A, P, T) |
Kososan (Kampo) | Mixture of rive herbs | Antidepressant | Hayasaki et al., 2007 [77] (C, T) |
PC-SPES (TCM) | Mixture of eight herbs | Anti-carcinogenesis | Bonham et al., 2002 [78] (C, T) |
Pulsatillae Decoction (TCM) | Mixture of four herbs | Anti-endotoxin action | Hu et al., 2009 [79] (C, T) |
Qingfei Xiaoyan Wan (TCM) | Mixture of eight herbs | Anti-inflammation/Anti-remodeling | Zhao et al., 2013 [80] (A, P, T) |
Qinggan Huoxuefang (TCM) | Mixture of five herbs | Apoptosis | Ji et al., 2006 [81] (A, T) |
Saireito (Kampo) | Mixture 12 herbs | Immune response | Watanabe et al., 2010 [82] (A, T) |
S/B remedy | Mixture of two herbs | Cell proliferation | Wang et al., 2005 [83] (A, C, T) |
SH21B (TKM) | Mixture of seven herbs | Wnt signaling/Adipogenesis | Lee et al., 2011 [84] (C, P, T) |
Si-Wu-Tang (TCM) | Mixture of four herbs | Chemoprevention | Wen et al., 2011 [85] (C, R, T) |
Si-Wu-Tang (TCM) | Mixture of four herbs | Gynecological diseases | Fang et al., 2013 [86] (C, T) |
TCM | Mixture of three herbs | Estrogen/Anti-osteoporosis | Sun et al., 2008 [87] (A, T) |
TCM (15 formulae) | Mixtures of herbs | Anti-carcinogenesis, etc. | Cheng et al., 2010 [88] (A, T) |
Toki-shakuyaku-san (Kampo) | Mixture of six herbs | Circulation disorders | Kawamura et al., 2007 [89] (C, T) |
Toki-to (Kampo) | Mixture of 10 herbs | Parkinson’s disease | Sakai et al., 2007 [90] (A, T) |
VI-28 (TCM) | Mixture five herbs | IGF-1/Immune response | Pan-Hammarström et al., 2006 [91] (C, T) |
Xiaoqinglong decoction (TCM) | Mixture of eight herbs | Obstructive lung disease | Zhang et al., 2012 [92] (A, T) |
Xuefu Zhuyu decoction (TCM) | Mixture of 11 herbs | Angiogenesis modulation | Song et al., 2012 [93] (C, T) |
Youkongdan (TKM) | Mixture 17 herbs | Neuromodulation | Shin et al., 2004 [94] (A, T) |
Zeng Sheng Ping (TCM) | Mixture of six herbs | Chemoprevention | Zhang et al., 2004 [95] (A, T) |
Dietary plant (Vegetable, Fruit, and Cereal) | |||
Aframomum angustifolium | Seed extract | Skin aging prevention | Bonnet-Duquennoy et al., 2007 [96] (C, T) |
Allium sativum (Garlic) | Extract | Caspase-3/Apoptosis | Su et al., 2006 [97] (C, P, T) |
Allium sativum (Garlic) | Extract | Anti-carcinogenesis | Frantz et al., 2000 [98] (C, T) |
Apple | Extract | NF-κB/Anti-inflammation | Jung et al., 2009 [99] (C, P, T) |
Artemisia dracunculus (Tarragon) | Extract | Insulin receptor signaling | Wang et al., 2011 [100] (A, T) |
Black raspberry | Extract | Anti-carcinogenesis | Wang et al., 2011 [101] (A, T) |
Blueberry | Powder | Wnt signaling/Anti-carcinogenesis | Adams et al., 2011 [102] (A, C, P, T) |
Broccoli | Extract | TGF-β/Polyamine catabolism | Furniss et al., 2008 [103] (C, P, T) |
Camellia sinensis (Green tea) | Extract | Lipid metabolism disorder | Suzuki et al., 2013 [104] (A, T) |
Ceratonia silique (Carob) | Extract (Gallic acid-rich) | Chemoprevention | Klenow et al., 2009 [105] (C, T) |
Chungkookjang (Fermented soybean) | Extract | TGF-β/Anti-inflammation | Hwang et al., 2011 [106] (C, T) |
Citrus/Grape/Green tea | Extract | Leukocyte function | Salas et al., 2009 [107] (A, T) |
Elaeis guineensis (Oil palm) | Extract (Phenolics-rich) | Anti-inflammation | Leow et al., 2013 [108] (A, T) |
Fagopyrum esculentum (Buckwheat) | Sprout extract | Anti-inflammation | Ishii et al., 2008 [109] (A, C, P, T) |
Ginkgo biloba (Ginkgo) | Extract | Neuromodulation | Watanabe et al., 2001 [110] (A, T) |
Ginkgo biloba (Ginkgo) | Extract | Anti-carcinogenesis | Rimbach et al., 2003 [111] (T) |
Grape | Extract (Oleanolic acid-rich) | Anti-obesity | Yunoki et al., 2008 [112] (A, T) |
Grape | Extract (Anthocyanin-rich) | Anti-inflammation | Lefevre et al., 2008 [113] (A, T) |
Grape | Seed extract (Proanthocyanidin-rich) | Cardioprotection | Bagchi et al., 2003 [114] (C, T) |
Grapefruit | Extract | AhR/Chemoprevention | de Waad et al., 2008 [115] (C, R, T) |
Green tea | Extract | Cytotoxicity | Yang et al., 2006 [116] (C, T) |
Kiwifruit | Extract | Immune response | Edmunds et al., 2012 [117] (A, P, T) |
Litchi chinensis (Lychee) | Pericarp extract | Estrogen/Anti-carcinogenesis | Wang et al., 2006 [118] (C, P, T) |
Lithospermum erythrorhizon (Gromwell) | Extract | Stress response | Bang et al., 2014 [119] (C, T) |
Malus domestica (Marie Ménard apple) | Powder (Polyphenol-rich) | Anti-inflammation | Castagnini et al., 2009 [120] (A, T) |
Momordica charantia (Bitter gourd) | Extract | TNF-α/Anti-inflammation | Kobori et al., 2008 [121] (C, P, T) |
Nectarine, Peach | Extract | DNA damage prevention | Croteau et al., 2010 [122] (A, P, T) |
Olive | Virgin olive oil | Cardioprotection | Camargo et al., 2010 [123] (C, T) |
Persimmon | Peel extract | Insulin signaling | Izuchi et al., 2011 [124] (A, P, T) |
Pistachio | Oil extract | Inflammatory response | Zhang et al., 2010 [125] (C, T) |
Salacia reticulata (Kothala himbutu) | Extract | Inflammatory response | Im et al., 2008 [126] (A, T) |
Soybean | Extract | Estrogen signaling | Ise et al., 2005 [127] (C, T) |
Sweet corn | Powder | Wnt signaling/Anti-carcinogenesis | Tokuji et al., 2009 [128] (A, T) |
Syzygium aromaticum (Clove) | Extract | Anti-diabetic | Prasad et al., 2005 [129] (C, T) |
Toona sinensis (Chinese mahogany) | Leaf extract | Apoptosis | Chia et al., 2010 [130] (C, T) |
Vaccinium myrtillus (Bilberry) | Powder | MAPK/Vision | Mykkänen et al., 2012 [131] (A, T) |
Chemical Examined (Category) | Major Source Examined/Identified | Pathway or Function | Reference (Assay a) |
---|---|---|---|
Actein (Terpenoid) | Actaea racemosa (Black cohosh) | Anti-carcinogenesis | Einbond et al., 2012 [14] (Table 1) |
Aculeatin (Coumarin) | Toddalia asiatica (Orange climber) | PPAR-γ/Adipogenesis | Watanabe et al., 2014 [132] (C, T) |
Baicalin/Deoxycholic acid/Jasminoidin | Qing-Kai-Ling (TCM) | Ischemic stroke | Li et al., 2012 [133] (A, T) |
Berberine (Alkaloid) | Coptis japonica (Goldthread) | Anti-carcinogenesis | Iizuka et al., 2003 [23] (Table 1) |
Berberine (Alkaloid) | Coptis chinensis (Chinese goldthread) | Anti-infectious | Zhang et al., 2009 [134] (T) |
Berberine, etc. | Coptis japonica (Goldthread) | Anti-carcinogenesis | Hara et al., 2005 [135] (T) |
Biochanin A/Genistein (Flavonoid) | Plant (fruit/vegetables/leaves/grains) | Anti-carcinogenesis | Moon et al., 2007 [136] (C, T) |
Boswellic acid (Terpenoid) | Boswellia serrata (Salai) | Chemoprevention | Shen et al., 2012 [137] (C, T) |
Brefeldin A (Lactone) | Agaricus blazei | ERK/Anti-atherosclerosis | Dong et al., 2013 [138] (C, P, T) |
Celastrol (Terpenoid) | Tripterygium wilfordii (Leigongteng) | Anti-carcinogenesis | Pham et al., 2010 [139] (C, P, T) |
Celastrol (Terpenoid) | Celastrus scandens (Bittersweet) | Immune response | Yu et al., 2012 [140] (T) |
Chelidonine (Alkaloid) | Chelidonium majus (Greater celandine) | Anti-carcinogenesis | El-Readi et al., 2013 [19] (Table 1) |
Curcumin (Diarylheptanoid) | Curcuma longa (Turmeric) | Apoptosis | Ramachandran et al., 2005 [141] (C, T) |
Curcumin (Diarylheptanoid) | Curcuma longa (Turmeric) | Anti-oxidative response | Meja et al., 2008 [142] (C, P, T) |
Curcumin (Diarylheptanoid) | Curcuma longa (Turmeric) | Life-span extension | Lee et al., 2010 [143] (T) |
Diallyl trisulfide (Organosulfur) | Allium sativum (Garlic) | skn-1/Life-span extension | Powolny et al., 2011 [144] (T) |
3,3′-Diindolylmethane | Cruciferous vegetable | Estrogen/Carcinogenesis | Tilton et al., 2007 [145] (A, T) |
Emodin (Anthraquinone) | Rheum palmatum (Turkish rhubarb) | TNFR1/IGF-1R/Apoptosis | Oshida et al., 2011 [146] (T) |
Ergosterol peroxide (Steroid) | Sarcodon aspratus | NF-κB/Anti-inflammation | Kobori et al., 2007 [147] (C, P, T) |
Ginsenosides F1/Rb1/Rg1/Rh1 (Terpenoid) | Ginseng | Estrogen signaling | Dong & Kiyama, 2009 [148] (T) |
Ginsenoside Re (Terpenoid) | Ginseng | Anti-diabetic response | Xie et al., 2005 [149] (T) |
Ginsenoside Rg3 (Terpenoid) | Panax quinquefolius (American ginseng) | Anti-carcinogenesis | Luo et al., 2008 [40] (Table 1) |
Glycyrrhizin (Saponin) | Glycyrrhiza glabra (Licorice) | Estrogen signaling | Dong et al., 2007 [150] (T) |
Glycyrrhizin (Saponin) | Glycyrrhiza glabra (Licorice) | Anti-inflammation | Schröfelbauer et al., 2009 [151] (P, T) |
Grape antioxidant dietary fiber | Cencibel red grape | Anti-carcinogenesis | Lizarraga et al., 2011 [152] (A, T) |
Grifolin (Phenol) | Albatrellus confluens | ERK/Anti-carcinogenesis | Ye et al., 2007 [153] (C, P, T) |
(−)-Hydroxycitric acid | Garcinia gummi-gutta (Garcinia cambogia) | Anti-obesity | Roy et al., 2007 [154] (T) |
β-Hydroxyisovalerylshikonin (Quinone) | Lithospermum erythrorhizon (Purple gromwell) | ROS/Apoptosis | Masuda et al., 2004 [155] (C, P, T) |
Ligustrazine (Tetramethylpyrazine) | Ligusticum chuangxiong | Cardioprotection | Li et al., 2004 [156] (T) |
Lycopene (Carotenoid pigment) | Tomato | Stress response/Anti-carcinogenesis | Tan et al., 2014 [157] (A, T) |
Myricetin (Flavonoid) | Plant (fruits/vegetables/herbs) | Nrf2 /ARE/Chemoprevention | Qin et al., 2013 [158] (T) |
Obovatol (Phenol) | Magnolia obovata (Japanese bigleaf magnolia) | Neuroinflammation | Ock et al., 2010 [159] (A, C, P, T) |
Oil palm phenolics | Elaeis guineensis (African oil palm) | Cardioprotection | Leow et al., 2011 [160] (A, T) |
Paeoniflorin (Terpenoid) | Paeonia lactiflora (Chinese peony) | HSP70/Anti-carcinogenesis | Salunga et al., 2007 [161] (C, P, T) |
Paeonol (Phenol) | Paeonia suffruticosa (Moutan) | NF-κB/Hypoxia | Su et al., 2010 [162] (P, R, T) |
Paeonol/Paeoniflorin/Albiflorin | Paeonia lactiflora (Chinese peony) | Anti-inflammation | Huang et al., 2008 [163] (C, T) |
PGG (Gallotannin) | Rhus chinensis (Sumac) | Anti-carcinogenesis | Yu et al., 2011 [164] (C, P, T) |
Phytosterol mixture | Wood (Tall oil) | Anti-atherosclerosis | Xu et al., 2008 [165] (A, T) |
Plant phospholipid/lipid conjugate | Plant (nuts/seeds/oils) | Anti-carcinogenesis | Shuman Moss et al., 2014 [166] (A, T) |
Plumbagin (Quinone) | Anoectochilus formosanus (an orchid) | Anti-carcinogenesis | Yang et al., 2004 [16] (Table 1) |
Polysaccharide-K (Krestin) | Trametes versicolor (Turkey tail) | Anti-carcinogenesis | Yoshikawa et al., 2004 [167] (C, T) |
Polysaccharides | Apple | Anti-carcinogenesis | Li et al., 2012 [168] (C, P, T) |
PUFA (n-3) | Corn, Olive | Anti-carcinogenesis | Kachroo et al., 2011 [169] (A, T) |
PUFAs | Camelina sativa (False flax) | Cell proliferation | Morais et al., 2012 [170] (A, T) |
Quercetin (Flavonoid) | Plant (fruits/vegetables/leaves/grains) | NF-κB/Anti-carcino- genesis | Youn et al., 2013 [171] (C, P, T) |
Resveratrol (Stilbenoid) | Red grape | Vasoprotection | Nicholson et al., 2008 [172] (Review) |
Saffron | Crocus sativus (Saffron crocus) | Neuroprotection | Natoli et al., 2010 [173] (A, T) |
Salvianolic acid B (Phenolic acid) | Salvia miltiorrhiza (Red sage) | Anti-carcinogenesis | Yang et al., 2011 [174] (C, P, T) |
Sesamin/Episesamin/Sesamolin (Lignan) | Sesame | Lipid metabolism | Ide et al., 2009 [175] (A, T) |
Sparstolonin B (Isocoumarin) | Sparganium stoloniferum (Bur-reed) | Angiogenesis | Bateman et al., 2013 [176] (C, T) |
Sulforaphane (Organosulfur) | Broccoli | PI3K/Akt /Chemoprevention | Melchini et al., 2012 [177] (C, P, T) |
2,4,3′,5′-Tetramethoxystilbene (Stilbenoid) | Berry, Grape | Bax/Apoptosis | Aiyar et al., 2010 [178] (T) |
Tanshinone IIA (Quinone) | Salvia miltiorrhiza (Red sage) | Rho/ROCK/Cell migration | Li et al., 2014 [179] (C, P, T) |
Tanshinone IIA (Quinone) | Salvia miltiorrhiza (Red sage) | NF-κB/Apoptosis | Liu et al., 2012 [180] (C, P, T) |
Triptolide (Terpenoid) | Tripterygium wilfordii (Leigongteng) | Immune response, etc. | Chen et al., 2007 [181] (A, T) |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiyama, R. DNA Microarray‐Based Screening and Characterization of Traditional Chinese Medicine. Microarrays 2017, 6, 4. https://doi.org/10.3390/microarrays6010004
Kiyama R. DNA Microarray‐Based Screening and Characterization of Traditional Chinese Medicine. Microarrays. 2017; 6(1):4. https://doi.org/10.3390/microarrays6010004
Chicago/Turabian StyleKiyama, Ryoiti. 2017. "DNA Microarray‐Based Screening and Characterization of Traditional Chinese Medicine" Microarrays 6, no. 1: 4. https://doi.org/10.3390/microarrays6010004
APA StyleKiyama, R. (2017). DNA Microarray‐Based Screening and Characterization of Traditional Chinese Medicine. Microarrays, 6(1), 4. https://doi.org/10.3390/microarrays6010004