Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Olive Oil Production
2.3. Determination of Olive Oil Quality Parameters
2.4. Extraction and Determination of the Phenolic Fraction
2.5. Determination of Pigments, Tocopherols, and Squalene
2.6. Statistical Analysis
3. Results and Discussion
3.1. Determination of Olive Oil Quality Parameters
3.2. Determination of the Phenolic Fraction
3.2.1. Total Polyphenols
3.2.2. Secoiridoids
3.2.3. Minor Compounds: Flavones, Phenolic Acids, Phenolic Alcohols, and Lignans
3.3. Pigments, Tocopherols, and Squalene
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EVOO | Extra-virgin olive oil |
RI | Ripening index |
PCA | Principal component analysis |
PV | Peroxide value |
A | Acidity |
PUFA | Polyunsaturated fatty acids |
PPO | Polyphenol oxidase |
POD | Peroxidase |
3,4-DHPEA | Hydroxytyrosol |
3,4-DHPEA-AC | Hydroxytyrosol acetate |
HDCM-OA | Hydroxydecarboxymethyl oleuropein aglycone |
HOA | Hydroxyoleuropein aglycone |
Appendix A
EVOO Malaxation Treatment | Olive Tree | RI 1 | ||
---|---|---|---|---|
Temperature | Time | Replicate | ||
20 °C | 30 min | 1 | P4-G10 | 1.44 |
2 | P4-G10 | 1.44 | ||
3 | P4-G9 | 2.20 | ||
45 min | 1 | P4-G9 | 2.20 | |
2 | P4-G11/12 | 1.54 | ||
3 | P4-G11/12 | 1.54 | ||
25 °C | 30 min | 1 | P4-G11/12 | 1.54 |
2 | P4-G11/12 | 1.54 | ||
3 | P4-G11/12 | 1.54 | ||
45 min | 1 | P4-G4/6 | 1.20 | |
2 | P4-G4/6 | 1.20 | ||
3 | P4-G4/6 | 1.20 | ||
30 °C | 30 min | 1 | P4-G4/6 | 1.20 |
2 | P4-G4/6 | 1.20 | ||
3 | P4-G1/2/3 | 2.26 | ||
45 min | 1 | P4-G15/16 | 1.16 | |
2 | P4-G15/16 | 1.16 | ||
3 | P4-G15/16 | 1.16 |
References
- Clodoveo, M.L. Malaxation: Influence on virgin olive oil quality. Past, present and future—An overview. Trends Food Sci. Technol. 2012, 25, 13–23. [Google Scholar] [CrossRef]
- Inarejos-García, A.M.; Gómez-Rico, A.; Salvador, M.D.; Fregapane, G. Influence of malaxation conditions on virgin olive oil yield, overall quality and composition. Eur. Food Res. Technol. 2008, 228, 671–677. [Google Scholar] [CrossRef]
- Diamantakos, P.; Giannara, T.; Skarkou, M.; Melliou, E.; Magiatis, P. Influence of harvest time and malaxation conditions on the concentration of individual phenols in extra virgin olive oil related to its healthy properties. Molecules 2020, 25, 2449. [Google Scholar] [CrossRef]
- Stefanoudaki, E.; Koutsaftakis, A.; Harwood, J.L. Influence of malaxation conditions on characteristic qualities of olive oil. Food Chem. 2011, 127, 1481–1486. [Google Scholar] [CrossRef]
- Kalua, C.M.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D. Changes in volatile and phenolic compounds with malaxation time and temperature during virgin olive oil production. J. Agric. Food Chem. 2006, 54, 7641–7651. [Google Scholar] [CrossRef]
- Marx, Í.M.G.; Casal, S.; Rodrigues, N.; Pinho, T.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim. Food Chem. 2021, 337, 127726. [Google Scholar] [CrossRef]
- Jolayemi, O.S.; Tokatli, F.; Ozen, B. Effects of malaxation temperature and harvest time on the chemical characteristics of olive oils. Food Chem. 2016, 211, 776–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranalli, A.; Malfatti, A.; Lucera, L.; Contento, S.; Sotiriou, E. Effects of processing techniques on the natural colourings and the other functional constituents in virgin olive oil. Food Res. Int. 2005, 38, 873–878. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds and phenolic composition of virgin olive oil: Optimization of temperature and time of exposure of olive pastes to air contact during the mechanical extraction process. J. Agric. Food Chem. 2003, 51, 7980–7988. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Hu, F.B.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E.; et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- López-Yerena, A.; Ninot, A.; Lozano-Castellón, J.; Escribano-Ferrer, E.; Romero-Aroca, A.J.; Belaj, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Conservation of native wild ivory-white olives from the Medes islands natural reserve to maintain virgin olive oil diversity. Antioxidants 2020, 9, 1009. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Castellón, J.; López-Yerena, A.; Rinaldi de Alvarenga, J.F.; Romero del Castillo-Alba, J.; Vallverdú-Queralt, A.; Escribano-Ferrer, E.; Lamuela-Raventós, R.M. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2019, 60, 2532–2548. [Google Scholar] [CrossRef]
- López-Yerena, A.; Ninot, A.; Jiménez-Ruiz, N.; Lozano-Castellón, J.; Pérez, M.; Escribano-Ferrer, E.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Influence of the ripening stage and extraction conditions on the phenolic fingerprint of ‘Corbella’ extra-virgin olive oil. Antioxidants 2021, 10, 877. [Google Scholar] [CrossRef]
- Jiménez, B.; Sánchez-Ortiz, A.; Rivas, A. Influence of the malaxation time and olive ripening stage on oil quality and phenolic compounds of virgin olive oils. Int. J. Food Sci. Technol. 2014, 49, 2521–2527. [Google Scholar] [CrossRef]
- Uceda, M.; Frías, L. Seasons of harvest. Changes on fruit oil content, oil composition and oil quality. In Proceedings of the II Seminario Oleicola International; IOOC: Cordoba, Spain, 1975; pp. 25–46. [Google Scholar]
- European Union. Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis Official Journal L 248, 5 September 1991. Offic. JL 1991, 248, 1–83. [Google Scholar]
- AOAC International. Oils and Fats. In Official Methods of Analysis of AOAC International; Latimer, G.W., Ed.; AOAC International: Gaithersburg, Maryland, 2019; p. 700. ISBN 9780935584899. [Google Scholar]
- López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Jiménez, B.; Pérez, M.; Vallverdú-Queralt, A. Effects of organic and conventional growing systems on the phenolic profile of extra-virgin olive oil. Molecules 2019, 24, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano-Castellón, J.; López-Yerena, A.; Olmo-Cunillera, A.; Jáuregui, O.; Pérez, M.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Total analysis of the major secoiridoids in extra virgin olive oil: Validation of an UHPLC-ESI-MS/MS method. Antioxidants 2021, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Minguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; SanchezGomez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Lukić, I.; Krapac, M.; Horvat, I.; Godena, S.; Kosić, U.; Brkić Bubola, K. Three-factor approach for balancing the concentrations of phenols and volatiles in virgin olive oil from a late-ripening olive cultivar. LWT 2018, 87, 194–202. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Matthäus, B.; Bouzoubaa, Z.; Charrouf, Z. The chemical parameters and oxidative resistance to heat treatment of refined and extra virgin Moroccan Picholine olive oil. J. Taibah Univ. Sci. 2016, 10, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Houshia, O.J.; Zaid, O.; Shqair, H.; Zaid, M.; Fashafsheh, N.; Bzoor, R. Effect of olive oil adulteration on peroxide value, delta-K and on the acidity Nabali-Baladi olive oil quality. Adv. Life Sci. 2014, 4, 235–244. [Google Scholar]
- Marx, Í.M.G.; Rodrigues, N.; Veloso, A.C.A.; Casal, S.; Pereira, J.A.; Peres, A.M. Effect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. LWT Food Sci. Technol. 2021, 137, 110426. [Google Scholar] [CrossRef]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L. The effect of malaxation temperature on the virgin olive oil phenolic profile under laboratory-scale conditions. Eur. J. Lipid Sci. Technol. 2008, 110, 735–741. [Google Scholar] [CrossRef]
- Ranalli, A.; Pollastri, L.; Contento, S.; Iannucci, E.; Lucera, L. Effect of olive paste kneading process time on the overall quality of virgin olive oil. Eur. J. Lipid Sci. Technol. 2003, 105, 57–67. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Urbani, S.; Selvaggini, R.; Servili, M. The influence of the malaxation temperature on the activity of polyphenoloxidase and peroxidase and on the phenolic composition of virgin olive oil. Food Chem. 2013, 136, 975–983. [Google Scholar] [CrossRef]
- Artajo, L.S.; Romero, M.P.; Suárez, M.; Motilva, M.J. Partition of phenolic compounds during the virgin olive oil industrial extraction process. Eur. Food Res. Technol. 2007, 225, 617–625. [Google Scholar] [CrossRef]
- Polari, J.J.; Garcí-Aguirre, D.; Olmo-García, L.; Carrasco-Pancorbo, A.; Wang, S.C. Interactions between hammer mill crushing variables and malaxation time during continuous olive oil extraction. Eur. J. Lipid Sci. Technol. 2018, 120, 120. [Google Scholar] [CrossRef]
- Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 2002, 50, 596–601. [Google Scholar] [CrossRef]
- Boselli, E.; Di Lecce, G.; Strabbioli, R.; Pieralisi, G.; Frega, N.G. Are virgin olive oils obtained below 27 °C better than those produced at higher temperatures? LWT Food Sci. Technol. 2009, 42, 748–757. [Google Scholar] [CrossRef]
- Ortega-García, F.; Peragón, J. Phenylalanine ammonia-lyase, polyphenol oxidase, and phenol concentration in fruits of olea europaea L. cv. Picual, Verdial, Arbequina, and Frantoio during ripening. J. Agric. Food Chem. 2009, 57, 10331–10340. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rico, A.; Inarejos-García, A.M.; Salvador, M.D.; Fregapane, G. Effect of malaxation conditions on phenol and volatile profiles in olive paste and the corresponding virgin olive oils (Olea europaea L. Cv. Cornicabra). J. Agric. Food Chem. 2009, 57, 3587–3595. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Sánchez-Ortiz, A.; Pérez, A.G. Role of polyphenol oxidase and peroxidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2011, 44, 629–635. [Google Scholar] [CrossRef]
- Domínguez-López, I.; Maria Pérez, M.; López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Human health and the consumption of fat-associated compounds: Tyrosol, hydroxytyrosol, oleuropein, oleacein and oleocanthal. In Fats and Associated Compounds. Consumption and Human Health; Mirando Lopez, J.M., Cepeda Sáez, A., Eds.; Royal Society of Chemistry: London, UK, 2021; in press; ISBN 978-1-78801-885-2. [Google Scholar]
- de Torres, A.; Espínola, F.; Moya, M.; Alcalá, S.; Vidal, A.M.; Castro, E. Assessment of phenolic compounds in virgin olive oil by response surface methodology with particular focus on flavonoids and lignans. LWT 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Criado, M.-N.; Romero, M.-P.; Casanovas, M.; Motilva, M.-J. Pigment profile and colour of monovarietal virgin olive oils from Arbequina cultivar obtained during two consecutive crop seasons. Food Chem. 2008, 110, 873–880. [Google Scholar] [CrossRef]
- Saldeen, K.; Saldeen, T. Importance of tocopherols beyond α-tocopherol: Evidence from animal and human studies. Nutr. Res. 2005, 25, 877–889. [Google Scholar] [CrossRef]
- Spanova, M.; Daum, G. Squalene—Biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol. 2011, 113, 1299–1320. [Google Scholar] [CrossRef]
- Seçmeler, Ö.; Üstündağ, Ö.G. Partitioning of predominant lipophilic bioactives (squalene, α-tocopherol and β-sitosterol) during olive oil processing. Int. J. Food Sci. Technol. 2019, 54, 1609–1616. [Google Scholar] [CrossRef]
- Dessì, M.A.; Deiana, M.; Day, B.W.; Rosa, A.; Banni, S.; Corongiu, F.P. Oxidative stability of polyunsaturated fatty acids: Effect of squalene. Eur. J. Lipid Sci. Technol. 2002, 104, 506–512. [Google Scholar] [CrossRef]
Quality Parameter 1 | Malaxation Treatment 2 | |||||
---|---|---|---|---|---|---|
20 °C | 25 °C | 30 °C | ||||
30 min | 45 min | 30 min | 45 min | 30 min | 45 min | |
K232 (≤2.50) | 1.49 ± 0.02 a | 1.48 ± 0.03 a | 1.47 ± 0.06 a | 1.61 ± 0.09 b | 1.48 ± 0.06 a | 1.52 ± 0.02 c |
K270 (≤0.22) | 0.13 ± 0.00 a | 0.10 ± 0.00 a | 0.08 ± 0.00 a | 0.13 ± 0.00 a | 0.17 ± 0.01 a | 0.16 ± 0.01 a |
∆K (≤0.01) | 0.0008 ± 0.0007 a | 0.0015 ± 0.0002 a | 0.0012 ± 0.0003 a | 0.0024 ± 0.0003 b | 0.0011 ± 0.0008 a | 0.0003 ± 0.0002 c |
PV (≤20) (mEq O2/kg) | 3.37 ± 0.20 a | 3.64 ± 0.28 a | 5.01 ± 0.17 a | 4.99 ± 0.20 a | 5.13 ± 0.25 a | 5.56 ± 0.17 a |
A (≤0.8) (g oleic acid/100 g) | 0.10 ± 0.01 a | 0.11 ± 0.01 a | 0.13 ± 0.01 b | 0.12 ± 0.01 b | 0.12 ± 0.01 b | 0.13 ± 0.01 b |
Compound 1 | Concentration (mg/kg Oil) 2 | |||||
---|---|---|---|---|---|---|
20 °C | 25 °C | 30 °C | ||||
30 min | 45 min | 30 min | 45 min | 30 min | 45 min | |
Flavones | 4.02 ± 0.07 | 3.89 ± 0.04 | 3.96 ± 0.07 | 3.88 ± 0.06 | 3.69 ± 0.09 | 4.47 ± 0.06 |
Apigenin | 2.44 ± 0.08 | 2.36 ± 0.09 | 2.44 ± 0.06 | 2.33 ± 0.08 | 2.10 ± 0.07 | 2.86 ± 0.16 |
Luteolin | 1.59 ± 0.03 | 1.52 ± 0.06 | 1.51 ± 0.02 | 1.54 ± 0.02 | 1.58 ± 0.04 | 1.61 ± 0.06 |
Phenolic acids | ||||||
p-Coumaric | 6.78 ± 0.03 | 6.86 ± 0.05 | 6.80 ± 0.04 | 6.64 ± 0.02 | 6.66 ± 0.03 | 6.65 ± 0.01 |
Phenolic alcohols | 3.65 ± 0.12 | 3.75 ± 0.14 | 3.82 ± 0.08 | 4.88 ± 0.10 | 4.96 ± 0.14 | 4.04 ± 0.03 |
3,4-DHPEA | 0.45 ± 0.02 | 0.47 ± 0.01 | 0.60 ± 0.02 | 0.81 ± 0.06 | 0.61 ± 0.02 | 0.66 ± 0.02 |
3,4-DHPEA-AC I | 1.03 ± 0.01 | 1.01 ± 0.02 | 1.00 ± 0.02 | 1.01 ± 0.02 | 1.00 ± 0.02 | 0.99 ± 0.02 |
3,4-DHPEA-AC II | 1.18 ± 0.01 | 1.18 ± 0.03 | 1.14 ± 0.01 | 1.20 ± 0.01 | 1.15 ± 0.02 | 1.15 ± 0.01 |
3,4-DHPEA-O-glucoside | 0.99 ± 0.09 | 1.07 ± 0.09 | 1.10 ± 0.06 | 1.86 ± 0.10 | 2.20 ± 0.10 | 1.27 ± 0.10 |
Lignans | ||||||
Pinoresinol | 2.04 ± 0.07 | 2.03 ± 0.09 | 2.31 ± 0.07 | 1.86 ± 0.14 | 1.61 ± 0.01 | 2.10 ± 0.03 |
Secoiridoids | 258.86 ± 5.83 | 245.58 ± 6.22 | 261.49 ± 3.78 | 300.88 ± 4.63 | 292.83 ± 2.43 | 281.09 ± 8.66 |
HDCM-OA | 1.29 ± 0.90 | 1.15 ± 0.01 | 1.16 ± 0.04 | 1.19 ± 0.01 | 1.23 ± 0.07 | 1.18 ± 0.01 |
HOA | 1.49 ± 0.04 | 1.49 ± 0.08 | 1.39 ± 0.05 | 1.28 ± 0.04 | 1.26 ± 0.03 | 1.29 ± 0.02 |
Lactone | 3.75 ± 0.16 | 3.49 ± 0.13 | 3.82 ± 0.19 | 3.01 ± 0.20 | 3.11 ± 0.09 | 3.87 ± 0.15 |
Elenolic acid | 10.64 ± 0.22 | 8.19 ± 0.55 | 8.18 ± 0.47 | 8.35 ± 0.46 | 8.28 ± 0.35 | 6.21 ± 0.35 |
Ligstroside aglycone | 47.51 ± 1.61 | 36.27 ± 1.07 | 30.97 ± 1.68 | 40.59 ± 1.88 | 37.48 ± 0.87 | 25.58 ± 1.49 |
Oleuropein aglycone | 30.68 ± 0.95 | 25.91 ± 1.00 | 25.29 ± 1.11 | 32.02 ± 0.98 | 31.03 ± 1.21 | 23.30 ± 0.71 |
Oleacein | 83.38 ± 2.86 | 76.01 ± 2.68 | 83.45 ± 3.82 | 105.12 ± 2.84 | 105.85 ± 2.41 | 98.52 ± 3.76 |
Oleocanthal | 80.03 ± 3.78 | 93.70 ± 3.81 | 107.59 ± 6.25 | 109.85 ± 5.13 | 104.18 ± 2.97 | 120.98 ± 6.79 |
Total phenols | 275.51 ± 5.83 | 262.10 ± 6.37 | 278.38 ± 3.72 | 318.15 ± 4.39 | 309.74 ± 2.49 | 298.29 ± 8.57 |
Phenolic Group | Comparisons | Estimate β (95% CI) 1 | p-Value |
---|---|---|---|
Total phenols | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −7.95 (−15.08, 0.09) −18.19 (−31.98, −1.58) −8.10 (−15.86, −2.30) | 0.036 0.016 0.020 |
Secoiridoids | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −8.00 (−15.05, −0.09) −18.25 (−31.87, −1.94) −8.15 (−15.85, −2.37) | 0.030 0.020 0.010 |
Flavones | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | 0.08 (−0.04, 0.20) 0.17 (−0.08, 0.41) 0.18 (0.06, 0.35) | 0.200 0.170 0.008 |
Phenolic acids | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −0.03 (−0.06, 0.003) −0.50 (−0.13, 0.01) 0.03 (0.00, 0.07) | 0.120 0.100 0.050 |
Phenolic alcohols | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −0.13 (−0.27, −0.01) −0.26 (−0.55, −0.02) −0.23 (−0.38, −0.09) | 0.060 0.060 0.002 |
Lignans | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | 0.10 (0.01, 0.20) 0.19 (0.01, 0.40) 0.07 (−0.04, 0.17) | 0.040 0.060 0.230 |
Oleuropein aglycone | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −4.63 (−5.95, −3.21) −9.35 (−12.06, −6.47) −2.43 (−3.87, −0.97) | <0.001 <0.001 0.001 |
Oleacein | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −0.77 (−3.33, 2.1) −2.08 (−6.92, 4.62) −5.75 (−8.02, −3.43) | 0.580 0.460 <0.001 |
Ligstroside aglycone | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | −10.59 (−12.74, −8.2) −21.13 (−25.42, −16.35) −3.58 (−6.93, −0.63) | <0.001 <0.001 0.020 |
Oleocanthal | 25 vs. 20 °C 30 vs. 20 °C 45 vs. 30 min | 8.65 (4.82, 12.97) 16.6 (9.2, 25.16) 4.75 (−0.18, 9.45) | <0.001 <0.001 0.070 |
Compound 1 | Malaxation Treatment | |||||
---|---|---|---|---|---|---|
20 °C | 25 °C | 30 °C | ||||
30 min | 45 min | 30 min | 45 min | 30 min | 45 min | |
Carotenes | 1.81 ± 0.10 | 1.69 ± 0.07 | 1.90 ± 0.05 | 2.72 ± 0.07 | 2.58 ± 0.01 | 2.28 ± 0.12 |
Chlorophylls | 1.58 ± 0.06 | 1.90 ± 0.10 | 2.15 ± 0.10 | 3.28 ± 0.08 | 3.08 ± 0.27 | 2.54 ± 0.11 |
Tocopherols | 192.46 ± 9.32 | 187.23 ± 14.27 | 166.68 ± 14.08 | 195.43 ± 11.53 | 174.39 ± 7.34 | 179.13 ± 6.64 |
Squalene | 1571.32 ± 42.67 | 1834.88 ± 69.13 | 1674.02 ± 91.62 | 1496.11 ± 108.63 | 1502.88 ± 124.46 | 1514.98 ± 53.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmo-Cunillera, A.; Lozano-Castellón, J.; Pérez, M.; Miliarakis, E.; Tresserra-Rimbau, A.; Ninot, A.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants 2021, 10, 1819. https://doi.org/10.3390/antiox10111819
Olmo-Cunillera A, Lozano-Castellón J, Pérez M, Miliarakis E, Tresserra-Rimbau A, Ninot A, Romero-Aroca A, Lamuela-Raventós RM, Vallverdú-Queralt A. Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants. 2021; 10(11):1819. https://doi.org/10.3390/antiox10111819
Chicago/Turabian StyleOlmo-Cunillera, Alexandra, Julián Lozano-Castellón, Maria Pérez, Eleftherios Miliarakis, Anna Tresserra-Rimbau, Antònia Ninot, Agustí Romero-Aroca, Rosa Maria Lamuela-Raventós, and Anna Vallverdú-Queralt. 2021. "Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds" Antioxidants 10, no. 11: 1819. https://doi.org/10.3390/antiox10111819
APA StyleOlmo-Cunillera, A., Lozano-Castellón, J., Pérez, M., Miliarakis, E., Tresserra-Rimbau, A., Ninot, A., Romero-Aroca, A., Lamuela-Raventós, R. M., & Vallverdú-Queralt, A. (2021). Optimizing the Malaxation Conditions to Produce an Arbequina EVOO with High Content of Bioactive Compounds. Antioxidants, 10(11), 1819. https://doi.org/10.3390/antiox10111819