Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies?
Abstract
:1. Introduction
2. Diabetes
2.1. Legacy Effect in Diabetic Patients
2.2. “Metabolic Memory”: What Is Hidden behind the Legacy Effect
3. Hypercholesterolemia
3.1. Legacy Effect from Optimization of Lipid Profile
3.2. Trained Immunity: oxLDL “Memory”
4. Hypertension
4.1. Legacy Effect of Optimized Blood Pressure Control
4.2. Ang II “Memory”
5. Discussion
6. Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuster, V.; Kelly, B.B. (Eds.) Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health; The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Parati, G.; Bilo, G.; Ochoa, J.E. Benefits of tight blood pressure control in diabetic patients with hypertension: Importance of early and sustained implementation of effective treatment strategies. Diabetes Care 2011, 34 (Suppl. 2), S297–S303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanchetti, A. Bottom blood pressure or bottom cardiovascular risk? How far can cardiovascular risk be reduced? J. Hypertens. 2009, 27, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef] [PubMed]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Khunti, K.; Kosiborod, M.; Ray, K.K. Legacy benefits of blood glucose, blood pressure and lipid control in individuals with diabetes and cardiovascular disease: Time to overcome multifactorial therapeutic inertia? Diabetes Obes. Metab. 2018, 20, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R. Epigenetic Mechanisms in Diabetic Vascular Complications and Metabolic Memory: The 2020 Edwin Bierman Award Lecture. Diabetes 2021, 70, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, Y.; Lagache, S.M.M.; Schnack, L.; Godfrey, R.; Kahles, F.; Bruemmer, D.; Waltenberger, J.; Findeisen, H.M. mTOR-Dependent Oxidative Stress Regulates oxLDL-Induced Trained Innate Immunity in Human Monocytes. Front. Immunol. 2018, 9, 3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, D.M.; Cleary, P.A.; Backlund, J.Y.; Genuth, S.M.; Lachin, J.M.; Orchard, T.J.; Raskin, P.; Zinman, B.; The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2005, 353, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Hayward, R.A.; Reaven, P.D.; Wiitala, W.L.; Bahn, G.D.; Reda, D.J.; Ge, L.; McCarren, M.; Duckworth, W.C.; Emanuele, N.V.; Investigators, V. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2015, 372, 2197–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaven, P.D.; Emanuele, N.V.; Wiitala, W.L.; Bahn, G.D.; Reda, D.J.; McCarren, M.; Duckworth, W.C.; Hayward, R.A.; Investigators, V. Intensive Glucose Control in Patients with Type 2 Diabetes—15-Year Follow-up. N. Engl. J. Med. 2019, 380, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACCORD Study Group. Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes. Diabetes Care 2016, 39, 701–708. [Google Scholar] [CrossRef] [Green Version]
- ADVANCE Colaborative Group; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [Green Version]
- Zoungas, S.; Chalmers, J.; Neal, B.; Billot, L.; Li, Q.; Hirakawa, Y.; Arima, H.; Monaghan, H.; Joshi, R.; Colagiuri, S.; et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Engl. J. Med. 2014, 371, 1392–1406. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.M.; Chubb, S.A.; Bruce, D.G.; Davis, W.A. Metabolic memory and all-cause death in community-based patients with type 2 diabetes: The Fremantle Diabetes Study. Diabetes Obes. Metab. 2016, 18, 598–606. [Google Scholar] [CrossRef]
- Simmons, R.K.; Griffin, S.J.; Lauritzen, T.; Sandbaek, A. Effect of screening for type 2 diabetes on risk of cardiovascular disease and mortality: A controlled trial among 139,075 individuals diagnosed with diabetes in Denmark between 2001 and 2009. Diabetologia 2017, 60, 2192–2199. [Google Scholar] [CrossRef] [Green Version]
- Simmons, R.K.; Griffin, S.J.; Witte, D.R.; Borch-Johnsen, K.; Lauritzen, T.; Sandbaek, A. Effect of population screening for type 2 diabetes and cardiovascular risk factors on mortality rate and cardiovascular events: A controlled trial among 1,912,392 Danish adults. Diabetologia 2017, 60, 2183–2191. [Google Scholar] [CrossRef] [Green Version]
- Laiteerapong, N.; Ham, S.A.; Gao, Y.; Moffet, H.H.; Liu, J.Y.; Huang, E.S.; Karter, A.J. The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study). Diabetes Care 2019, 42, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Engerman, R.L.; Kern, T.S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 1987, 36, 808–812. [Google Scholar] [CrossRef]
- Roy, S.; Sala, R.; Cagliero, E.; Lorenzi, M. Overexpression of fibronectin induced by diabetes or high glucose: Phenomenon with a memory. Proc. Natl. Acad. Sci. USA 1990, 87, 404–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammes, H.P.; Klinzing, I.; Wiegand, S.; Bretzel, R.G.; Cohen, A.M.; Federlin, K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2092–2096. [Google Scholar]
- Reddy, M.A.; Zhang, E.; Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015, 58, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Villeneuve, L.M.; Reddy, M.A.; Natarajan, R. Epigenetics: Deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 2011, 38, 451–459. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Paneni, F.; Volpe, M.; Luscher, T.F.; Cosentino, F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: Bringing all the strands together. Diabetes 2013, 62, 1800–1807. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Wang, X.; Zhi, X.; Meng, D. Epigenetic regulation in diabetic vascular complications. J. Mol. Endocrinol. 2019, 63, R103–R115. [Google Scholar] [CrossRef]
- Brasacchio, D.; Okabe, J.; Tikellis, C.; Balcerczyk, A.; George, P.; Baker, E.K.; Calkin, A.C.; Brownlee, M.; Cooper, M.E.; El-Osta, A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009, 58, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Paneni, F.; Mocharla, P.; Akhmedov, A.; Costantino, S.; Osto, E.; Volpe, M.; Luscher, T.F.; Cosentino, F. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ. Res. 2012, 111, 278–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front. Endocrinol. 2018, 9, 2. [Google Scholar] [CrossRef]
- Miao, F.; Chen, Z.; Genuth, S.; Paterson, A.; Zhang, L.; Wu, X.; Li, S.M.; Cleary, P.; Riggs, A.; Harlan, D.M.; et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014, 63, 1748–1762. [Google Scholar] [CrossRef] [Green Version]
- Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. Engl. J. Med. 1998, 339, 1349–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group, L.S. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholesterol concentrations: The LIPID trial follow-up. Lancet 2002, 359, 1379–1387. [Google Scholar] [CrossRef]
- Sever, P.S.; Dahlof, B.; Poulter, N.R.; Wedel, H.; Beevers, G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; McInnes, G.T.; et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): A multicentre randomised controlled trial. Lancet 2003, 361, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Sever, P.S.; Chang, C.L.; Gupta, A.K.; Whitehouse, A.; Poulter, N.R.; Investigators, A. The Anglo-Scandinavian Cardiac Outcomes Trial: 11-year mortality follow-up of the lipid-lowering arm in the U.K. Eur. Heart J. 2011, 32, 2525–2532. [Google Scholar] [CrossRef]
- Shepherd, J.; Cobbe, S.M.; Ford, I.; Isles, C.G.; Lorimer, A.R.; MacFarlane, P.W.; McKillop, J.H.; Packard, C.J. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 1995, 333, 1301–1307. [Google Scholar] [CrossRef]
- Ford, I.; Murray, H.; McCowan, C.; Packard, C.J. Long-Term Safety and Efficacy of Lowering Low-Density Lipoprotein Cholesterol With Statin Therapy: 20-Year Follow-Up of West of Scotland Coronary Prevention Study. Circulation 2016, 133, 1073–1080. [Google Scholar] [CrossRef]
- Group, A.S.; Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar] [CrossRef]
- Zhu, L.; Hayen, A.; Bell, K.J.L. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: A secondary analysis of the ACCORDION study. Cardiovasc. Diabetol. 2020, 19, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, S.; Bosch, J.; Dagenais, G.; Zhu, J.; Xavier, D.; Liu, L.; Pais, P.; Lopez-Jaramillo, P.; Leiter, L.A.; Dans, A.; et al. Cholesterol Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N. Engl. J. Med. 2016, 374, 2021–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, J.; Lonn, E.M.; Jung, H.; Zhu, J.; Liu, L.; Lopez-Jaramillo, P.; Pais, P.; Xavier, D.; Diaz, R.; Dagenais, G.; et al. Lowering cholesterol, blood pressure, or both to prevent cardiovascular events: Results of 8.7 years of follow-up of Heart Outcomes Evaluation Prevention (HOPE)-3 study participants. Eur. Heart J. 2021, 42, 2995–3007. [Google Scholar] [CrossRef]
- Nayak, A.; Hayen, A.; Zhu, L.; McGeechan, K.; Glasziou, P.; Irwig, L.; Doust, J.; Gregory, G.; Bell, K. Legacy effects of statins on cardiovascular and all-cause mortality: A meta-analysis. BMJ Open 2018, 8, e020584. [Google Scholar] [CrossRef] [Green Version]
- ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA 2002, 288, 2998–3007. [Google Scholar] [CrossRef] [PubMed]
- Margolis, K.L.; Davis, B.R.; Baimbridge, C.; Ciocon, J.O.; Cuyjet, A.B.; Dart, R.A.; Einhorn, P.T.; Ford, C.E.; Gordon, D.; Hartney, T.J.; et al. Long-term follow-up of moderately hypercholesterolemic hypertensive patients following randomization to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). J. Clin. Hypertens. 2013, 15, 542–554. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.L.B.; Chowdhury, E.K.; Breslin, M.; Doust, J.; Reid, C.M.; Wing, L.M.H.; Nelson, M.R.; 2nd Australian National Blood Pressure Study Management Committee. Short- and long-term association of lipid-lowering drug treatment and cardiovascular disease by estimated absolute risk in the Second Australian National Blood Pressure study. J. Clin. Lipidol. 2019, 13, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, A.J.; Lazdam, M.; Davis, E.; Kylintireas, I.; Diesch, J.; Francis, J.; Neubauer, S.; Singhal, A.; Lucas, A.; Kelly, B.; et al. Short-term exposure to exogenous lipids in premature infants and long-term changes in aortic and cardiac function. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2125–2135. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, Y.; Godfrey, R.; Findeisen, H.M. Altered Cellular Metabolism Drives Trained Immunity. Trends Endocrinol. Metab. 2018, 29, 602–605. [Google Scholar] [CrossRef]
- Sohrabi, Y.; Lagache, S.M.M.; Voges, V.C.; Semo, D.; Sonntag, G.; Hanemann, I.; Kahles, F.; Waltenberger, J.; Findeisen, H.M. OxLDL-mediated immunologic memory in endothelial cells. J. Mol. Cell. Cardiol. 2020, 146, 121–132. [Google Scholar] [CrossRef]
- Schnack, L.; Sohrabi, Y.; Lagache, S.M.M.; Kahles, F.; Bruemmer, D.; Waltenberger, J.; Findeisen, H.M. Mechanisms of Trained Innate Immunity in oxLDL Primed Human Coronary Smooth Muscle Cells. Front. Immunol. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Bekkering, S.; Quintin, J.; Joosten, L.A.; van der Meer, J.W.; Netea, M.G.; Riksen, N.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1731–1738. [Google Scholar] [CrossRef]
- Keating, S.T.; Groh, L.; Thiem, K.; Bekkering, S.; Li, Y.; Matzaraki, V.; van der Heijden, C.; van Puffelen, J.H.; Lachmandas, E.; Jansen, T.; et al. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J. Mol. Med. 2020, 98, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Bekkering, S.; van den Munckhof, I.; Nielen, T.; Lamfers, E.; Dinarello, C.; Rutten, J.; de Graaf, J.; Joosten, L.A.; Netea, M.G.; Gomes, M.E.; et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis 2016, 254, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostis, W.J.; Thijs, L.; Richart, T.; Kostis, J.B.; Staessen, J.A. Persistence of mortality reduction after the end of randomized therapy in clinical trials of blood pressure-lowering medications. Hypertension 2010, 56, 1060–1068. [Google Scholar] [CrossRef] [Green Version]
- SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 1991, 265, 3255–3264. [Google Scholar] [CrossRef]
- Kostis, J.B.; Cabrera, J.; Cheng, J.Q.; Cosgrove, N.M.; Deng, Y.; Pressel, S.L.; Davis, B.R. Association between chlorthalidone treatment of systolic hypertension and long-term survival. JAMA 2011, 306, 2588–2593. [Google Scholar] [CrossRef] [Green Version]
- Haller, H.; Ito, S.; Izzo, J.L., Jr.; Januszewicz, A.; Katayama, S.; Menne, J.; Mimran, A.; Rabelink, T.J.; Ritz, E.; Ruilope, L.M.; et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 2011, 364, 907–917. [Google Scholar] [CrossRef]
- Menne, J.; Ritz, E.; Ruilope, L.M.; Chatzikyrkou, C.; Viberti, G.; Haller, H. The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: Benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation. J. Am. Heart Assoc. 2014, 3, e000810. [Google Scholar] [CrossRef] [Green Version]
- Dahlof, B.; Sever, P.S.; Poulter, N.R.; Wedel, H.; Beevers, D.G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; McInnes, G.T.; et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): A multicentre randomised controlled trial. Lancet 2005, 366, 895–906. [Google Scholar] [CrossRef]
- Gupta, A.; Mackay, J.; Whitehouse, A.; Godec, T.; Collier, T.; Pocock, S.; Poulter, N.; Sever, P. Long-term mortality after blood pressure-lowering and lipid-lowering treatment in patients with hypertension in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) Legacy study: 16-year follow-up results of a randomised factorial trial. Lancet 2018, 392, 1127–1137. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998, 317, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Neil, H.A.; Matthews, D.R. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1565–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonn, E.M.; Bosch, J.; Lopez-Jaramillo, P.; Zhu, J.; Liu, L.; Pais, P.; Diaz, R.; Xavier, D.; Sliwa, K.; Dans, A.; et al. Blood-Pressure Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N. Engl. J. Med. 2016, 374, 2009–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushman, W.C.; Davis, B.R.; Pressel, S.L.; Cutler, J.A.; Einhorn, P.T.; Ford, C.E.; Oparil, S.; Probstfield, J.L.; Whelton, P.K.; Wright, J.T., Jr.; et al. Mortality and morbidity during and after the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. J. Clin. Hypertens. 2012, 14, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Wing, L.M.; Reid, C.M.; Ryan, P.; Beilin, L.J.; Brown, M.A.; Jennings, G.L.; Johnston, C.I.; McNeil, J.J.; Macdonald, G.J.; Marley, J.E.; et al. A comparison of outcomes with angiotensin-converting--enzyme inhibitors and diuretics for hypertension in the elderly. N. Engl. J. Med. 2003, 348, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.R.; Chowdhury, E.K.; Doust, J.; Reid, C.M.; Wing, L.M. Ten-year legacy effects of baseline blood pressure ’treatment naivety’ in the Second Australian National Blood Pressure study. J. Hypertens. 2015, 33, 2331–2337. [Google Scholar] [CrossRef]
- Ho, C.L.B.; Sanders, S.; Breslin, M.; Doust, J.; Reid, C.M.; Davis, B.R.; Simpson, L.M.; Brouwers, F.P.; Nelson, M.R. Legacy effect of delayed blood pressure lowering drug treatment in middle-aged adults with mildly elevated blood pressure: Systematic review and meta-analysis. J. Hum. Hypertens. 2020, 34, 261–270. [Google Scholar] [CrossRef]
- Dusing, R. Pharmacological interventions into the renin-angiotensin system with ACE inhibitors and angiotensin II receptor antagonists: Effects beyond blood pressure lowering. Ther. Adv. Cardiovasc. Dis. 2016, 10, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Dahlof, B.; Devereux, R.B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristiansson, K.; Lederballe-Pedersen, O.; et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 2002, 359, 995–1003. [Google Scholar] [CrossRef]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef] [PubMed]
- Karnik, S.S.; Unal, H.; Kemp, J.R.; Tirupula, K.C.; Eguchi, S.; Vanderheyden, P.M.; Thomas, W.G. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol. Rev. 2015, 67, 754–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomolak, J.R.; Didion, S.P. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front. Physiol. 2014, 5, 396. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.B.; Trevelin, S.C.; Richards, D.A.; Santos, C.X.C.; Sawyer, G.; Markovinovic, A.; Zhang, X.; Zhang, M.; Brewer, A.C.; Yin, X.; et al. Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 698–710. [Google Scholar] [CrossRef]
- Togashi, N.; Maeda, T.; Yoshida, H.; Koyama, M.; Tanaka, M.; Furuhashi, M.; Shimamoto, K.; Miura, T. Angiotensin II receptor activation in youth triggers persistent insulin resistance and hypertension--a legacy effect? Hypertens. Res. 2012, 35, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.X.; Yang, H.; Han, Q.Y.; Li, N.; Jiang, X.; Tian, C.; Du, J.; Li, H.H. NADPH oxidases mediate a cellular “memory” of angiotensin II stress in hypertensive cardiac hypertrophy. Free Radic. Biol. Med. 2013, 65, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Liu, Y.; Wang, J.J.; Zhang, Y.L.; Lai, S.; Xia, Y.L.; Wang, H.X.; Li, H.H. "Angiotensin II memory" contributes to the development of hypertension and vascular injury via activation of NADPH oxidase. Life Sci. 2016, 149, 18–24. [Google Scholar] [CrossRef]
- Prasher, D.; Greenway, S.C.; Singh, R.B. The impact of epigenetics on cardiovascular disease. Biochem. Cell Biol. 2020, 98, 12–22. [Google Scholar] [CrossRef]
- Masi, S.; Ambrosini, S.; Mohammed, S.A.; Sciarretta, S.; Luscher, T.F.; Paneni, F.; Costantino, S. Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxid. Redox Signal. 2021, 34, 1165–1199. [Google Scholar] [CrossRef]
- Ramzan, F.; Vickers, M.H.; Mithen, R.F. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 5047. [Google Scholar] [CrossRef]
- Advani, A.; Huang, Q.; Thai, K.; Advani, S.L.; White, K.E.; Kelly, D.J.; Yuen, D.A.; Connelly, K.A.; Marsden, P.A.; Gilbert, R.E. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am. J. Pathol. 2011, 178, 2205–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Q.; Zhang, L.; Das, B.; Li, Z.; Liu, B.; Cai, G.; Chen, X.; Chuang, P.Y.; He, J.C.; Lee, K. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 2018, 93, 1330–1343. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zang, X.; Ponnusamy, M.; Masucci, M.V.; Tolbert, E.; Gong, R.; Zhao, T.C.; Liu, N.; Bayliss, G.; Dworkin, L.D.; et al. Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J. Am. Soc. Nephrol. 2016, 27, 2092–2108. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019, 15, 327–345. [Google Scholar] [CrossRef] [PubMed]
Study Name Type | Patients Characteristics (n int/n Follow-Up) | Effect of Intervention (Study Duration) | Legacy Effect (Follow-Up Duration) | Comments | |
---|---|---|---|---|---|
Diabetes | DCCT RCT EDIC OFU | T1DM Mean age 27 y (1441/1394) | (6.5 y) (−) 53% severe retinopathy (−) 40% clinical neuropathy (−) 61 % microalbuminuria | (17 y) Legacy effect of intervention (−) 57% nonfatal MI, stroke, or death from CVD (−) 46% nephropathy | In OFU Hb1Ac 7.9% intensive vs. 7.8% conventional |
UKPDS RCT/OFU | Newly diagnosed T2DM Mean age 56.4 y (3867/3277) | (10 y) (−) 12% diabetes-related endpoints (−) 10% diabetes-related death (−) 25% microvascular endpoints | (10 y) Legacy effect of intervention (−) 9% diabetes-related endpoints (−) 24% microvascular endpoints (−) 15% MI (−) 13% death from any cause | No difference in Hb1Ac in OFU | |
VADT RC/OFU | T2DM long-duration (11.5 y) poorly controlled Mean age 60.4y (1791/1391) | (5.6 y) No difference in major CV outcomes, death, or microvascular complications except for progression of albuminuria (13.1% vs. 9.1% in int. treat. group) | (10 y) Legacy effect of intervention (−) 17% major CV events (15 y) No difference in major CV events or death | 40% already had CV event at inclusion HbA1c curves still separated at 10 y follow-up, no more at 15 y | |
ACCORD RCT ACCORDION OFU | T2DM long-duration (10 y) Mean age 62.2 y (10,251/8601) | (3.5 y) No effect on primary composite endpoint (non-fatal MI, non-fatal stroke, or death) (−) 24% MI in int. treat. group (+) 22% death from any cause (+) 36% death from CV causes in int. treat group | (9 y) No effect on primary composite endpoint Trend to lower non-fatal MI (+) 20% death from CV causes in int. group | 35% had previous CV event | |
ADVANCE RCT ADVANCE-ON OFU | T2DM long-duration (8 y) ≥55 y ≥1 CV risk factor or history of major macro- or microvascular disease (11,140/8494) | (5 y) (−) 10% combined major micro- and macrovascular events (−) 21% nephropathy No effect on major macrovascular events, CV death, or death from any cause | (6 y) No differences in risk of death or major CV events (−) 46% end stage renal disease but very few events | ||
ADDITION Registered based non-RCT | Newly diagnosed T2DM after screening compared to unscreened population Mean age 59.9 y (registered 153,107, diagnosed 1533) | (5 y screening period) No comparison in intervention Diabetes detected 2.2 y earlier in screened group | (10 y) In screened group: HR 0.79 lower mortality HR 0.80 lower CV mortality HR 0.66 lower diabetes-related mortality HR 0.84 lower CVD event | No effect at national population level | |
DAS Cohort study | Newly diagnosed T2DM Mean age 56.8 y Stratified by mean Hb1Ac during first year, comparison to Hb1Ac < 6.5% (34,737) | NA | (10 y) - Hb1Ac ≥ 6.5% within first year: increased micro- and macro-CV events (HR 1.2) - Hb1Ac ≥ 7.0% within first year, increased mortality (HR 1.29) - ≥8.0% for more than 2 y increased microvascular event and mortality risk | ||
Lipid profile | LIPID RCT LIPID FU OFU | Pravastatin vs. placebo in recent MI or unstable angina Median age 62 y Median cholesterol 218 mg/dl (9014/7680) | (6 y) Vs. placebo: (−) 24% RR death from CHD (−) 22% RR overall mortality (−) 29% RR MI (−)19% RR stroke | (2 y) Open-label period, crossover 86% gr. placebo on pravastatin 88% gr. prava still on pravastatin, with similar cholesterol level Legacy effect of intervention (−) 25% RR death from CHD (−) 19% RR overall mortality (−)15% RR MI (−) 24% RR stroke | |
ASCOT-LLA RCT UK ASCOT-LLA legacy OFU | Atorvastatin vs. placebo in hypertensive patients with at least 3 other CV risk factors in primary prevention Mean age 61.4 y (4605/4432) | (3.3 y) Favor atorvastatin HR 0.64 for non-fatal MI and fatal CHD HR 0.79 for CV events HR 0.71 for coronary events Trend to less death (HR 0.87, p = 0.16) | (11 y) Open-label crossover (2/3 placebo on statin) Legacy effect favored atorvastatin HR 0.86 all-cause mortality HR 0.85 non-CV death HR 0.89 CV death but not significant | ||
WOSCOPS RCT WOSCOPS FU OFU | Pravastatin vs. placebo in primary prevention in men Mean age 55 y High LDL (6596/6408) | (4.9 y) Favor pravastatin: (−) 31% RR in non-fatal MI or death from CHD (−) 32% RR in death from CV causes | (18 y) 38.7% (former prava) and 35.2% (former placebo) at 5 y on statin, no further data Legacy effect favored pravastatin: (−) 13% mortality (−) 21% RR in death from CV causes | ||
ACCORD-LLA RCT ACCORDION OFU | Combined therapy (simvastatin + fibrate vs. simva+ placebo) in T2D long-duration with dyslipidemia Mean age 61.8 y (940/765) | (5 y) No effect of combined treatment on CV outcomes or mortality | (10 y) Same level of lipid profile in both groups but legacy effect of combined treatment HR 0.68 in all-cause mortality HR 0.63 in CVD mortality HR 0.66 in major CHD | ||
HOPE-3 RCT HOPE-3 FU OFU | Rosuvastatin vs. placebo, at least 1 CV risk factor, no CV disease Mean age 65.7 y (12,705/9326) | (5.6) Favor rosuvastatin HR 0.76 in MACE-1 (composite of death from CV causes, non-fatal MI, non-fatal stroke) HR 0.75 in MACE2 (composite of revascularization, HF, resuscitated CA) | (3.1) Legacy effect of rosuvastatin treatment HR 0.80 MACE-1 HR 0.83 MACE -2 Total FU: HR 0.79 MACE-1 HR 0.79 MACE -2 | In OFU: 37% on statin (36% of former rosu, 38% of former placebo group) | |
ALLHAT-LLT RCT ALLHAT-LLT OFU | Pravastatin vs. usual care in hypertensive patient + at least 1 CV risk factor Mean age 66 y (10,355/1672) | (4.8 y) No effect on all-cause mortality or CHD | (8–13 y) No legacy effect | Only 16% difference in LDL between groups at end of intervention period | |
Blood pressure | SHEP RCT SHEP FU OFU | Chlortalidone +/− atenolol vs. placebo in isolated hypertensive patients Mean age 71.6 y (4736/1885) | (4.5 y) Favor intervention 0.64 RR in stroke 0.73 RR in non-fatal MI + 0.46 RR LV failure | (22 y) Legacy effect of intervention HR 0.89 CV death One day of life expectancy gained in intervention group per month of treatment | |
ROADMAP RCT ROADMAP OFU OFU | Olmesartan vs. placebo in T2D patients ≥ 1 CV risk factor Mean age 57.7 y (4447/1758) | (3.2 y) Increased time to onset of microalbuminuria (25%) | (6 y) Despite crossover and increase in BP, legacy effect of olmesartan OR 0.34 in diabetic retinopathy OR 0.23 in CHF | ! higher rate of fatal CV events in int. group in patients with pre-existing CHD | |
ASCOT RCT ASCOT legacy OFU | Amlodipine (+/− perindopril) vs. atenolol (+/− thiazide) hypertensive patients ≥ 3 other CV risk factors Mean age 63 y (19,257/8580) | (5.5 y) Favor amlodipine-based regiment HR 0.77 stroke (fatal and non-fatal) HR 0.84 in CV events HR 0.76 in CV mortality HR 0.70 in new onset of diabetes | (16 y) Legacy effect of amlodipine-based regiment HR 0.71 death from stroke | ||
UKPDS 38 RCT FU OFU | Tight vs. less-tight blood pressure control T2DM patients (captopril and atenolol) Mean age 56.8 y (1148/884 ) | (8.4 y) Favor tight control (−) 24% diabetes-related endpoints (−) 32% diabetes-related deaths (−) 44% strokes (−) 37% microvascular endpoints | (10 y) Legacy effect favored tight control 0.50 RR in peripheral vascular disease | ||
HOPE-3 RCT HOPE-3 FU OFU | Candesartan + HCTZ vs. placebo at least 1 CV risk factor No CV disease Mean age 65.7 y (12,705/9326) | (5.6 y) No significative difference, except in subgroup > 143.5 mmHg HR 0.73 MACE 1 HR 0.76 MACE 2 | (3.1 y) Legacy effect in subgroup > 143.5 mmHg HR 0.76 MACE 1 | 2/3 in follow-up 1 ≥ BP-lowering drug and 30% on 2 ≥ BP-lowering drugs (similar in both groups) | |
ALLHAT RCT | Hypertensive patients+ ≥1 CHD risk factor, chlortalidone vs. amlodipine vs. lisinopril Mean age 67 y (32,804/27,755) | (4.9 y) No difference Increase in HF for amlodipine Increase in stroke mortality for lisinopril | (8–13 y) No legacy effect | ||
ANBP2 RCT ANBP2 FU OFU | Hypertensive patients ACE inhibitor vs. diuretics Mean age 72 y (6083/5378) | (4.1 y) Favor ACE inhibition HR 0.89 CV event or death HR 0.68 nonfatal MI but HR 1.91 for fatal stroke | (10 y) No legacy effect | Different comparison in OFU: treatment-naïve vs. not naïve |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pothen, L.; Balligand, J.-L. Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies? Antioxidants 2021, 10, 1849. https://doi.org/10.3390/antiox10111849
Pothen L, Balligand J-L. Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies? Antioxidants. 2021; 10(11):1849. https://doi.org/10.3390/antiox10111849
Chicago/Turabian StylePothen, Lucie, and Jean-Luc Balligand. 2021. "Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies?" Antioxidants 10, no. 11: 1849. https://doi.org/10.3390/antiox10111849
APA StylePothen, L., & Balligand, J.-L. (2021). Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies? Antioxidants, 10(11), 1849. https://doi.org/10.3390/antiox10111849