Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Measurements
2.3. Measurement of Relative Telomere Length
2.4. Measurement of Oxidative Stress Markers
2.5. Statistical Analysis
3. Results
3.1. Demographic, Anthropometric and Biochemical Characteristics of the Study Population
3.2. Evaluation of Telomere Length and Oxidative Stress Markers
3.3. Connection Between Clinical Parameters, Telomere Length and Oxidative Stress
3.4. Relationship Between Telomere Length, Oxidative Stress Markers and Metabolic Health Status.
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Rey-López, J.P.; de Rezende, L.F.; Pastor-Valero, M.; Tess, B.H. The prevalence of metabolically healthy obesity: A systematic review and critical evaluation of the definitions used. Obes. Rev. 2014, 15, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Primeau, V.; Coderre, L.; Karelis, A.D.; Brochu, M.; Lavoie, M.E.; Messier, V.; Sladek, R.; Rabasa-Lhoret, R. Characterizing the profile of obese patients who are metabolically healthy. Int. J. Obes. 2011, 35, 971–981. [Google Scholar] [CrossRef] [Green Version]
- Doumatey, A.P.; Zhou, J.; Zhou, M.; Prieto, D.R.; Rotimi, C.N.; Adeyemo, A. Proinflammatory and lipid biomarkers mediate metabolically healthy obesity: A proteomics study. Obesity 2016, 24, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Abolnezhadian, F.; Hosseini, S.A.; Alipour, M.; Zakerkish, M.; Cheraghian, B.; Ghandil, P.; Cheraghpour, M. Association metabolic obesity phenotypes with cardiometabolic index, atherogenic index of plasma and novel anthropometric indices: A link of FTO-rs9939609 polymorphism. Vasc. Health Risk Manag. 2020, 16, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.G.; Glade, M.J.; Meguid, M.M. Metabolically healthy obese individuals: Key protective factors. Nutrition 2016, 32, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Stamatakis, E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J. Clin. Endocrinol. Metab. 2012, 97, 2482–2488. [Google Scholar] [CrossRef] [PubMed]
- Karelis, A.; Brochu, M.; Rabasa-Lhoret, R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab 2004, 30, 569–572. [Google Scholar] [CrossRef]
- Epel, E.S.; Lin, J.; Wilhelm, F.H.; Wolkowitz, O.M.; Cawthon, R.; Adler, N.E.; Dolbier, C.; Mendes, W.B.; Blackburn, E.H. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology 2006, 31, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Hägg, S. Telomere length and cardiovascular disease risk. Curr. Opin. Cardiol. 2019, 34, 270–274. [Google Scholar] [CrossRef]
- Martínez-Ezquerro, J.D.; Rodríguez-Castañeda, A.; Ortiz-Ramírez, M.; Sánchez-García, S.; Rosas-Vargas, H.; Sánchez-Arenas, R.; García-de la Torre, P. Oxidative Stress, Telomere Length, and Frailty in an Old Age Population. Rev. Investig. Clin. 2019, 71, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zhan, Y.; Pedersen, N.; Fall, K.; Valdimarsdóttir, U.A.; Hägg, S.; Fang, F. Marital status, telomere length and cardiovascular disease risk in a Swedish prospective cohort. Heart 2020, 106, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H. Structure and function of telomeres. Nature 1991, 350, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Willeit, P.; Willeit, J.; Brandstätter, A.; Ehrlenbach, S.; Mayr, A.; Gasperi, A.; Weger, S.; Oberhollenzer, F.; Reindl, M.; Kronenberg, F.; et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1649–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, J.M.J.; Moonen, H.J.J.; van Schooten, F.J.; Hageman, G.J. Telomere length assessment: Biomarker of chronic oxidative stress? Free Radic. Biol. Med. 2008, 44, 235–246. [Google Scholar] [CrossRef]
- Kozłowska, A.; Pawlas, N.; Mikołajczyk, A. Telomere Length—A New Biomarker in Medicine. Environ. Med. 2015, 18, 7–13. [Google Scholar]
- Osadnik, T.; Osadnik, K.; Pawlas, N.; Strzelczyk, J.; Kasperczyk, J.; Polonski, L.; Gąsior, M. Metabolic and genetic profiling of young adults with and without a family history of premature coronary heart disease (MAGNETIC). Study design and methodology. Arch. Med. Sci. 2019, 15, 590–597. [Google Scholar] [CrossRef]
- Osadnik, K.; Osadnik, T.; Delijewski, M.; Lejawa, M.; Fronczek, M.; Reguła, R.; Gąsior, M.; Pawlas, N. Calcium and phosphate levels are among other factors associated with metabolic syndrome in patients with normal weight. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1281–1288. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Cleeman, J.I. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). J. Am. Med. Assoc. 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Arab, K.; Steghens, J.P. Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal. Biochem. 2004, 325, 158–163. [Google Scholar] [CrossRef]
- Masako, T.; Toshiyuki, M.; Kaoru, M.; Kageaki, A. Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation. Biochim. Biophys. Acta 1985, 834, 196–204. [Google Scholar] [CrossRef]
- Koster, J.F.; Biemond, P.; Swaak, A.J.G. Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Ann. Rheum. Dis. 1986, 45, 44–46. [Google Scholar] [CrossRef] [Green Version]
- Richterich, R. Chemia kliniczna: Teoria i praktyka; PZWL: Warsaw, Poland, 1971. [Google Scholar]
- Oyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984, 142, 290–296. [Google Scholar] [CrossRef]
- R Core Team. The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 23 November 2020).
- Stekhoven, D.J.; Bühlmann, P. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2015, 16, 378–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009, 84, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, S.; Oikawa, S. Mechanism of Telomere Shortening by Oxidative Stress. Ann. N. Y. Acad. Sci. 2004, 1019, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Armanios, M. Syndromes of Telomere Shortening. Annu. Rev. Genom. Hum. Genet. 2009, 10, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.P.; Li, S.; Srinivasan, S.R.; Chen, W.; Kimura, M.; Lu, X.; Berenson, G.S.; Aviv, A. Rise in insulin resistance is associated with escalated telomere attrition. Circulation 2005, 111, 2171–2177. [Google Scholar] [CrossRef]
- Navarro, E.; Funtikova, A.N.; Fíto, M.; Schröder, H. Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Mol. Nutr. Food Res. 2015, 59, 75–93. [Google Scholar] [CrossRef]
- Speakman, J.R.; Levitsky, D.A.; Allison, D.B.; Bray, M.S.; de Castro, J.M.; Clegg, D.J.; Clapham, J.C.; Dulloo, A.G.; Gruer, L.; Haw, S.; et al. Set points, settling points and some alternative models: Theoretical options to understand how genes and environments combine to regulate body adiposity. Dis. Model. Mech. 2011, 4, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Samocha-Bonet, D.; Dixit, V.D.; Kahn, C.R.; Leibel, R.L.; Lin, X.; Nieuwdorp, M.; Pietiläinen, K.H.; Rabasa-Lhoret, R.; Roden, M.; Scherer, P.E.; et al. Metabolically healthy and unhealthy obese—The 2013 Stock Conference report. Obes. Rev. 2014, 15, 697–708. [Google Scholar] [CrossRef]
- Tan, C.Y.; Vidal-Puig, A. Adipose tissue expandability: The metabolic problems of obesity may arise from the inability to become more obese. Biochem. Soc. Trans. 2008, 36, 935–940. [Google Scholar] [CrossRef]
- Osadnik, K.; Osadnik, T.; Lonnie, M.; Lejawa, M.; Reguła, R.; Fronczek, M.; Gawlita, M.; Wądołowska, L.; Gąsior, M.; Pawlas, N. Metabolically healthy obese and metabolic syndrome of the lean: The importance of diet quality. Analysis of MAGNETIC cohort. Nutr. J. 2020, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Molli, A.E.I.; Panero, J.; Dos Santos, P.C.; González, C.D.; Vilariño, J.; Sereday, M.; Cerrone, G.E.; Slavutsky, I.; Frechtel, G.D. Metabolically healthy obese women have longer telomere length than obese women with metabolic syndrome. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Zhang, L.N.; Zhang, T.T.; Pang, H.Y.; Chen, L.F.; Shen, Z.J.; Liu, Z.Y.; Fang, Q.; Zhang, S.Y. Association between oxidative stress and peripheral leukocyte telomere length in patients with premature coronary artery disease. Med. Sci. Monit. 2017, 23, 4382–4390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial dysfunction in obesity. Life Sci. 2018, 192, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic Syndrome. Circulation 2005, 111, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandona, P.; Aljada, A.; Mohanty, P.; Ghanim, H.; Hamouda, W.; Assian, E.; Ahmad, S. Insulin Inhibits Intranuclear Nuclear Factor κB and Stimulates IκB in Mononuclear Cells in Obese Subjects: Evidence for an Anti-inflammatory Effect? J. Clin. Endocrinol. Metab. 2001, 86, 3257–3265. [Google Scholar] [CrossRef]
- Aizawa, K.; Shoemaker, J.K.; Overend, T.J.; Petrella, R.J. Metabolic syndrome, endothelial function and lifestyle modification. Diabetes Vasc. Dis. Res. 2009, 6, 181–189. [Google Scholar] [CrossRef]
- Ceriello, A.; Motz, E. Is Oxidative Stress the Pathogenic Mechanism Underlying Insulin Resistance, Diabetes, and Cardiovascular Disease? The Common Soil Hypothesis Revisited. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Kim, M.; Paik, J.K.; Kang, R.; Kim, S.Y.; Lee, S.H.; Lee, J.H. Increased oxidative stress in normal-weight postmenopausal women with metabolic syndrome compared with metabolically healthy overweight/obese individuals. Metabolism 2013, 62, 554–560. [Google Scholar] [CrossRef]
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Fortuño, A.; San José, G.; Moreno, M.U.; Beloqui, O.; Díez, J.; Zalba, G. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes 2006, 55, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar] [PubMed]
- Baynes, J.W. Role of Oxidative Stress in Development of Complications in Diabetes. Diabetes 1991, 40, 405–412. [Google Scholar] [CrossRef]
- Ceriello, A. Oxidative stress and glycemic regulation. Metabolism 2000, 49, 27–29. [Google Scholar] [CrossRef]
- Yan, L.-J. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress. J. Diabetes Res. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999, 48, 1–9. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Delgado-Lista, J.; Peña-Orihuela, P.; Perez-Martinez, P.; Fuentes, F.; Marin, C.; Tunez, I.; Tinahones, F.J.; Perez-Jimenez, F.; Roche, H.M.; et al. Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp. Mol. Med. 2013, 45, e28. [Google Scholar] [CrossRef] [Green Version]
- Giral, P.; Jacob, N.; Dourmap, C.; Hansel, B.; Carrié, A.; Bruckert, E.; Girerd, X.; Chapman, M.J. Elevated gamma-glutamyltransferase activity and perturbed thiol profile are associated with features of metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.S.; Yang, J.H.; Chun, B.Y.; Kam, S.; Jacobs, D.R.; Lee, D.H. Is serum γ-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic. Biol. Med. 2004, 37, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Giral, P.; Ratziu, V.; Couvert, P.; Carrié, A.; Kontush, A.; Girerd, X.; Chapman, M.J. Plasma bilirubin and gamma-glutamyltransferase activity are inversely related in dyslipidemic patients with metabolic syndrome: Relevance to oxidative stress. Atherosclerosis 2010, 210, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Stranges, S.; Dorn, J.M.; Muti, P.; Freudenheim, J.L.; Farinaro, E.; Russell, M.; Nochajski, T.H.; Trevisan, M. Body Fat Distribution, Relative Weight, and Liver Enzyme Levels: A Population-Based Study. Hepatology 2004, 39, 754–763. [Google Scholar] [CrossRef]
- André, P.; Balkau, B.; Born, C.; Charles, M.A.; Eschwège, E. Three-year increase of gamma-glutamyltransferase level and development of type 2 diabetes in middle-aged men and women: The D.E.S.I.R. cohort. Diabetologia 2006, 49, 2599–2603. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-H.; Pan, W.-H.; Hsu, C.-C.; Yeh, W.-T.; Chuang, S.-Y.; Chen, P.-Y.; Chen, H.-C.; Chang, C.-T.; Huang, W.-L. Impact of obesity and hypertriglyceridemia on gout development with or without hyperuricemia: A prospective study. Arthritis Care Res. 2013, 65, 133–140. [Google Scholar] [CrossRef]
- Yu, M.A.; Sánchez-Lozada, L.G.; Johnson, R.J.; Kang, D.H. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens. 2010, 28, 1234–1242. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q.; Zhang, Z.; Chen, Y.; Wang, Y.; Wang, Y.; Li, Z.; Jiang, L. Value of three-dimensional speckle tracking echocardiography to assess left ventricular function in hyperuricemia patients. Clin. Rheumatol. 2018, 37, 2539–2545. [Google Scholar] [CrossRef]
- Rospleszcz, S.; Dermyshi, D.; Müller-Peltzer, K.; Strauch, K.; Bamberg, F.; Peters, A. Association of serum uric acid with visceral, subcutaneous and hepatic fat quantified by magnetic resonance imaging. Sci. Rep. 2020, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Meng, X.; Shan, R.; Zi, T.; Li, Y.; Ma, H.; Zhao, Y.; Shi, D.; Qu, R.; Guo, X.; et al. Temporal relationship between hyperuricemia and obesity, and its association with future risk of type 2 diabetes. Int. J. Obes. 2018, 42, 1336–1344. [Google Scholar] [CrossRef]
Parameter | Cutoffs |
---|---|
Waist Circumference | Men > 102 cm Women > 88 cm |
Blood Pressure | SBP ≥ 130 mm Hg or DBP ≥ 85 mm Hg |
or Use of Antihypertensive Medication * | |
Triglycerides | ≥150 mg/dL |
or Use of Lipid-lowering Medication * | |
High-density Lipoprotein Cholesterol | Men < 40 mg/dL |
Women < 50 mg/dL | |
Fasting Glucose | ≥100 mg/dL or Drug Treatment for Type 2 Diabetes |
Metabolically Healthy | 0–2 of the Above Cutoffs |
Metabolically Unhealthy | ≥3 of the Above Cutoffs |
Characteristics | All | Metabolically Healthy Normal Weight (MHNW) | Metabolically Healthy Obese (MHO) | Metabolically Unhealthy Obese (MUO) | p-Value * | p-Value ** |
---|---|---|---|---|---|---|
N (%) | 95 (100) | 47 (49.47) | 26 (27.37) | 22 (23.16) | ||
Age [years] | 31.09 [27.09–31.9] | 30.96 [27.10–32.45] | 29.23 [26.58–32.48] | 31.82 [28.12–33.10] | 0.36 | 0.41 |
Current Smoking (vs. Past Smoker or Nonsmoker) | 18 (18.95) | 8 (17.02) | 4 (15.38) | 6 (27.27) | 0.52 | 0.31 |
Alcohol consumption | 78 (82.11) | 40 (85.11) | 20 (76.92) | 18 (81.82) | 0.68 | 0.63 |
Family History of P-CAD (%) | 53 (55.79) | 20 (42.55) | 17 (65.39) | 16 (72.72) | 0.03 | 0.72 |
Family History of DM (%) | 15 (15,79) | 6 (12.77) | 4 (15.38) | 5 (22.73) | 0.57 | 0.52 |
Low Physical Activity Level | 42 (44,21) | 17 (36.17) | 10 (38.46) | 15 (68.18) | 0.04 | 0.05 |
Less than Six Hours of Sleep per Night During Weekdays | 42 (44.21) | 22 (46.80) | 12 (46.15) | 8 (36.36) | 0.70 | 0.52 |
Less than Six Hours of Sleep per Night During the Weekends | 7 (7.37) | 3 (6.38) | 3 (11.54) | 1 (4.55) | 0.61 | 0.35 |
BMI [kg/m2] | 30.00 [23.38–32.96] | 23.36 [21.76–24.00] | 31.35 [30.55–33.13] | 34.02 [33.03–37.02] | <2.2e-16 | 0.002 |
Waist-to-Hip Ratio (WHR) [cm] | 0.91 [0.83–0.97] | 0.84 [0.81–0.89] | 0.93 [0.88–0.96] | 1.00 [0.97–1.02] | 1.444e-10 | 0.002 |
Visceral Adipose Index (VAI) | 0.98 [0.68–1.83] | 0.70 [0.49–0.83] | 1.34 [1.11–1.79] | 3.77 [2.53–5.31] | 1.142e-13 | 0.002 |
Systolic Blood Pressure (SBP) [mmHg] | 131.00 [124.75–140.00] | 128.00 [120.00–134.00] | 136.00 [128.00–145.00] | 136.00 [132.00–157.00] | 0.0007 | 0.002 |
Diastolic Blood Pressure (DBP) [mmHg] | 82.00 [77.00–89.75] | 80.00 [73.50–83.50] | 85.50 [76.75–89.50] | 90.00 [82.00–95.00] | 0.001 | 0.004 |
Total Cholesterol (TC) (mmol/L) | 5.21 [4.48–5.86] | 4.80 [4.22–5.35] | 5.44 [4.87–6.26] | 5.77 [5.04–6.87] | 0.0002 | 0.002 |
High-Density Lipoprotein Cholesterol (HDL-C) [mmol/Ll] | 1.31 [1.14–1.59] | 1.56 [1.40–1.72] | 1.19 [1.15–1.37] | 1.01 [0.89–1.15] | 4.366e-11 | 0.002 |
HDL% | 27.00 [20.05–32.50] | 32.00 [29.00–38.00] | 24.00 [20.00–27.00] | 17.56 [13.25–21.75] | 2.84e-12 | 0.002 |
Low-density LipoProtein Cholesterol (LDL-C) [mmol/L] | 3.27 [2.68–4.11] | 2.85 [2.48–3.45] | 3.77 [3.02–4.27] | 3.75 [3.13–4.27] | 0.0001 | 0.002 |
Triglycerides (TG) [mmol/L] | 1.11 [0.79–1.63] | 0.80 [0.64–1.03] | 1.32 [1.18–1.56] | 2.76 [1.94–3.76] | 1.543e-14 | 0.002 |
Lipoprotein(a) (Lp(a)) [nmol/L] | 13.00 [4.50–39.00] | 17.00 [5.50–44.00] | 8.00 [4.25–20.00] | 9.50 [3.25–102.75] | 0.34 | 0.18 |
Apolipoprotein A1 (apoA1) [g/L | 1.52 [1.42–1.67] | 1.57 [1.49–1.70] | 1.43 [1.40–1.67] | 1.46 [1.32–1.61] | 0.02 | 0.008 |
Apolipoprotein B (apoB) [g/L] | 1.01 [0.82–1.21] | 0.86 [0.78–1.05] | 1.15 [0.93–1.26] | 1.23 [1.05–1.42] | 4.555e-07 | 0.002 |
Glucose [mmol/L] | 5.10 [4.80–5.45] | 5.00 [4.70–5.25] | 5.20 [4.85–5.60] | 5.35 [5.10–5.90] | 0.004 | 0.002 |
Glycated Hemoglobin (HbA1c) [%] | 5.00 [4.80–5.20] | 4.90 [4.80–5.20] | 5.15 [4.93–5.38] | 5.10 [5.00–5.20] | 0.01 | 0.008 |
Bilirubin [µmol/L] | 11.80 [8.10–15.60] | 12.90 [9.65–17.20] | 10.75 [7.90–16.73] | 9.05 [6.93–14.03] | 0.05 | 0.006 |
Uric Acid [µmol/L] | 361.00 [311.00–398.50] | 314.00 [295.00–355.50] | 389.00 [359.50–411.25] | 403.50 [364.75–439.00] | 3.451e-09 | 0.002 |
hsCRP [mg/dL] | 0.91 [0.60–1.69] | 0.66 [0.44–1.00] | 1.30 [0.64–1.68] | 1.73 [1.20–2.25] | 2.219e-05 | 0.002 |
Fibrinogen [mg/dL] | 263.00 [233.50–310.00] | 248.00 [219.00–292.50] | 260.00 [236.25–279.25] | 303.00 [260.25–334.00] | 0.009 | 0.002 |
Alkaline Phosphatase (ALP) [U/L] | 69.00 [59.00–78.00] | 67.00 [54.50–78.50] | 66.50 [58.25–76.75] | 73.00 [69.00–78.00] | 0.20 | 0.14 |
Alanine Transaminase (ALT) [U/L] | 29.00 [18.00–44.00] | 19.00 [15.00–27.50] | 38.50 [25.75–56.50] | 41.00 [34.50–59.00] | 1.779e-09 | 0.001 |
Aspartate Transaminase (AST) [U/L] | 23.00 [20.00–30.50] | 21.00 [18.00–24.00] | 29.00 [22.00–33.75] | 26.50 [25.00–33.75] | 6.779e-05 | 0.001 |
Gamma-Glutamyltransferase (GGT) [U/L] | 27.00 [17.00–41.50] | 17.00 [14.00–24.50] | 34.50 [24.25–45.50] | 43.50 [33.00–82.75] | 7.752e-09 | 0.001 |
Lactate Dehydrogenase (LDH) [U/L]] | 177.00 [156.00–199.50] | 162.00 [151.00–179.00] | 188.50 [171.25–206.00] | 200.50 [178.50–211.50] | 1.41e-05 | 0.001 |
Variable | All | Metabolically Healthy Normal Weight (MHNW) | Metabolically Healthy Obese (MHO) | Metabolically Unhealthy Obese (MUO) | p-Value * | p-Value ** |
---|---|---|---|---|---|---|
Protein Sulfhydryl Groups (PSH) [μmol/g protein] | 4.62 [4.29–4.92] | 4.63 [4.32–4.99] | 4.59 [4.26–4.74] | 4.69 [4.40–4.97] | 0.43 | 0.99 |
Ceruloplasmin (CER) [mg/dL] | 34.72 [30.84–39.71] | 34.21 [30.98–39.59] | 33.23 [29.73–37.42] | 38.51 [33.60–42.37] | 0.07 | 0.2 |
Total Antioxidant Capacity (TAC) [mmol/L] | 0.96 [0.92–1.02] | 0.92 [0.89–0.96] | 0.97 [0.94–1.02] | 1.02 [1.0–1.07] | 2.717e-06 | 0.002 |
Total Oxidation Status (TOS) [umol/L]) | 4.19 [3.36–5.21] | 4.05 [3.36–4.35] | 3.85 [3.27–5.17] | 5.29 [4.31–6.04] | 0.008 | 0.01 |
Oxidative Stress Index (OSI) (%) | 24 [18.63–28.13] | 24 [21.00–28.15] | 25 [18.58–30.98] | 19 [16.50–25.20] | 0.22 | 0.18 |
Lipid Hydroperoxides (LPH) [umol/L] | 2.07 [1.70–2.83] | 1.71 [1.30–2.02] | 2.60 [2.23–3.20] | 3.00 [2.60–3.90] | 1.041e-09 | 0.002 |
Superoxide Dismutase (SOD) [NU/mL] | 19.31 [18.48, 20.60] | 19.54 [19.03–20.61] | 19.07 [18.24–19.85] | 18.84 [18.07–21.03] | 0.17 | 0.08 |
MnSOD (Nu/mL) | 10.79 [10.02–11.60] | 10.85 [10.07–11.42] | 10.78 [10.03–11.78] | 10.58 [10.00–12.12] | 0.92 | 0.63 |
CuZnSOD [NU/mL] | 8.48 [7.79–9.24] | 8.72 [8.17–9.39] | 8.30 [7.46–9.23] | 8.16 [7.73–8.90] | 0.1 | 0.04 |
Lipofuscin (LPS) [RU/L] | 101.31 [75.70–138.59] | 97.81 [71.94–138.66] | 94.29 [80.52–149.25] | 111.23 [80.04–128.93] | 0.89 | 0.63 |
Malondialdehyde (MDA) [umol/L] | 1.42 [1.17–1.93] | 1.40 [1.18–1.83] | 1.36 [1.00–2.06] | 1.61 [1.29–1.98] | 0.45 | 0.55 |
Relative Telomere Length (rTL) [relative units] | 0.23 [0.20–0.30] | 0.25 [0.21–0.33] | 0.23 [0.20–0.27] | 0.18 [0.16–0.22] | 0.001 | 0.002 |
Variable | Protein Sulfhydryl Groups (PSH) | Ceruloplas-min (CER) | Total Antioxidant Capacity (TAC) | Total Oxidation Status (TOS) | Oxidative Stress Index (OSI) | Lipid HyDroperoxides (LPH) | SuperOxide Dismutase (SOD) | Mn SOD | CuZn SOD | Lipofuscin (LPS) | Malondialdehyde (MDA) | Relative Telomere Length (rTL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | −0.21 * | 0.07 | −0.03 | −0.04 | 0.05 | −0.03 | 0.12 | 0.12 | −0.01 | 0.12 | 0.15 | 0.15 |
BMI | −0.14 | 0.12 | 0.49 **** | 0.27 * | −0.13 | 0.64 **** | −0.19 | −0.08 | −0.15 | −0.02 | 0.10 | −0.34 *** |
Waist-to-Hip Ratio (WHR) | −0.03 | 0.24 * | 0.46 **** | 0.15 | −0.02 | 0.39 *** | −0.17 | −0.04 | −0.22 * | 0.03 | 0.25 * | −0.18 |
Visceral Adipose Index | −0.03 | 0.08 | 0.52 **** | 0.43 **** | −0.26 * | 0.61 **** | −0.15 | −0.10 | −0.08 | 0.02 | 0.09 | −0.23 * |
Systolic Blood Pressure (SBP) | 0.08 | 0.07 | 0.29 * | 0.07 | −0.02 | 0.32 ** | −0.05 | 0.12 | −0.19 | 0.005 | −0.09 | −0.18 |
Diastolic Blood Pressure (DBP) | 0.03 | 0.26 * | 0.16 | −0.03 | 0.10 | 0.19 | −0.05 | 0.12 | −0.15 | 0.03 | −0.02 | −0.07 |
Total Cholesterol (TC) | −0.14 | 0.20 | 0.35 **** | 0.24 * | −0.12 | 0.35 *** | −0.07 | 0.07 | −0.14 | −0.03 | −0.01 | −0.02 |
Low-density Lipoprotein Cholesterol (LDL-C) | −0.13 | 0.21 * | 0.30 ** | 0.21 * | −0.12 | 0.31 ** | −0.04 | 0.07 | −0.06 | 0.02 | −0.004 | 0.04 |
Apolipoprotein A1 (apoA1) | 0.08 | 0.05 | −0.22 * | −0.10 | 0.04 | −0.22 * | 0.18 | 0.22 * | −0.07 | −0.04 | −0.04 | 0.20 |
Apolipoprotein B (apoB) | −0.02 | 0.22 * | 0.42 **** | 0.24 * | −0.11 | 0.41 **** | −0.10 | 0.07 | −0.17 | −0.00005 | 0.01 | −0.05 |
High-density Lipoprotein Cholesterol (HDL-C) | −0.04 | 0.02 | −0.45 **** | −0.31 ** | 0.18 | −0.51 **** | 0.11 | 0.10 | 0.03 | −0.002 | −0.07 | 0.26 |
HDL% | 0.07 | −0.13 | −0.51 **** | −0.33 ** | 0.18 | −0.55 **** | 0.13 | 0.02 | 0.12 | −0.02 | −0.04 | 0.19 |
Triglycerides (TG) | 0.01 | 0.08 | 0.57 **** | 0.50 **** | −0.32 ** | 0.65 **** | −0.09 | −0.03 | −0.08 | 0.04 | 0.04 | −0.23 * |
Lipoprotein(a) (Lp(a) | 0.06 | 0.06 | −0.08 | −0.11 | 0.11 | −0.20 | 0.08 | 0.09 | −0.02 | −0.05 | 0.04 | 0.16 |
hsCRP | −0.02 | 0.34 *** | 0.35 *** | 0.32 ** | −0.19 | 0.40 **** | −0.12 | −0.10 | −0.06 | −0.03 | 0.08 | −0.13 |
Glucose | 0.21 * | 0.05 | 0.14 | 0.24 * | −0.20 | 0.24 * | 0.07 | 0.25 * | −0.19 | −0.02 | −0.02 | 0.10 |
Glycated Hemoglobin (HbA1c) | −0.04 | 0.09 * | 0.29 * | 0.27 * | −0.14 | 0.21 | −0.01 | 0.12 | −0.10 | 0.06 | 0.09 | 0.20 |
Uric Acid | −0.18 | 0.22 * | 0.73 **** | 0.28 * | −0.08 | 0.46 **** | 0.01 | 0.05 | −0.03 | 0.13 | 0.07 | −0.26 * |
Fibrinogen | −0.004 | 0.36 *** | 0.24 * | 0.24 | −0.15 | 0.17 | −0.04 | 0.01 | −0.10 | −0.15 | −0.02 | 0.01 |
Gamma- Glutamyltransferase (GGT) | −0.16 | 0.17 | 0.49 **** | 0.31 ** | −0.14 | 0.50 **** | −0.07 | −0.03 | −0.07 | 0.09 | 0.07 | −0.24 * |
Bilirubin | 0.05 | 0.008 | −0.002 | −0.18 | 0.17 | −0.22 * | 0.15 | 0.10 | 0.02 | −0.03 | 0.03 | 0.06 |
Alkaline Phosphatase (ALP) | 0.24 * | 0.05 | 0.13 | 0.24 * | −0.20 | 0.23 * | 0.17 | 0.11 | 0.05 | −0.01 | −0.07 | −0.03 |
Alanine Transaminase (ALT) | −0.16 | 0.21 * | 0.44 **** | 0.12 | 0.01 | 0.42 **** | −0.18 | 0.00 | −0.20 | 0.15 | 0.19 | −0.24* |
Aspartate Transaminase (AST) | −0.10 | 0.26 * | 0.42 **** | 0.12 | 0.01 | 0.30 ** | −0.14 | 0.03 | −0.20 | 0.01 | 0.08 | −0.19 |
Lactate Dehydrogenase (LDH) | 0.002 | 0.22 * | 0.38 *** | 0.23 * | −0.13 | 0.50 **** | −0.03 | 0.18 | −0.26 * | 0.07 | −0.03 | −0.20 |
Relative Telomere Length (rTL) | 0.19 | 0.05 | −0.18 | 0.02 | −0.06 | −0.35 *** | 0.16 | 0.16 | −0.02 | −0.05 | 0.02 | - |
Variable | OR | 95% CI | p-Value | |
---|---|---|---|---|
Univariable Analysis | ||||
Log rTL-MHO | 0.897 | 0.777–1.036 | 0.14 | |
Log rTL-MUO | 0.729 | 0.626–0.849 | 0.0001 | |
Log TAC-MHO | 1.063 | 1.019–1.109 | 0.006 | |
Log TAC-MUO | 1.117 | 1.071–1.165 | <0.0001 | |
Log TOS-MHO | 1.901 | 0.913–1.301 | 0.34 | |
Log TOS-MUO | 1.378 | 1.158–1.640 | 0.0005 | |
Log LPH-MHO | 1.622 | 1.356–1.941 | <0.0001 | |
Log LPH-MUO | 1.944 | 1.630–2.319 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lejawa, M.; Osadnik, K.; Osadnik, T.; Pawlas, N. Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study. Antioxidants 2021, 10, 93. https://doi.org/10.3390/antiox10010093
Lejawa M, Osadnik K, Osadnik T, Pawlas N. Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study. Antioxidants. 2021; 10(1):93. https://doi.org/10.3390/antiox10010093
Chicago/Turabian StyleLejawa, Mateusz, Kamila Osadnik, Tadeusz Osadnik, and Natalia Pawlas. 2021. "Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study" Antioxidants 10, no. 1: 93. https://doi.org/10.3390/antiox10010093
APA StyleLejawa, M., Osadnik, K., Osadnik, T., & Pawlas, N. (2021). Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study. Antioxidants, 10(1), 93. https://doi.org/10.3390/antiox10010093