Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia?
Abstract
:1. Introduction
2. Glutathione in Schizophrenia
3. Intracortical GSH in Schizophrenia: MRS Studies
4. Factors Contributing to the Putative Intracortical GSH Deficit
5. Consequences of the Putative Intracortical GSH Deficit
6. Glutathione—Glutamate Relationship
7. Treatment-Engagement and Stratification Markers (GSH) for Antioxidant Trials
8. Challenges and Opportunities
- The putative consequences of GSH-deficit in schizophrenia likely involve aberrant functional connectivity within key brain networks (e.g., the Salience Network for dorsal ACC GSH deficit), myelination as well as grey matter microstructure. Longitudinal multimodal imaging, preferably starting from untreated states, and experimental ‘perturb-and-measure’ approaches with pharmacological agents such as sulforaphane or NAC will provide the required temporal information to characterize a causal role for intracortical GSH on these features. This is essential to establish the biological construct validity of the GSH-deficit phenotype in vivo.
- Attrition of the inception cohort is an important challenge in longitudinal studies of early-stage psychosis. Multi-site involvement is likely to be of critical importance to overcome this issue.
- Subgroup identification based on continuous biological measures is a statistical challenge; a single cut-off value for clinical decisions may not readily emerge. To mitigate this, in addition to the use of growth mixture and clustering models, normative estimates of MRS GSH values and classification approaches to inform cutoff optimization may be required.
- Several potential confounders/mediators of intracortical GSH (lifestyle variables, genetic variants, antipsychotic/antidepressant exposure, duration of illness, and substance use) require careful quantification to establish a relationship with outcomes of interest.
- Isolated measures of intracortical GSH do not provide the context in which the observed reduction occurs; concurrent static or dynamic measurement of glutamate will provide the relevant information to study putative mechanistic changes. As of now, 7T-MR spectroscopy (MRS), with its attendant improvisation in signal detection hardware, pulse sequences, and spectral modelling, is positioned as the only human in vivo technique that can confidently isolate glutamate from other molecules and concurrently estimate glutathione resonance. Among the MRS studies specifically optimized for GSH detection, 7T studies [65,186] report higher effect size GSH reduction in schizophrenia compared to 3T [55,187].
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jääskeläinen, E.; Juola, P.; Hirvonen, N.; McGrath, J.J.; Saha, S.; Isohanni, M.; Veijola, J.; Miettunen, J. A Systematic Review and Meta-Analysis of Recovery in Schizophrenia. Schizophr. Bull. 2013, 39, 1296–1306. [Google Scholar] [CrossRef] [Green Version]
- Norman, R.M.G.; MacDougall, A.; Manchanda, R.; Harricharan, R. An Examination of Components of Recovery after Five Years of Treatment in an Early Intervention Program for Psychosis. Schizophr. Res. 2018, 195, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Hjorthøj, C.; Stürup, A.E.; McGrath, J.J.; Nordentoft, M. Years of Potential Life Lost and Life Expectancy in Schizophrenia: A Systematic Review and Meta-Analysis. Lancet Psychiatry 2017, 4, 295–301. [Google Scholar] [CrossRef]
- Alvarez-Jimenez, M.; Gleeson, J.F.; Henry, L.P.; Harrigan, S.M.; Harris, M.G.; Amminger, G.P.; Killackey, E.; Yung, A.R.; Herrman, H.; Jackson, H.J.; et al. Prediction of a Single Psychotic Episode: A 7.5-Year, Prospective Study in First-Episode Psychosis. Schizophr. Res. 2011, 125, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Fervaha, G.; Foussias, G.; Agid, O.; Remington, G. Impact of Primary Negative Symptoms on Functional Outcomes in Schizophrenia. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2014, 29, 449–455. [Google Scholar] [CrossRef]
- Addington, J.; Piskulic, D.; Marshall, C. Psychosocial Treatments for Schizophrenia. Curr. Dir. Psychol. Sci. 2010, 19, 260–263. [Google Scholar] [CrossRef]
- Millan, M.J.; Andrieux, A.; Bartzokis, G.; Cadenhead, K.; Dazzan, P.; Fusar-Poli, P.; Gallinat, J.; Giedd, J.; Grayson, D.R.; Heinrichs, M.; et al. Altering the Course of Schizophrenia: Progress and Perspectives. Nat. Rev. Drug Discov. 2016, 15, 485–515. [Google Scholar] [CrossRef] [Green Version]
- Bleuler, E. Dementia Praecox: Or the Group of Schizophrenias; Zinkin, J., Ed.; International Universities Press: New York, NY, USA, 1950. [Google Scholar]
- Théberge, J.; Bartha, R.; Drost, D.J.; Menon, R.S.; Malla, A.; Takhar, J.; Neufeld, R.W.; Rogers, J.; Pavlosky, W.; Schaefer, B.; et al. Glutamate and Glutamine Measured with 4.0 T Proton MRS in Never-Treated Patients with Schizophrenia and Healthy Volunteers. Am. J. Psychiatry 2002, 159, 1944–1946. [Google Scholar] [CrossRef]
- Coyle, J.T.; Ruzicka, W.B.; Balu, D.T. Fifty Years of Research on Schizophrenia: The Ascendance of the Glutamatergic Synapse. Am. J. Psychiatry 2020, 177, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Kehrer, C.; Maziashvili, N.; Dugladze, T.; Gloveli, T. Altered Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia. Front. Mol. Neurosci. 2008, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Dienel, S.J.; Lewis, D.A. Alterations in Cortical Interneurons and Cognitive Function in Schizophrenia. Neurobiol. Dis. 2019, 131, 104208. [Google Scholar] [CrossRef]
- Wotruba, D.; Michels, L.; Buechler, R.; Metzler, S.; Theodoridou, A.; Gerstenberg, M.; Walitza, S.; Kollias, S.; Rössler, W.; Heekeren, K. Aberrant Coupling within and Across the Default Mode, Task-Positive, and Salience Network in Subjects at Risk for Psychosis. Schizophr. Bull. 2014, 40, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; He, N.; Liu, Z.; Linli, Z.; Tao, H.; Palaniyappan, L. Brain-Wide Functional Dysconnectivity in Schizophrenia: Parsing Diathesis, Resilience, and the Effects of Clinical Expression. Can. J. Psychiatry 2020, 65, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Del Fabro, L.; Schmidt, A.; Fortea, L.; Delvecchio, G.; D’Agostino, A.; Radua, J.; Borgwardt, S.; Brambilla, P. Functional Brain Network Dysfunctions in Subjects at High-Risk for Psychosis: A Meta-Analysis of Resting-State Functional Connectivity. Neurosci. Biobehav. Rev. 2021, 128, 90–101. [Google Scholar] [CrossRef]
- Bolton, T.A.W.; Wotruba, D.; Buechler, R.; Theodoridou, A.; Michels, L.; Kollias, S.; Rössler, W.; Heekeren, K.; Van De Ville, D. Triple Network Model Dynamically Revisited: Lower Salience Network State Switching in Pre-Psychosis. Front. Physiol. 2020, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Supekar, K.; Cai, W.; Krishnadas, R.; Palaniyappan, L.; Menon, V. Dysregulated Brain Dynamics in a Triple-Network Saliency Model of Schizophrenia and Its Relation to Psychosis. Biol. Psychiatry 2019, 85, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Limongi, R.; Jeon, P.; Mackinley, M.; Das, T.; Dempster, K.; Théberge, J.; Bartha, R.; Wong, D.; Palaniyappan, L. Glutamate and Dysconnection in the Salience Network: Neurochemical, Effective Connectivity, and Computational Evidence in Schizophrenia. Biol. Psychiatry 2020, 88, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, L.; Simmonite, M.; White, T.P.; Liddle, E.B.; Liddle, P.F. Neural Primacy of the Salience Processing System in Schizophrenia. Neuron 2013, 79, 814–828. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Pan, B.; Gu, H.; Simmonite, M.; Francis, S.; Liddle, P.F.; Palaniyappan, L. Effective Connectivity of the Right Anterior Insula in Schizophrenia: The Salience Network and Task-Negative to Task-Positive Transition. NeuroImage Clin. 2020, 28, 102377. [Google Scholar] [CrossRef]
- Peters, S.K.; Dunlop, K.; Downar, J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front. Syst. Neurosci. 2016, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Moran, L.V.; Tagamets, M.A.; Sampath, H.; O’Donnell, A.; Stein, E.A.; Kochunov, P.; Hong, L.E. Disruption of Anterior Insula Modulation of Large-Scale Brain Networks in Schizophrenia. Biol. Psychiatry 2013, 74, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, A.; Mulsant, B.H.; Rajji, T.K.; Levesque, M.L.; Pipitone, J.; Stefanik, L.; Shahab, S.; Roostaei, T.; Wheeler, A.L.; Chavez, S.; et al. Gray Matter Neuritic Microstructure Deficits in Schizophrenia and Bipolar Disorder. Biol. Psychiatry 2017, 82, 726–736. [Google Scholar] [CrossRef]
- Palaniyappan, L. Progressive Cortical Reorganisation: A Framework for Investigating Structural Changes in Schizophrenia. Neurosci. Biobehav. Rev. 2017, 79, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Voineskos, A.N.; Lobaugh, N.J.; Bouix, S.; Rajji, T.K.; Miranda, D.; Kennedy, J.L.; Mulsant, B.H.; Pollock, B.G.; Shenton, M.E. Diffusion Tensor Tractography Findings in Schizophrenia Across the Adult Lifespan. Brain 2010, 133, 1494–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.; Iwabuchi, S.; Oowise, S.; Balain, V.; Palaniyappan, L.; Liddle, P.F. Shared White Matter Dysconnectivity in Schizophrenia and Bipolar Disorder with Psychosis. Psychol. Med. 2015, 45, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Kraguljac, N.V.; Monroe, W.S.; Anthony, T.; Jindal, R.D.; Hill, H.; Lahti, A.C. Neurite Orientation Dispersion and Density Imaging (NODDI) and Duration of Untreated Psychosis in Antipsychotic Medication-Naïve First Episode Psychosis Patients. Neuroimage Rep. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Bennett, M.R. Schizophrenia: Susceptibility Genes, Dendritic-Spine Pathology and Gray Matter Loss. Prog. Neurobiol. 2011, 95, 275–300. [Google Scholar] [CrossRef]
- Moyer, C.E.; Shelton, M.A.; Sweet, R.A. Dendritic Spine Alterations in Schizophrenia. Neurosci. Lett. 2015, 601, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stedehouder, J.; Kushner, S.A. Myelination of Parvalbumin Interneurons: A Parsimonious Locus of Pathophysiological Convergence in Schizophrenia. Mol. Psychiatry 2017, 22, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Zhang, Y.; Li, Y.; Meng, Y.; Li, M.; Wang, Q.; Deng, W.; Ma, X.; Palaniyappan, L.; Zhang, N.; et al. Depth-Dependent Abnormal Cortical Myelination in First-Episode Treatment-Naïve Schizophrenia. Hum. Brain Mapp. 2020, 41, 2782–2793. [Google Scholar] [CrossRef] [Green Version]
- Cabungcal, J.-H.; Steullet, P.; Kraftsik, R.; Cuenod, M.; Do, K.Q. A Developmental Redox Dysregulation Leads to Spatio-Temporal Deficit of Parvalbumin Neuron Circuitry in a Schizophrenia Mouse Model. Schizophr. Res. 2019, 213, 96–106. [Google Scholar] [CrossRef]
- Cabungcal, J.-H.; Steullet, P.; Morishita, H.; Kraftsik, R.; Cuenod, M.; Hensch, T.K.; Do, K.Q. Perineuronal Nets Protect Fast-Spiking Interneurons against Oxidative Stress. Proc. Natl. Acad. Sci. USA 2013, 110, 9130–9135. [Google Scholar] [CrossRef] [Green Version]
- Górny, M.; Bilska-Wilkosz, A.; Iciek, M.; Hereta, M.; Kamińska, K.; Kamińska, A.; Chwatko, G.; Rogóż, Z.; Lorenc-Koci, E. Alterations in the Antioxidant Enzyme Activities in the Neurodevelopmental Rat Model of Schizophrenia Induced by Glutathione Deficiency during Early Postnatal Life. Antioxidants 2020, 9, 538. [Google Scholar] [CrossRef]
- Grima, G.; Benz, B.; Parpura, V.; Cuénod, M.; Do, K.Q. Dopamine-Induced Oxidative Stress in Neurons with Glutathione Deficit: Implication for Schizophrenia. Schizophr. Res. 2003, 62, 213–224. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, S.; Bobo-Jimenez, V.; Requejo-Aguilar, R.; Gonzalez-Fernandez, S.; Resch, M.; Carabias-Carrasco, M.; Ros, J.; Almeida, A.; Bolaños, J.P. Hippocampal Neurons Require a Large Pool of Glutathione to Sustain Dendrite Integrity and Cognitive Function. Redox Biol. 2018, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.A.; Lin, T.-H.; Sheehan, A.E.; Van der Goes van Naters, W.; Neukomm, L.J.; Graves, H.K.; Bis-Brewer, D.M.; Züchner, S.; Freeman, M.R. Glutathione S-Transferase Regulates Mitochondrial Populations in Axons through Increased Glutathione Oxidation. Neuron 2019, 103, 52–65.e6. [Google Scholar] [CrossRef] [Green Version]
- Back, S.A.; Gan, X.; Li, Y.; Rosenberg, P.A.; Volpe, J.J. Maturation-Dependent Vulnerability of Oligodendrocytes to Oxidative Stress-Induced Death Caused by Glutathione Depletion. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 6241–6253. [Google Scholar] [CrossRef]
- Monin, A.; Baumann, P.S.; Griffa, A.; Xin, L.; Mekle, R.; Fournier, M.; Butticaz, C.; Klaey, M.; Cabungcal, J.H.; Steullet, P.; et al. Glutathione Deficit Impairs Myelin Maturation: Relevance for White Matter Integrity in Schizophrenia Patients. Mol. Psychiatry 2015, 20, 827–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoba, A.; Steullet, P.; Duarte, J.M.N.; de Looij, Y.V.; Monin, A.; Cuenod, M.; Gruetter, R.; Do, K.Q. Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia. Int. J. Neuropsychopharmacol. 2016, 19, pyv110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilanczyk, E.; Saraswat Ohri, S.; Whittemore, S.R.; Hetman, M. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione. ASN Neuro 2016, 8, 1759091416660404. [Google Scholar] [CrossRef] [Green Version]
- Phensy, A.; Duzdabanian, H.E.; Brewer, S.; Panjabi, A.; Driskill, C.; Berz, A.; Peng, G.; Kroener, S. Antioxidant Treatment with N-Acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits That Result from Perinatal Ketamine Treatment. Front. Behav. Neurosci. 2017, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Cardis, R.; Cabungcal, J.-H.; Dwir, D.; Do, K.Q.; Steullet, P. A Lack of GluN2A-Containing NMDA Receptors Confers a Vulnerability to Redox Dysregulation: Consequences on Parvalbumin Interneurons, and Their Perineuronal Nets. Neurobiol. Dis. 2018, 109, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Cabungcal, J.-H.; Counotte, D.S.; Lewis, E.M.; Tejeda, H.A.; Piantadosi, P.; Pollock, C.; Calhoon, G.G.; Sullivan, E.M.; Presgraves, E.; Kil, J.; et al. Juvenile Antioxidant Treatment Prevents Adult Deficits in a Developmental Model of Schizophrenia. Neuron 2014, 83, 1073–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, K.N.; Sentir, A.M.; Engleman, E.A.; Bell, R.L.; Hulvershorn, L.A.; Breier, A.; Chambers, R.A. Toward Early Estimation and Treatment of Addiction Vulnerability: Radial Arm Maze and N-Acetyl Cysteine before Cocaine Sensitization or Nicotine Self-Administration in Neonatal Ventral Hippocampal Lesion Rats. Psychopharmacology 2016, 233, 3933–3945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanepoel, T.; Möller, M.; Harvey, B.H. N-Acetyl Cysteine Reverses Bio-Behavioural Changes Induced by Prenatal Inflammation, Adolescent Methamphetamine Exposure and Combined Challenges. Psychopharmacology 2018, 235, 351–368. [Google Scholar] [CrossRef]
- Monte, A.S.; Mello, B.S.F.; Borella, V.C.M.; da Silva Araujo, T.; da Silva, F.E.R.; de Sousa, F.C.F.; de Oliveira, A.C.P.; Gama, C.S.; Seeman, M.V.; Vasconcelos, S.M.M.; et al. Two-Hit Model of Schizophrenia Induced by Neonatal Immune Activation and Peripubertal Stress in Rats: Study of Sex Differences and Brain Oxidative Alterations. Behav. Brain Res. 2017, 331, 30–37. [Google Scholar] [CrossRef]
- Steullet, P.; Cabungcal, J.H.; Monin, A.; Dwir, D.; O’Donnell, P.; Cuenod, M.; Do, K.Q. Redox Dysregulation, Neuroinflammation, and NMDA Receptor Hypofunction: A “Central Hub” in Schizophrenia Pathophysiology? Schizophr. Res. 2016, 176, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Maas, D.A.; Vallès, A.; Martens, G.J.M. Oxidative Stress, Prefrontal Cortex Hypomyelination and Cognitive Symptoms in Schizophrenia. Transl. Psychiatry 2017, 7, e1171. [Google Scholar] [CrossRef] [Green Version]
- Lech, M.A.; Leśkiewicz, M.; Kamińska, K.; Rogóż, Z.; Lorenc-Koci, E. Glutathione Deficiency during Early Postnatal Development Causes Schizophrenia-Like Symptoms and a Reduction in BDNF Levels in the Cortex and Hippocampus of Adult Sprague-Dawley Rats. Int. J. Mol. Sci. 2021, 22, 6171. [Google Scholar] [CrossRef]
- Maas, D.A.; Eijsink, V.D.; van Hulten, J.A.; Panic, R.; De Weerd, P.; Homberg, J.R.; Vallès, A.; Nait-Oumesmar, B.; Martens, G.J.M. Antioxidant Treatment Ameliorates Prefrontal Hypomyelination and Cognitive Deficits in a Rat Model of Schizophrenia. Neuropsychopharmacology 2021, 14, 1161–1171. [Google Scholar] [CrossRef]
- Klauser, P.; Xin, L.; Fournier, M.; Griffa, A.; Cleusix, M.; Jenni, R.; Cuenod, M.; Gruetter, R.; Hagmann, P.; Conus, P.; et al. N -Acetylcysteine Add-on Treatment Leads to an Improvement of Fornix White Matter Integrity in Early Psychosis: A Double-Blind Randomized Placebo-Controlled Trial. Transl. Psychiatry 2018, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- Flatow, J.; Buckley, P.; Miller, B.J. Meta-Analysis of Oxidative Stress in Schizophrenia. Biol. Psychiatry 2013, 74, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, D.O.; Jeffries, C.D.; Do, K.Q. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol. Psychiatry 2020, 88, 326–336. [Google Scholar] [CrossRef]
- Xin, L.; Mekle, R.; Fournier, M.; Baumann, P.S.; Ferrari, C.; Alameda, L.; Jenni, R.; Lu, H.; Schaller, B.; Cuenod, M.; et al. Genetic Polymorphism Associated Prefrontal Glutathione and Its Coupling with Brain Glutamate and Peripheral Redox Status in Early Psychosis. Schizophr. Bull. 2016, 42, 1185–1196. [Google Scholar] [CrossRef]
- Kim, S.K.; Kang, S.W.; Chung, J.-H.; Park, H.J.; Cho, K.B.; Park, M.-S. Genetic Polymorphisms of Glutathione-Related Enzymes (GSTM1, GSTT1, and GSTP1) and Schizophrenia Risk: A Meta-Analysis. Int. J. Mol. Sci. 2015, 16, 19602–19611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gysin, R.; Kraftsik, R.; Sandell, J.; Bovet, P.; Chappuis, C.; Conus, P.; Deppen, P.; Preisig, M.; Ruiz, V.; Steullet, P.; et al. Impaired Glutathione Synthesis in Schizophrenia: Convergent Genetic and Functional Evidence. Proc. Natl. Acad. Sci. USA 2007, 104, 16621–16626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosic, M. Schizophrenia and Oxidative Stress: Glutamate Cysteine Ligase Modifier as a Susceptibility Gene. Am. J. Hum. Genet. 2006, 79, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Matigian, N.; Abrahamsen, G.; Sutharsan, R.; Cook, A.L.; Vitale, A.M.; Nouwens, A.; Bellette, B.; An, J.; Anderson, M.; Beckhouse, A.G.; et al. Disease-Specific, Neurosphere-Derived Cells as Models for Brain Disorders. Dis. Model. Mech. 2010, 3, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Do, K.Q.; Trabesinger, A.H.; Kirsten-Krüger, M.; Lauer, C.J.; Dydak, U.; Hell, D.; Holsboer, F.; Boesiger, P.; Cuénod, M. Schizophrenia: Glutathione Deficit in Cerebrospinal Fluid and Prefrontal Cortex In Vivo. Eur. J. Neurosci. 2000, 12, 3721–3728. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.K.; Leonard, S.; Reddy, R. Altered Glutathione Redox State in Schizophrenia. Dis. Markers 2006, 22, 83–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawryluk, J.W. Decreased Levels of Glutathione, the Major Brain Antioxidant, in Post-Mortem Prefrontal Cortex from Patients with Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2011, 14, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Bertholdo, D.; Watcharakorn, A.; Castillo, M. Brain Proton Magnetic Resonance Spectroscopy: Introduction and Overview. Neuroimaging Clin. N. Am. 2013, 23, 359–380. [Google Scholar] [CrossRef]
- Das, T.K.; Javadzadeh, A.; Dey, A.; Sabesan, P.; Théberge, J.; Radua, J.; Palaniyappan, L. Antioxidant Defense in Schizophrenia and Bipolar Disorder: A Meta-Analysis of MRS Studies of Anterior Cingulate Glutathione. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 91, 94–102. [Google Scholar] [CrossRef]
- Kumar, J.; Liddle, E.B.; Fernandes, C.C.; Palaniyappan, L.; Hall, E.L.; Robson, S.E.; Simmonite, M.; Fiesal, J.; Katshu, M.Z.; Qureshi, A.; et al. Glutathione and Glutamate in Schizophrenia: A 7T MRS Study. Mol. Psychiatry 2020, 25, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Sydnor, V.J.; Roalf, D.R. A Meta-Analysis of Ultra-High Field Glutamate, Glutamine, GABA and Glutathione 1HMRS in Psychosis: Implications for Studies of Psychosis Risk. Schizophr. Res. 2020, 226, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione Levels and Activities of Glutathione Metabolism Enzymes in Patients with Schizophrenia: A Systematic Review and Meta-Analysis. J. Psychopharmacol. 2019, 33, 1199–1214. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, J.M.; Yang, K.; Marsman, A.; Pradhan, S.; Wang, M.; Ward, R.E.; Bonekamp, S.; Ambinder, E.B.; Higgs, C.P.; Kim, P.K.; et al. A Multimodal Approach to Studying the Relationship between Peripheral Glutathione, Brain Glutamate, and Cognition in Health and in Schizophrenia. Mol. Psychiatry 2021, 26, 3502–3511. [Google Scholar] [CrossRef]
- Dempster, K.; Jeon, P.; MacKinley, M.; Williamson, P.; Théberge, J.; Palaniyappan, L. Early Treatment Response in First Episode Psychosis: A 7-T Magnetic Resonance Spectroscopic Study of Glutathione and Glutamate. Mol. Psychiatry 2020, 25, 1640–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godlewska, B.R.; Minichino, A.; Emir, U.; Angelescu, I.; Lennox, B.; Micunovic, M.; Howes, O.; Cowen, P.J. Brain Glutamate Concentration in Men with Early Psychosis: A Magnetic Resonance Spectroscopy Case–Control Study at 7 T. Transl. Psychiatry 2021, 11, 367. [Google Scholar] [CrossRef]
- Iwata, Y.; Nakajima, S.; Plitman, E.; Truong, P.; Bani-Fatemi, A.; Caravaggio, F.; Kim, J.; Shah, P.; Mar, W.; Chavez, S.; et al. Glutathione Levels and Glutathione-Glutamate Correlation in Patients with Treatment-Resistant Schizophrenia. Schizophr. Bull. Open 2021. [Google Scholar] [CrossRef]
- Limongi, R.; Jeon, P.; Théberge, J.; Palaniyappan, L. Counteracting Effects of Glutathione on the Glutamate-Driven Excitation/Inhibition Imbalance in First-Episode Schizophrenia: A 7T MRS and Dynamic Causal Modeling Study. Antioxidants 2021, 10, 75. [Google Scholar] [CrossRef]
- Pan, Y.; Dempster, K.; Jeon, P.; Théberge, J.; Khan, A.R.; Palaniyappan, L. Acute Conceptual Disorganization in Untreated First-Episode Psychosis: A Combined Magnetic Resonance Spectroscopy and Diffusion Imaging Study of the Cingulum. J. Psychiatry Neurosci. JPN 2021, 46, E337–E346. [Google Scholar] [CrossRef]
- Wang, A.M.; Pradhan, S.; Coughlin, J.M.; Trivedi, A.; DuBois, S.L.; Crawford, J.L.; Sedlak, T.W.; Nucifora, F.C.; Nestadt, G.; Nucifora, L.G.; et al. Assessing Brain Metabolism with 7-T Proton Magnetic Resonance Spectroscopy in Patients with First-Episode Psychosis. JAMA Psychiatry 2019, 76, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Berger, G.E.; Wellard, R.M.; Proffitt, T.-M.; McConchie, M.; Berk, M.; McGorry, P.D.; Pantelis, C. Medial Temporal Lobe Glutathione Concentration in First Episode Psychosis: A 1H-MRS Investigation. Neurobiol. Dis. 2009, 33, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.E.; Wood, S.J.; Wellard, R.M.; Proffitt, T.M.; McConchie, M.; Amminger, G.P.; Jackson, G.D.; Velakoulis, D.; Pantelis, C.; McGorry, P.D. Ethyl-Eicosapentaenoic Acid in First-Episode Psychosis. A 1H-MRS Study. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2008, 33, 2467–2473. [Google Scholar] [CrossRef] [Green Version]
- Jeon, P.; Limongi, R.; Ford, S.D.; Branco, C.; Mackinley, M.; Gupta, M.; Powe, L.; Théberge, J.; Palaniyappan, L. Glutathione as a Molecular Marker of Functional Impairment in Patients with At-Risk Mental State: 7-Tesla 1H-MRS Study. Brain Sci. 2021, 11, 941. [Google Scholar] [CrossRef]
- Yang, K.; Longo, L.; Narita, Z.; Cascella, N.; Nucifora, F.C.; Coughlin, J.M.; Nestadt, G.; Sedlak, T.W.; Mihaljevic, M.; Wang, M.; et al. A Multimodal Study of a First Episode Psychosis Cohort: Potential Markers of Antipsychotic Treatment Resistance. Mol. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- Kraguljac, N.V.; Morgan, C.J.; Reid, M.A.; White, D.M.; Jindal, R.D.; Sivaraman, S.; Martinak, B.K.; Lahti, A.C. A Longitudinal Magnetic Resonance Spectroscopy Study Investigating Effects of Risperidone in the Anterior Cingulate Cortex and Hippocampus in Schizophrenia. Schizophr. Res. 2019, 210, 239–244. [Google Scholar] [CrossRef]
- Merritt, K.; Perez-Iglesias, R.; Sendt, K.-V.; Goozee, R.; Jauhar, S.; Pepper, F.; Barker, G.J.; Glenthøj, B.; Arango, C.; Lewis, S.; et al. Remission from Antipsychotic Treatment in First Episode Psychosis Related to Longitudinal Changes in Brain Glutamate. Npj Schizophr. 2019, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Egerton, A.; Broberg, B.V.; Van Haren, N.; Merritt, K.; Barker, G.J.; Lythgoe, D.J.; Perez-Iglesias, R.; Baandrup, L.; Düring, S.W.; Sendt, K.V.; et al. Response to Initial Antipsychotic Treatment in First Episode Psychosis Is Related to Anterior Cingulate Glutamate Levels: A Multicentre 1H-MRS Study (OPTiMiSE). Mol. Psychiatry 2018, 23, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente-Sandoval, C.; León-Ortiz, P.; Azcárraga, M.; Stephano, S.; Favila, R.; Díaz-Galvis, L.; Alvarado-Alanis, P.; Ramírez-Bermúdez, J.; Graff-Guerrero, A. Glutamate Levels in the Associative Striatum before and after 4 Weeks of Antipsychotic Treatment in First-Episode Psychosis: A Longitudinal Proton Magnetic Resonance Spectroscopy Study. JAMA Psychiatry 2013, 70, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Théberge, J.; Williamson, K.E.; Aoyama, N.; Drost, D.J.; Manchanda, R.; Malla, A.K.; Northcott, S.; Menon, R.S.; Neufeld, R.W.J.; Rajakumar, N.; et al. Longitudinal Grey-Matter and Glutamatergic Losses in First-Episode Schizophrenia. Br. J. Psychiatry J. Ment. Sci. 2007, 191, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Jeon, P.; Limongi, R.; Ford, S.D.; Mackinley, M.; Dempster, K.; Théberge, J.; Palaniyappan, L. Progressive Changes in Glutamate Concentration in Early Stages of Schizophrenia: A Longitudinal 7-Tesla MRS Study. Schizophr. Bull. Open 2021, 2, sgaa072. [Google Scholar] [CrossRef]
- Wang, M.; Barker, P.B.; Cascella, N.; Coughlin, J.M.; Nestadt, G.; Nucifora, F.C.; Sedlak, T.W.; Kelly, A.; Younes, L.; Geman, D.; et al. Longitudinal Changes in Brain Metabolites in Healthy Subjects and Patients with First Episode Psychosis (FEP): A 7-Tesla MRS Study. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Catts, V.S.; Shannon Weickert, C. Lower Antioxidant Capacity in the Prefrontal Cortex of Individuals with Schizophrenia. Aust. N. Z. J. Psychiatry 2018, 52, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, E.A.; Dmitrieva, E.M.; Parshukova, D.A.; Kazantseva, D.V.; Vasilieva, A.R.; Smirnova, L.P. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 8881770. [Google Scholar] [CrossRef] [PubMed]
- Smigielski, L.; Jagannath, V.; Rössler, W.; Walitza, S.; Grünblatt, E. Epigenetic Mechanisms in Schizophrenia and Other Psychotic Disorders: A Systematic Review of Empirical Human Findings. Mol. Psychiatry 2020, 25, 1718–1748. [Google Scholar] [CrossRef]
- Chitty, K.M.; Lagopoulos, J.; Hickie, I.B.; Hermens, D.F. The Impact of Alcohol and Tobacco Use on In Vivo Glutathione in Youth with Bipolar Disorder: An Exploratory Study. J. Psychiatr. Res. 2014, 55, 59–67. [Google Scholar] [CrossRef]
- Tong, J.; Fitzmaurice, P.S.; Moszczynska, A.; Mattina, K.; Ang, L.-C.; Boileau, I.; Furukawa, Y.; Sailasuta, N.; Kish, S.J. Do Glutathione Levels Decline in Aging Human Brain? Free Radic. Biol. Med. 2016, 93, 110–117. [Google Scholar] [CrossRef]
- Hermens, D.F.; Hatton, S.N.; Lee, R.S.C.; Naismith, S.L.; Duffy, S.L.; Paul Amminger, G.; Kaur, M.; Scott, E.M.; Lagopoulos, J.; Hickie, I.B. In Vivo Imaging of Oxidative Stress and Fronto-Limbic White Matter Integrity in Young Adults with Mood Disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 145–156. [Google Scholar] [CrossRef]
- Chitty, K.M.; Lagopoulos, J.; Hickie, I.B.; Hermens, D.F. A Longitudinal Proton Magnetic Resonance Spectroscopy Study Investigating Oxidative Stress as a Result of Alcohol and Tobacco Use in Youth with Bipolar Disorder. J. Affect. Disord. 2015, 175, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Chitty, K.M.; Lagopoulos, J.; Hickie, I.B.; Hermens, D.F. Risky Alcohol Use in Young Persons with Emerging Bipolar Disorder Is Associated with Increased Oxidative Stress. J. Affect. Disord. 2013, 150, 1238–1241. [Google Scholar] [CrossRef]
- Freed, R.D.; Hollenhorst, C.N.; Weiduschat, N.; Mao, X.; Kang, G.; Shungu, D.C.; Gabbay, V. A Pilot Study of Cortical Glutathione in Youth with Depression. Psychiatry Res. Neuroimaging 2017, 270, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.; Gillam, J.; Upthegrove, R.; Aldred, S.; Wood, S.J. Role of Magnetic Resonance Spectroscopy in Cerebral Glutathione Quantification for Youth Mental Health: A Systematic Review. Early Interv. Psychiatry 2020, 14, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Draganov, M.; Vives-Gilabert, Y.; de Diego-Adeliño, J.; Vicent-Gil, M.; Puigdemont, D.; Portella, M.J. Glutamatergic and GABA-Ergic Abnormalities in First-Episode Depression. A 1-Year Follow-up 1H-MR Spectroscopic Study. J. Affect. Disord. 2020, 266, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.L.; Lagopoulos, J.; Cockayne, N.; Hermens, D.F.; Hickie, I.B.; Naismith, S.L. Oxidative Stress and Depressive Symptoms in Older Adults: A Magnetic Resonance Spectroscopy Study. J. Affect. Disord. 2015, 180, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Solberg, D.K.; Refsum, H.; Andreassen, O.A.; Bentsen, H. A Five-Year Follow-up Study of Antioxidants, Oxidative Stress and Polyunsaturated Fatty Acids in Schizophrenia. Acta Neuropsychiatr. 2019, 31, 202–212. [Google Scholar] [CrossRef]
- Ballesteros, A.; Jiang, P.; Summerfelt, A.; Du, X.; Chiappelli, J.; O’Donnell, P.; Kochunov, P.; Hong, L.E. No Evidence of Exogenous Origin for the Abnormal Glutathione Redox State in Schizophrenia. Schizophr. Res. 2013, 146, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, T.; Hafizi, S.; Andreazza, A.C.; Kiang, M.; Bagby, R.M.; Navas, E.; Laksono, I.; Truong, P.; Gerritsen, C.; Prce, I.; et al. Glutathione, the Major Redox Regulator, in the Prefrontal Cortex of Individuals at Clinical High Risk for Psychosis. Int. J. Neuropsychopharmacol. 2018, 21, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Lesh, T.A.; Maddock, R.J.; Howell, A.; Wang, H.; Tanase, C.; Daniel Ragland, J.; Niendam, T.A.; Carter, C.S. Extracellular Free Water and Glutathione in First-Episode Psychosis—A Multimodal Investigation of an Inflammatory Model for Psychosis. Mol. Psychiatry 2019, 26, 761–771. [Google Scholar] [CrossRef]
- Palaniyappan, L.; Al-Radaideh, A.; Mougin, O.; Gowland, P.; Liddle, P.F. Combined White Matter Imaging Suggests Myelination Defects in Visual Processing Regions in Schizophrenia. Neuropsychopharmacology 2013, 38, 1808–1815. [Google Scholar] [CrossRef]
- Palaniyappan, L.; Das, T.; Dempster, K. The Neurobiology of Transition to Psychosis: Clearing the Cache. J. Psychiatry Neurosci. 2017, 42, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Cassoli, J.S.; Guest, P.C.; Malchow, B.; Schmitt, A.; Falkai, P.; Martins-de-Souza, D. Disturbed Macro-Connectivity in Schizophrenia Linked to Oligodendrocyte Dysfunction: From Structural Findings to Molecules. NPJ Schizophr. 2015, 1, 15034. [Google Scholar] [CrossRef] [Green Version]
- Voineskos, A.N.; Felsky, D.; Kovacevic, N.; Tiwari, A.K.; Zai, C.; Chakravarty, M.M.; Lobaugh, N.J.; Shenton, M.E.; Rajji, T.K.; Miranda, D.; et al. Oligodendrocyte Genes, White Matter Tract Integrity, and Cognition in Schizophrenia. Cereb. Cortex 2013, 23, 2044–2057. [Google Scholar] [CrossRef] [Green Version]
- French, H.M.; Reid, M.; Mamontov, P.; Simmons, R.A.; Grinspan, J.B. Oxidative Stress Disrupts Oligodendrocyte Maturation. J. Neurosci. Res. 2009, 87, 3076–3087. [Google Scholar] [CrossRef] [Green Version]
- Uranova, N.A.; Vikhreva, O.V.; Rakhmanova, V.I.; Orlovskaya, D.D. Dystrophy of Oligodendrocytes and Adjacent Microglia in Prefrontal Gray Matter in Schizophrenia. Front. Psychiatry 2020, 11, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauney, S.A.; Pietersen, C.Y.; Sonntag, K.-C.; Woo, T.-U.W. Differentiation of Oligodendrocyte Precursors Is Impaired in the Prefrontal Cortex in Schizophrenia. Schizophr. Res. 2015, 169, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Palaniyappan, L.; Liddle, P.F.; Feng, J. Dynamic Cerebral Reorganization in the Pathophysiology of Schizophrenia: A MRI-Derived Cortical Thickness Study. Psychol. Med. 2016, 46, 2201–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palaniyappan, L. Inefficient Neural System Stabilization: A Theory of Spontaneous Resolutions and Recurrent Relapses in Psychosis. J. Psychiatry Neurosci. JPN 2019, 44, 367–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.H.; Lee, G.J.; Raven, E.P.; Tingus, K.; Khoo, T.; Thompson, P.M.; Bartzokis, G. Age-Related Slowing in Cognitive Processing Speed Is Associated with Myelin Integrity in a Very Healthy Elderly Sample. J. Clin. Exp. Neuropsychol. 2011, 33, 1059–1068. [Google Scholar] [CrossRef]
- Croteau-Chonka, E.C.; Dean III, D.C.; Remer, J.; Dirks, H.; O’Muircheartaigh, J.; Deoni, S.C.L. Examining the Relationships between Cortical Maturation and White Matter Myelination throughout Early Childhood. NeuroImage 2016, 125, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitaker, K.J.; Vértes, P.E.; Romero-Garcia, R.; Váša, F.; Moutoussis, M.; Prabhu, G.; Weiskopf, N.; Callaghan, M.F.; Wagstyl, K.; Rittman, T.; et al. Adolescence Is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome. Proc. Natl. Acad. Sci. USA 2016, 113, 9105–9110. [Google Scholar] [CrossRef] [Green Version]
- Micheva, K.D.; Wolman, D.; Mensh, B.D.; Pax, E.; Buchanan, J.; Smith, S.J.; Bock, D.D. A Large Fraction of Neocortical Myelin Ensheathes Axons of Local Inhibitory Neurons. eLife 2016, 5, e15784. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, P.M.; Panisi, C.; Marini, M. The Alteration of Chloride Homeostasis/GABAergic Signaling in Brain Disorders: Could Oxidative Stress Play a Role? Antioxidants 2021, 10, 1316. [Google Scholar] [CrossRef]
- Lewis, D.A.; Curley, A.A.; Glausier, J.R.; Volk, D.W. Cortical Parvalbumin Interneurons and Cognitive Dysfunction in Schizophrenia. Trends Neurosci. 2012, 35, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.; Naber, D.; Schacht, A.; Wagner, T.; Hundemer, H.-P.; Karow, A.; Huber, C.G.; Suarez, D.; Haro, J.M.; Novick, D.; et al. Rates and Predictors of Remission and Recovery during 3 Years in 392 Never-Treated Patients with Schizophrenia. Acta Psychiatr. Scand. 2008, 118, 220–229. [Google Scholar] [CrossRef]
- Derks, E.M.; Fleischhacker, W.W.; Boter, H.; Peuskens, J.; Kahn, R.S.; EUFEST Study Group. Antipsychotic Drug Treatment in First-Episode Psychosis: Should Patients Be Switched to a Different Antipsychotic Drug after 2, 4, or 6 Weeks of Nonresponse? J. Clin. Psychopharmacol. 2010, 30, 176–180. [Google Scholar] [CrossRef]
- Carbon, M.; Correll, C.U. Clinical Predictors of Therapeutic Response to Antipsychotics in Schizophrenia. Dialogues Clin. Neurosci. 2014, 16, 505–524. [Google Scholar]
- Matsuzawa, D.; Obata, T.; Shirayama, Y.; Nonaka, H.; Kanazawa, Y.; Yoshitome, E.; Takanashi, J.; Matsuda, T.; Shimizu, E.; Ikehira, H.; et al. Negative Correlation between Brain Glutathione Level and Negative Symptoms in Schizophrenia: A 3T 1H-MRS Study: E1944. PLoS ONE 2008, 3, e1944. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, T.W.; Paul, B.D.; Parker, G.M.; Hester, L.D.; Snowman, A.M.; Taniguchi, Y.; Kamiya, A.; Snyder, S.H.; Sawa, A. The Glutathione Cycle Shapes Synaptic Glutamate Activity. Proc. Natl. Acad. Sci. USA 2019, 116, 2701–2706. [Google Scholar] [CrossRef] [Green Version]
- Koga, M.; Serritella, A.V.; Messmer, M.M.; Hayashi-Takagi, A.; Hester, L.D.; Snyder, S.H.; Sawa, A.; Sedlak, T.W. Glutathione Is a Physiologic Reservoir of Neuronal Glutamate. Biochem. Biophys. Res. Commun. 2011, 409, 596–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerton, A.; Brugger, S.; Raffin, M.; Barker, G.J.; Lythgoe, D.J.; McGuire, P.K.; Stone, J.M. Anterior Cingulate Glutamate Levels Related to Clinical Status Following Treatment in First-Episode Schizophrenia. Neuropsychopharmacology 2012, 37, 2515–2521. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Plitman, E.; Iwata, Y.; Kim, J.; Nakajima, S.; Chan, N.; Brown, E.E.; Caravaggio, F.; Torres, E.; Hahn, M.; et al. Glutamatergic Neurometabolites and Cortical Thickness in Treatment-Resistant Schizophrenia: Implications for Glutamate-Mediated Excitotoxicity. J. Psychiatr. Res. 2020, 124, 151–158. [Google Scholar] [CrossRef]
- Plitman, E.; Nakajima, S.; de la Fuente-Sandoval, C.; Gerretsen, P.; Chakravarty, M.M.; Kobylianskii, J.; Chung, J.K.; Caravaggio, F.; Iwata, Y.; Remington, G.; et al. Glutamate-Mediated Excitotoxicity in Schizophrenia: A Review. Eur. Neuropsychopharmacol. 2014, 24, 1591–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langbein, K.; Hesse, J.; Gussew, A.; Milleit, B.; Lavoie, S.; Amminger, G.P.; Gaser, C.; Wagner, G.; Reichenbach, J.R.; Hipler, U.-C.; et al. Disturbed Glutathione Antioxidative Defense Is Associated with Structural Brain Changes in Neuroleptic-Naïve First-Episode Psychosis Patients. Prostaglandins Leukot. Essent. Fatty Acids 2018, 136, 103–110. [Google Scholar] [CrossRef]
- Fraguas, D.; Gonzalez-Pinto, A.; Micó, J.A.; Reig, S.; Parellada, M.; Martínez-Cengotitabengoa, M.; Castro-Fornieles, J.; Rapado-Castro, M.; Baeza, I.; Janssen, J.; et al. Decreased Glutathione Levels Predict Loss of Brain Volume in Children and Adolescents with First-Episode Psychosis in a Two-Year Longitudinal Study. Schizophr. Res. 2012, 137, 58–65. [Google Scholar] [CrossRef]
- Merritt, K.; McGuire, P.K.; Egerton, A.; 1H-MRS in Schizophrenia Investigators; Aleman, A.; Block, W.; Bloemen, O.J.N.; Borgan, F.; Bustillo, J.R.; Capizzano, A.A.; et al. Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia with Proton Magnetic Resonance Spectroscopy Brain Glutamate Level: A Mega-Analysis of Individual Participant-Level Data. JAMA Psychiatry 2021, 78, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Smucny, J.; Carter, C.S.; Maddock, R.J. Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol. Psychiatry 2021. [Google Scholar] [CrossRef]
- Martínez-Maestro, M.; Labadie, C.; Möller, H.E. Dynamic Metabolic Changes in Human Visual Cortex in Regions with Positive and Negative Blood Oxygenation Level-Dependent Response. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2019, 39, 2295–2307. [Google Scholar] [CrossRef]
- Jeon, P. Functional Magnetic Resonance Spectroscopy in First-Episode Schizophrenia: Measuring Glutamate and Glutathione Dynamics at 7-Tesla. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2019. [Google Scholar]
- Lin, Y.; Stephenson, M.C.; Xin, L.; Napolitano, A.; Morris, P.G. Investigating the Metabolic Changes Due to Visual Stimulation Using Functional Proton Magnetic Resonance Spectroscopy at 7 T. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2012, 32, 1484–1495. [Google Scholar] [CrossRef] [Green Version]
- Boillat, Y.; Xin, L.; van der Zwaag, W.; Gruetter, R. Metabolite Concentration Changes Associated with Positive and Negative BOLD Responses in the Human Visual Cortex: A Functional MRS Study at 7 Tesla. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2020, 40, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, B.; Xin, L.; O’Brien, K.; Magill, A.W.; Gruetter, R. Are Glutamate and Lactate Increases Ubiquitous to Physiological Activation? A (1)H Functional MR Spectroscopy Study during Motor Activation in Human Brain at 7Tesla. NeuroImage 2014, 93 Pt 1, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednařík, P.; Tkáč, I.; Giove, F.; DiNuzzo, M.; Deelchand, D.K.; Emir, U.E.; Eberly, L.E.; Mangia, S. Neurochemical and BOLD Responses during Neuronal Activation Measured in the Human Visual Cortex at 7 Tesla. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2015, 35, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Panov, A.; Schonfeld, P.; Dikalov, S.; Hemendinger, R.; Bonkovsky, H.L.; Brooks, B.R. The Neuromediator Glutamate, through Specific Substrate Interactions, Enhances Mitochondrial ATP Production and Reactive Oxygen Species Generation in Nonsynaptic Brain Mitochondria. J. Biol. Chem. 2009, 284, 14448–14456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.A.; Pinotsis, D.; Tsirlis, K.; Unruh, L.; Mahajan, A.; Horas, A.M.; Convertino, L.; Summerfelt, A.; Sampath, H.; Du, X.M.; et al. Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia. Biol. Psychiatry 2021. [Google Scholar] [CrossRef]
- Hillen, A.E.J.; Heine, V.M. Glutamate Carrier Involvement in Mitochondrial Dysfunctioning in the Brain White Matter. Front. Mol. Biosci. 2020, 7, 151. [Google Scholar] [CrossRef]
- Khadimallah, I.; Jenni, R.; Cabungcal, J.-H.; Cleusix, M.; Fournier, M.; Beard, E.; Klauser, P.; Knebel, J.-F.; Murray, M.M.; Retsa, C.; et al. Mitochondrial, Exosomal MiR137-COX6A2 and Gamma Synchrony as Biomarkers of Parvalbumin Interneurons, Psychopathology, and Neurocognition in Schizophrenia. Mol. Psychiatry 2021, 1–13. [Google Scholar] [CrossRef]
- Justin, A.; Sathishkumar, M.; Sudheer, A.; Shanthakumari, S.; Ramanathan, M. Non-Hypotensive Dose of Telmisartan and Nimodipine Produced Synergistic Neuroprotective Effect in Cerebral Ischemic Model by Attenuating Brain Cytokine Levels. Pharmacol. Biochem. Behav. 2014, 122, 61–73. [Google Scholar] [CrossRef]
- Liang, M.; Wang, Z.; Li, H.; Cai, L.; Pan, J.; He, H.; Wu, Q.; Tang, Y.; Ma, J.; Yang, L. L-Arginine Induces Antioxidant Response to Prevent Oxidative Stress via Stimulation of Glutathione Synthesis and Activation of Nrf2 Pathway. Food Chem. Toxicol. 2018, 115, 315–328. [Google Scholar] [CrossRef]
- Verma, M.K.; Goel, R.; Nandakumar, K.; Nemmani, K.V.S. Effect of D-Ala2GIP, a Stable GIP Receptor Agonist on MPTP-Induced Neuronal Impairments in Mice. Eur. J. Pharmacol. 2017, 804, 38–45. [Google Scholar] [CrossRef]
- Bramanti, V.; Tomassoni, D.; Bronzi, D.; Grasso, S.; Currò, M.; Avitabile, M.; Li Volsi, G.; Renis, M.; Ientile, R.; Amenta, F.; et al. Alpha-Lipoic Acid Modulates GFAP, Vimentin, Nestin, Cyclin D1 and MAP-Kinase Espression in Astroglial Cell Cultures. Neurochem. Res. 2010, 35, 2070–2077. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow, M.; Kotlicka-Antczak, M.; Trafalska, E.; Gębski, P.; Szemraj, J.; Żurner, N.; Pawełczyk, A. Omega-3 Fatty Acids in First-Episode Schizophrenia—A Randomized Controlled Study of Efficacy and Relapse Prevention (OFFER): Rationale, Design, and Methods. BMC Psychiatry 2015, 15, 97. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Feng, Q.; Kumagai, T.; Torikai, K.; Ohigashi, H.; Osawa, T.; Noguchi, N.; Niki, E.; Uchida, K. Ebselen, a Glutathione Peroxidase Mimetic Seleno-Organic Compound, as a Multifunctional Antioxidant. Implication for Inflammation-Associated Carcinogenesis. J. Biol. Chem. 2002, 277, 2687–2694. [Google Scholar] [CrossRef] [Green Version]
- Maugard, M.; Vigneron, P.-A.; Bolaños, J.P.; Bonvento, G. L-Serine Links Metabolism with Neurotransmission. Prog. Neurobiol. 2020, 197, 101896. [Google Scholar] [CrossRef]
- Fujita, Y.; Ishima, T.; Hashimoto, K. Supplementation with D-Serine Prevents the Onset of Cognitive Deficits in Adult Offspring after Maternal Immune Activation. Sci. Rep. 2016, 6, 37261. [Google Scholar] [CrossRef] [Green Version]
- Tchantchou, F.; Graves, M.; Falcone, D.; Shea, T.B. S-Adenosylmethionine Mediates Glutathione Efficacy by Increasing Glutathione S-Transferase Activity: Implications for S-Adenosyl Methionine as a Neuroprotective Dietary Supplement. J. Alzheimers Dis. JAD 2008, 14, 323–328. [Google Scholar] [CrossRef]
- Sharma, A.; Gerbarg, P.; Bottiglieri, T.; Massoumi, L.; Carpenter, L.L.; Lavretsky, H.; Muskin, P.R.; Brown, R.P.; Mischoulon, D. S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. J. Clin. Psychiatry 2017, 78, e656–e667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekhar, R.V.; McKay, S.V.; Patel, S.G.; Guthikonda, A.P.; Reddy, V.T.; Balasubramanyam, A.; Jahoor, F. Glutathione Synthesis Is Diminished in Patients with Uncontrolled Diabetes and Restored by Dietary Supplementation with Cysteine and Glycine. Diabetes Care 2011, 34, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, P.; Bouchachia, I.; Goebels, N.; Henke, N.; Hofstetter, H.H.; Issberner, A.; Kovacs, Z.; Lewerenz, J.; Lisak, D.; Maher, P.; et al. Effects of Dimethyl Fumarate on Neuroprotection and Immunomodulation. J. Neuroinflamm. 2012, 9, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Fattah, A.A.; Fahim, A.T.; Sadik, N.A.H.; Ali, B.M. Resveratrol and Dimethyl Fumarate Ameliorate Depression-like Behaviour in a Rat Model of Chronic Unpredictable Mild Stress. Brain Res. 2018, 1701, 227–236. [Google Scholar] [CrossRef]
- Lavoie, S.; Chen, Y.; Dalton, T.P.; Gysin, R.; Cuénod, M.; Steullet, P.; Do, K.Q. Curcumin, Quercetin, and TBHQ Modulate Glutathione Levels in Astrocytes and Neurons: Importance of the Glutamate Cysteine Ligase Modifier Subunit. J. Neurochem. 2009, 108, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Miodownik, C.; Lerner, V.; Kudkaeva, N.; Lerner, P.P.; Pashinian, A.; Bersudsky, Y.; Eliyahu, R.; Kreinin, A.; Bergman, J. Curcumin as Add-On to Antipsychotic Treatment in Patients with Chronic Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. Clin. Neuropharmacol. 2019, 42, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Navarro, J.A.; Rodríguez, L.; Casarejos, M.J.; Solano, R.M.; Gómez, A.; Perucho, J.; Cuervo, A.M.; García de Yébenes, J.; Mena, M.A. Trehalose Ameliorates Dopaminergic and Tau Pathology in Parkin Deleted/Tau Overexpressing Mice through Autophagy Activation. Neurobiol. Dis. 2010, 39, 423–438. [Google Scholar] [CrossRef]
- Sinha, R.; Sinha, I.; Calcagnotto, A.; Trushin, N.; Haley, J.S.; Schell, T.D.; Richie, J.P. Oral Supplementation with Liposomal Glutathione Elevates Body Stores of Glutathione and Markers of Immune Function. Eur. J. Clin. Nutr. 2018, 72, 105–111. [Google Scholar] [CrossRef]
- Zortea, K.; Franco, V.C.; Guimarães, P.; Belmonte-de-Abreu, P.S. Resveratrol Supplementation Did Not Improve Cognition in Patients with Schizophrenia: Results from a Randomized Clinical Trial. Front. Psychiatry 2016, 7, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kode, A.; Rajendrasozhan, S.; Caito, S.; Yang, S.-R.; Megson, I.L.; Rahman, I. Resveratrol Induces Glutathione Synthesis by Activation of Nrf2 and Protects against Cigarette Smoke-Mediated Oxidative Stress in Human Lung Epithelial Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L478–L488. [Google Scholar] [CrossRef] [Green Version]
- Mert, D.G.; Turgut, N.H.; Arslanbas, E.; Gungor, H.; Kara, H. The Influence of Quercetin on Recognition Memory and Brain Oxidative Damage in a Ketamine Model of Schizophrenia. Psychiatry Clin. Psychopharmacol. 2019, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.L. Quercetin as an Augmentation Agent in Schizophrenia. J. Clin. Psychopharmacol. 2016, 36, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Suresh, P.; Raju, A.B. Antidopaminergic Effects of Leucine and Genistein on Shizophrenic Rat Models. Neurosci. Riyadh Saudi Arab. 2013, 18, 235–241. [Google Scholar]
- Torrens-Mas, M.; Pons, D.-G.; Sastre-Serra, J.; Oliver, J.; Roca, P. Sexual Hormones Regulate the Redox Status and Mitochondrial Function in the Brain. Pathological Implications. Redox Biol. 2020, 31, 101505. [Google Scholar] [CrossRef]
- Mussard, E.; Cesaro, A.; Lespessailles, E.; Legrain, B.; Berteina-Raboin, S.; Toumi, H. Andrographolide, a Natural Antioxidant: An Update. Antioxidants 2019, 8, 571. [Google Scholar] [CrossRef] [Green Version]
- Schopfer, F.J.; Vitturi, D.A.; Jorkasky, D.K.; Freeman, B.A. Nitro-Fatty Acids: New Drug Candidates for Chronic Inflammatory and Fibrotic Diseases. Nitric Oxide Biol. Chem. 2018, 79, 31–37. [Google Scholar] [CrossRef]
- Lynch, D.R.; Farmer, J.; Hauser, L.; Blair, I.A.; Wang, Q.Q.; Mesaros, C.; Snyder, N.; Boesch, S.; Chin, M.; Delatycki, M.B.; et al. Safety, Pharmacodynamics, and Potential Benefit of Omaveloxolone in Friedreich Ataxia. Ann. Clin. Transl. Neurol. 2019, 6, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.C.X.; Mourão, F.A.G.; Binda, N.S.; Leite, H.R.; Gomez, M.V.; Massensini, A.R.; Gomez, R.S. Pharmacological Induction of Ischemic Tolerance in Hippocampal Slices by Sarcosine Preconditioning. Neurochem. Int. 2012, 61, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, D. A Possible Role for Sarcosine in the Management of Schizophrenia. Br. J. Psychiatry 2019, 215, 697–698. [Google Scholar] [CrossRef]
- Tsilioni, I.; Taliou, A.; Francis, K.; Theoharides, T.C. Children with Autism Spectrum Disorders, Who Improved with a Luteolin-Containing Dietary Formulation, Show Reduced Serum Levels of TNF and IL-6. Transl. Psychiatry 2015, 5, e647. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.B.; Sousa, C.; Costa, A.; Andrade, P.B.; Valentão, P. Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms. Molecules 2013, 18, 8858–8872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagishita, Y.; Gatbonton-Schwager, T.N.; McCallum, M.L.; Kensler, T.W. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants 2020, 9, 716. [Google Scholar] [CrossRef]
- Yolland, C.O.; Hanratty, D.; Neill, E.; Rossell, S.L.; Berk, M.; Dean, O.M.; Castle, D.J.; Tan, E.J.; Phillipou, A.; Harris, A.W.; et al. Meta-Analysis of Randomised Controlled Trials with N-Acetylcysteine in the Treatment of Schizophrenia. Aust. N. Z. J. Psychiatry 2019, 4867419893439. [Google Scholar] [CrossRef]
- Conus, P.; Seidman, L.J.; Fournier, M.; Xin, L.; Cleusix, M.; Baumann, P.S.; Ferrari, C.; Cousins, A.; Alameda, L.; Gholam-Rezaee, M.; et al. N-Acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophr. Bull. 2018, 44, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, M.; Malhi, G.S.; Gray, L.J.; Dean, O.M. The Promise of N-Acetylcysteine in Neuropsychiatry. Trends Pharmacol. Sci. 2013, 34, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Robledinos-Antón, N.; Fernández-Ginés, R.; Manda, G.; Cuadrado, A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid. Med. Cell. Longev. 2019, 2019, 9372182. [Google Scholar] [CrossRef] [PubMed]
- Girgis, R.R.; Baker, S.; Mao, X.; Gil, R.; Javitt, D.C.; Kantrowitz, J.T.; Gu, M.; Spielman, D.M.; Ojeil, N.; Xu, X.; et al. Effects of Acute N-Acetylcysteine Challenge on Cortical Glutathione and Glutamate in Schizophrenia: A Pilot In Vivo Proton Magnetic Resonance Spectroscopy Study. Psychiatry Res. 2019, 275, 78–85. [Google Scholar] [CrossRef]
- Kubo, E.; Chhunchha, B.; Singh, P.; Sasaki, H.; Singh, D.P. Sulforaphane Reactivates Cellular Antioxidant Defense by Inducing Nrf2/ARE/Prdx6 Activity during Aging and Oxidative Stress. Sci. Rep. 2017, 7, 14130. [Google Scholar] [CrossRef] [Green Version]
- Vomund, S.; Schäfer, A.; Parnham, M.J.; Brüne, B.; von Knethen, A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int. J. Mol. Sci. 2017, 18, 2772. [Google Scholar] [CrossRef] [Green Version]
- Fahey, J.W.; Holtzclaw, W.D.; Wehage, S.L.; Wade, K.L.; Stephenson, K.K.; Talalay, P. Sulforaphane Bioavailability from Glucoraphanin-Rich Broccoli: Control by Active Endogenous Myrosinase. PLoS ONE 2015, 10, e0140963. [Google Scholar] [CrossRef] [Green Version]
- Egner, P.A.; Chen, J.G.; Wang, J.B.; Wu, Y.; Sun, Y.; Lu, J.H.; Zhu, J.; Zhang, Y.H.; Chen, Y.S.; Friesen, M.D.; et al. Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short Term, Cross-over Clinical Trial in Qidong, China. Cancer Prev. Res. 2011, 4, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Sedlak, T.W.; Nucifora, L.G.; Koga, M.; Shaffer, L.S.; Higgs, C.; Tanaka, T.; Wang, A.M.; Coughlin, J.M.; Barker, P.B.; Fahey, J.W.; et al. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol. Neuropsychiatry 2018, 3, 214–222. [Google Scholar] [CrossRef]
- Houghton, C.A. Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Available online: https://www.hindawi.com/journals/omcl/2019/2716870/ (accessed on 26 September 2020).
- Singh, K.; Connors, S.L.; Macklin, E.A.; Smith, K.D.; Fahey, J.W.; Talalay, P.; Zimmerman, A.W. Sulforaphane Treatment of Autism Spectrum Disorder (ASD). Proc. Natl. Acad. Sci. USA 2014, 111, 15550–15555. [Google Scholar] [CrossRef] [Green Version]
- Shiina, A.; Kanahara, N.; Sasaki, T.; Oda, Y.; Hashimoto, T.; Hasegawa, T.; Yoshida, T.; Iyo, M.; Hashimoto, K. An Open Study of Sulforaphane-Rich Broccoli Sprout Extract in Patients with Schizophrenia. Clin. Psychopharmacol. Neurosci. 2015, 13, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.W.; Cornblatt, B.; Kinchen, J.M.; Delucchi, K.; Hendren, R.L. Identification of Urinary Metabolites That Correlate with Clinical Improvements in Children with Autism Treated with Sulforaphane from Broccoli. Mol. Autism 2018, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, M.A.; Salibi, N.; White, D.M.; Gawne, T.J.; Denney, T.S.; Lahti, A.C. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr. Bull. 2019, 45, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Hermens, D.F.; Lagopoulos, J.; Naismith, S.L.; Tobias-Webb, J.; Hickie, I.B. Distinct Neurometabolic Profiles Are Evident in the Anterior Cingulate of Young People with Major Psychiatric Disorders. Transl. Psychiatry 2012, 2, e110. [Google Scholar] [CrossRef] [Green Version]
- Bottino, F.; Lucignani, M.; Napolitano, A.; Dellepiane, F.; Visconti, E.; Rossi Espagnet, M.C.; Pasquini, L. In Vivo Brain GSH: MRS Methods and Clinical Applications. Antioxidants 2021, 10, 1407. [Google Scholar] [CrossRef]
- Yamamoto, K.; Opina, A.; Sail, D.; Blackman, B.; Saito, K.; Brender, J.R.; Malinowski, R.M.; Seki, T.; Oshima, N.; Crooks, D.R.; et al. Real-Time Insight into In Vivo Redox Status Utilizing Hyperpolarized [1-13C] N-Acetyl Cysteine. Sci. Rep. 2021, 11, 12155. [Google Scholar] [CrossRef]
- Chen, J.; Yadav, N.N.; Stait-Gardner, T.; Gupta, A.; Price, W.S.; Zheng, G. Thiol-Water Proton Exchange of Glutathione, Cysteine, and N-Acetylcysteine: Implications for CEST MRI. NMR Biomed. 2020, 33, e4188. [Google Scholar] [CrossRef] [PubMed]
- Juchnowicz, D.; Dzikowski, M.; Rog, J.; Waszkiewicz, N.; Karakuła, K.H.; Zalewska, A.; Maciejczyk, M.; Karakula-Juchnowicz, H. Pro/Antioxidant State as a Potential Biomarker of Schizophrenia. J. Clin. Med. 2021, 10, 4156. [Google Scholar] [CrossRef] [PubMed]
- Fournier, M.; Scolamiero, M.; Gholam-Rezaee, M.M.; Cleusix, M.; Jenni, R.; Ferrari, C.; Golay, P.; Baumann, P.S.; Cuenod, M.; Conus, P.; et al. Topology Predicts Long-Term Functional Outcome in Early Psychosis. Mol. Psychiatry 2020, 1–12. [Google Scholar] [CrossRef]
Study | No. Patients/Controls | Females/Males Patients | No. of Females/Males Controls | Age of Patients (Years) Mean (SD) | Age of Controls (Years) Mean (SD) | Clinical Features | Duration of Illness (Years) Mean (SD) |
---|---|---|---|---|---|---|---|
Coughlin et al., 2021 | 46/50 (16/10 *) | 12/34 | 16/34 | 34.17 (11.8) | 32.06 (11.28) | Chronic, stable phase of schizophrenia; 13% no APD. ACC GSH patients = HC | 12.36 (11.45) |
Dempster et al., 2020 a | 26/27 | 5/21 | 10/17 | 24.04 (5.4) | 21.48 (3.57) | Acute, untreated psychosis; dACC GSH patients = HC; Higher GSH in patients with faster response to APD. | 0.54 (1.25) |
Godlewska et al., 2021 | 17/18 (14/18 *) | 0/17 | 0/18 | 25.6 (1.1) | 27.1 (0.8) | Stabilized first-episode; diagnostic information N/A; 12% no APD; ACC GSH patients = HC | 2.54 (0.28) |
Iwata et al., 2021 b | 21/26 | 5/16 | 7/19 | 46.3 (12.7) | 40.8 (13.2) | First line treatment responders; dACC GSH patients = HC | 20.0 (12.2) |
Iwata et al., 2021 b | 27/26 | 8/19 | 7/19 | 40.5 (11.2) | 40.8 (13.2) | TRS—Clozapine responders; dACC GSH patients = HC | 16.4 (9.7) |
Iwata et al., 2021 b | 24/26 | 5/19 | 7/19 | 44.8 (13.2) | 40.8 (13.2) | TRS—Clozapine non-responders; dACC GSH patients = HC | 23.5 (13.2) |
Limongi et al., 2021 a | 19/20 | 7/12 | 9/11 | 21.7 (3.3) | 21.3 (3.7) | Acute, untreated psychosis; 60% no APD; dACC GSH patients > HC | 1.1 (1.8) |
Pan et al., 2021 a,b | 16/25 | 3/13 | 11/14 | 21.81 (3.17) | 22.12 (3.54) | Acute psychosis with high disorganization; >65% schizophrenia. dACC GSH patients > HC | 0.98 (1.13) |
Pan et al., 2021 a,b | 24/25 | 6/18 | 11/14 | 23.71 (5.43) | 22.12 (3.54) | Acute psychosis with low disorganization; >80% schizophrenia. dACC GSH patients = HC | 0.91 (1.7) |
Wang et al., 2019 | 81/91 (74/88 *) | 24/57 | 49/42 | 22.3 [4.4] | 23.3 (3.9) | Stabilized first-episode; <65% of sample had schizophrenia. dACC GSH HC > patients | 1.27 (0.8) |
Drugs that Activate Nrf2-Mediated GSH Regulation | Drugs that Increase or Stabilise GSH Levels via Other Mechanisms |
---|---|
Sulforaphane (NCT02880462; NCT02810964; NCT01716858; NCT04521868) | N-acetylcysteine [172,174] (NCT02505477, NCT03149107) |
Curcumin [154,155] (NCT02104752, NCT02298985) | Direct liposomal GSH [157] (NCT01967667) |
Resveratrol [158,159] | Ebselen [44,146] (NCT03013400) |
Quercetin [160,161] (NCT04063124), | Ethyl eicosopentanoic acid [76,145] |
Genistein [162,163] (NCT01982578) | Glucose-dependent insulionotropic polypeptide [143] |
Andrographolide [164] | Alpha-lipoic acid [144] (NCT03788759) |
CXA-10 [165] | L-arginine [142] (NCT04054973) |
Bardoxolone [171] | S-adenosylmethionine [149,150] |
Omaveloxolone [166] (NCT02255435), | Sarcosine [167,168] |
Sulforadex (SFX-01) [175] (NCT02614742) | Serine [147,148] (NCT04140773, NCT03711500) |
Dimethylfumarate [152,153]—now used for MS | Telmisartan [141] (NCT03868839) |
Luteolin [169,170] | Trehalose [156] (NCT02800161) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palaniyappan, L.; Park, M.T.M.; Jeon, P.; Limongi, R.; Yang, K.; Sawa, A.; Théberge, J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants 2021, 10, 1703. https://doi.org/10.3390/antiox10111703
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants. 2021; 10(11):1703. https://doi.org/10.3390/antiox10111703
Chicago/Turabian StylePalaniyappan, Lena, Min Tae M. Park, Peter Jeon, Roberto Limongi, Kun Yang, Akira Sawa, and Jean Théberge. 2021. "Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia?" Antioxidants 10, no. 11: 1703. https://doi.org/10.3390/antiox10111703
APA StylePalaniyappan, L., Park, M. T. M., Jeon, P., Limongi, R., Yang, K., Sawa, A., & Théberge, J. (2021). Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants, 10(11), 1703. https://doi.org/10.3390/antiox10111703