Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds (Salvia hispanica L.) and Chia Seeds Soaked in Apple Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction
Acetone Extract
Preparation of an Extract for the Determination of Carotenoids
2.2.2. Characteristics of Bioactive Substances
Determination of the Content of Total Polyphenols
Determination of the Content of Total Flavonoids
Determination of the Content of Tannins
Determination of Phenolic Acids by the HPLC-DAD Method
Determination of Flavonoids by the HPLC-DAD Method
Determination of the Content of Total Carotenoids
Determination of the Content of Ascorbic Acid
Determination of Content of Ash and Sodium, Potassium, and Calcium in Chia Seeds
pH Value
2.2.3. Antioxidant Properties
DPPH Method
ABTS Method
Iron (II) Chelating Ability Method
2.2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stagos, D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Piątkowska, E.; Kopeć, A.; Leszczyńska, T. Anthocyanins—Characteristics, occurrence and influence on the human body. ŻNTJ 2011, 4, 24–35. Available online: https://www.pttz.org/zyw/wyd/czas/2011,%204(77)/024_035_Piatkowska.pdf (accessed on 13 May 2021).
- Guzel, S.; Ulger, M.; Ozay, J. Antimicrobial and Antiproliferative Activities of Chia (Salvia hispanica L.) Seeds. Int. J. Second. Metab. 2020, 7, 174–180. [Google Scholar] [CrossRef]
- Cahill, J.P. Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econom. Bot. 2003, 57, 155–160. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Nolasco, S.M.; Tomas, M.C. Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crop. Prod. 2008, 28, 286–293. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Influence of environment on growing period and yield, protein, oil and α-linolenic content of three chia (Salvia hispanica L.) selections. Ind. Crop. Prod. 2009, 30, 321–324. [Google Scholar] [CrossRef]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.S.; Boeing, J.S.; Santos, O.O., Jr.; Souza, N.E.; Visentainer, J.V. Antioxidant capa city and chemical composition in seeds rich In omega-3: Chia, flax and perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Segura-Campos, M.; Ciau-Solis, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum. Int. J. Food Sci. Technol. 2014, 5, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Mogra, R.; Mordia, A. Effect of chia (Salvia hispanica L.) seeds incorporation on nutritional quality of muffin mix. Nutrit. Food Sci. 2020, 50, 1151–1161. [Google Scholar] [CrossRef]
- Vázquez-Ovando, A.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betanur-Ancona, D. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). Food Sci. Technol. 2009, 42, 168–173. [Google Scholar] [CrossRef]
- Roohi, T.F. Review on the miracle role of chia seeds (Salvia hispanica L.) nutritional and bioactive compounds in the treatment of cardiovascular disorder. J. Biomed. Pharm. Res. 2020, 9, 42–49. [Google Scholar] [CrossRef]
- Olivos-Lugo, B.L.; Valdivia-López, M.A.; Tecante, A. Thermal and physicochemical properties and nutritional value of the protein fraction of Mexican chia seed (Salvia hispanica L.). Food Sci. Technol. Int. 2010, 16, 89–96. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Skrajda, M. Spanish sage seeds (Salvia hispanica L.) as a source of ingredients that have a beneficial effect on the human body. J. Educ. Health Sport 2015, 5, 337–350. [Google Scholar] [CrossRef]
- Steffolani, E.; de la Hera, E.; Perez, G.; Gomeze, M. Effect of chia (Salvia hispanica L.) addition on the quality of gluten free bread. J. Food Qual. 2014, 37, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Bachicchio, R.; Phllips, T.D.; Lovelii, S.; Labella, R.; Galgano, F.; Di Marisco, A.; Perniola, M.; Amato, M. Innovative Crop Productions for Healthy Food: The Case of Chia (Salvia hispanica L.). In The Sustainability of Agro-Food and Natural Resourse Systems in the Mediterranean Basin (Red. Vastola A.); Springer International Publishing AG: Cham, Switzerland, 2015; pp. 29–46. [Google Scholar]
- Sulaiman, S.F.; Sajak, A.B.; Supritano, K.L.; Seow, E.O. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Comp. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Taungbodhitham, A.K.; Jones, G.P.; Walhlqvist, M.L.; Briggs, D.R. Evaluation of method for the analysis of carotenoids in fruits and vegetables. Food Chem. 1998, 63, 577–584. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticul. 1977, 28, 49–55. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Price, M.L.; Scoyoc, S.V.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef]
- Sztangret, J.; Korzeniowska, A.; Niemirowicz-Szczyt, K. Planning assessment and dry matter and carotenoid content in new pumpkin mixes (Cucurbita Maxima Duch). Folia Hortic. 2001, 13/1A, 7–43. [Google Scholar]
- Celik, F.; Gondogdu, M.; Alp, S.; Muradoglu, F.; Ercisli, S.; Gecer, M.K.; Canan, I. Determination of phenolic compounds, antioxidant capacity and organic acids contents of Prunus domestica L. Prunus cerasifera Ehrh. and Prunus spinosa L. fruits by HPLC. Acta Chrom. 2017, 29, 507–510. [Google Scholar] [CrossRef]
- PN-ISO 2171:2010. Cereal Grains and Processed Cereals. Total Ash Determination; ISO: Geneva, Switzerland; Warsaw, Poland, 2010. [Google Scholar]
- PN-ISO 2172:2010. Cereal Grains and Processed Cereals. pH Determination; ISO: Geneva, Switzerland, Warsaw, Poland, 2010. [Google Scholar]
- Song, T.T.; Hendrich, S.; Murphy, P.A. Estrogenic activity of glycitein, a soy isoflavone. J. Agric. Food Chem. 1999, 47, 1607–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Lai, L.S.; Chou, S.T.; Chao, W.W. Studies on the Antioxidative Activities of Hasian-tsao Leaf Gum. J. Agric. Food Chem. 2001, 49, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Haytowitz, D.B.; Ahuja, J.K.; Showell, B.A.; Somanchi, M.; Nickle, M.S.; Nyguyen, Q.; Williams, J.R.; Roseland, J.M.; Khan, M.; Patterson, K.; et al. USDA National Nutrient Database for Standard Reference Release; USDA: Beltsville, MD, USA, 2015; pp. 28–37. [Google Scholar] [CrossRef]
- Hrncic, M.K.; Ivanowski, M.; Cor, D.; Knez, Z. Chia Seeds (Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2020, 25, 11. [Google Scholar] [CrossRef] [Green Version]
- Bassi, M.; Lubes, G.; Bianchi, F.; Agnolet, S.; Ciesa, F.; Brunner, K.; Guerra, W.; Robatscher, P.; Oberhuber, M. Ascorbic acid content in apple pulp, peel, and monovarietal cloudy juices of 64 different cultivars. Int. J. Food Prop. 2017, 20, S2626–S2634. [Google Scholar] [CrossRef] [Green Version]
- Grajek, W. Antioxidants in food—Health, technological, molecular and analytical aspects. Wydaw. Nauk. Tech. Warszawa 2007, 141–151, 163–174. [Google Scholar]
- Lipecki, J.; Libik, A. Some ingredients of vegetables and fruits with high biological value. Folia Hortic. 2003, 1, 16–22. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-446b78e8-a1e0-4910-b7f2-9505d996b516 (accessed on 23 June 2021).
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary fiber content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Dragovic-Uzelac, V.; Pospisil, J.; Levaj, B.; Delonga, K. The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jam authenticity. Food Chem. 2005, 91, 373–383. [Google Scholar] [CrossRef]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profile and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Cai, M.; Xie, C.; Lv, Y.; Yang, K.; Sun, P. Changes in physicochemical profiles and quality of apple juice treated by ultrafiltration and during its storage. Food Sci. Nutr. 2020, 8, 2913–2919. [Google Scholar] [CrossRef]
- Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Mińskowski, K.; Zawada, K.; Ptasznik, S.; Kalinowski, A. Influence of phenolic compounds of seeds on oxidative stability and antiradical activity of oils rich in n-3 PUFAs pressed from them. ŻNTJ 2013, 4, 118–132. [Google Scholar]
- Jakaba, E.; Badeabc, E.; Barta-Rajnaia, E.; Şendreab, C.; Czégénya, Z. Thermal degradation study of vegetable tannins and vegetable tanned leathers. J. Anal. Appl. Pyrol. 2019, 138, 178–187. [Google Scholar] [CrossRef]
- Chai, J.-Y.; Kim, H.-C.; Moon, K.-D. Geographical origin discriminant analysis of Chia seeds (Salvia hispanica L.) using hyperspectral imaging. J. Food Comp. Anal. 2021, 101, 103916. [Google Scholar] [CrossRef]
- Rodríguez, H.; de las Rivas, B.; Gómez-Cordovés, C.; Muñoz, R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 2008, 107, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chan, B.L.S.; Mitchell, A.E. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017, 215, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Pereira da Silva, B.; Anunciação, S.P.; da Silva Matyelka, J.C.; Lucia, M.D.; Martino, L.H.D.; Pinheiro-Sant’Ana, H.M. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, 13203. [Google Scholar] [CrossRef]
- Shakour, Z.T.A.; Fayek, N.M.; Farag, M.A. How do biocatalysis and biotransformation affect Citrus dietary flavonoids chemistry and bioactivity? A review. Crit. Rev. Biotechnol. 2020, 40, 689–714. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Dania, M.I.; Seghosime, R.A.; Odion-Owase, E. Organoleptic And Mineral Properties Of Chemically Preserved Cashew Apple Juice. IJIRAS 2021, 8, 135–138. [Google Scholar]
- Prathyusha, P.; Kumari, A.; Suneetha, W.J.; Srujana, N.S. Chia seeds for nutritional security. J. Pharmacog. Phytochem. 2019, 8, 2702–2707. [Google Scholar]
- van Dronkelaar, C.; van Velzen, A.; Abdelrazek, M.; van der Steen, A.; Weijs, P.; Tieland, M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J. Am. Med. Direct. Assoc. 2018, 19, 6–11. [Google Scholar] [CrossRef]
- Azeem, W.; Nadeem, M.; Ahmad, S. Stabilization of winterized cottonseed oil with chia (Salvia hispanica L.) seed extract at ambient temperature. J. Food Sci. Technol. 2015, 52, 7191–7199. [Google Scholar] [CrossRef]
- Arts, M.J.; Haenen, G.R.; Voss, H.P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the trolox equivalent antioxidant capacity assay. Food Chem. Toxicol. 2014, 9, 42–45. [Google Scholar] [CrossRef]
- Schaich, K.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Func. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Huyut, Z.; Beydemir, S.; Gülçin, I. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Bioch. Res. Int. 2017, 2017, 7616791. [Google Scholar] [CrossRef] [PubMed]
- Elessawy, F.M.; Vandenberg, A.; El-Aneed, A.; Purves, R.W. An Untargeted Metabolomics Approach for Correlating Pulse Crop Seed Coat Polyphenol Profiles with Antioxidant Capacity and Iron Chelation Ability. Molecules 2021, 26, 3833. [Google Scholar] [CrossRef] [PubMed]
Type of Research Material | Total Polyphenols | Total Flavonoids | Tannins | Ascorbic Acid | Total Carotenoids | Ash | Na | K | Ca |
---|---|---|---|---|---|---|---|---|---|
mg/100 g Dry Matter | |||||||||
Chia seeds | 209.86 (±1.04) | 169.92 (±1.07) | 57.91 (±3.08) | 1.90 (±0.05) | 2.65 (±0.24) | 4140 (±0.1) | 192.8 (±0.6) | 1059.8 (±0.9) | 358.7 (±0.6) |
Natural yoghurt 0 days 14 days 28 days | * nm * nm * nm | * nm * nm * nm | * nm * nm * nm | 0.91 (±0.04) a 0.85 (±0.09) a 0.81 (±1.04) a | ** nd ** nd ** nd | 700 (±0.1) A | 34.5 (±0.8) A | 140.4 (±1.0) A | 120.2 (±0.6) A |
Yoghurt with chia 0 days 14 days 28 days | 29.19 (±1.00) aA 32.81 (±1.04) abA 36.65 (±0.99) bA | 14.12 (±1.04) aA 15.34 (±0.94) aA 16.02 (±0.94) aA | 4.76 (±2.54) aA 4.34 (±1.02) bA nd | 1.01 (±0.04) aA 0.92 (±0.08) aA 0.85 (±0.09) aA | 0.11 (±0.004) aA 0.10 (±0.002) aA 0.10 (±0.004) aA | 1320 (±0.2) B | 39.6 (±0.3) A | 189.2 (±0.9) B | 137.3 (±0.9) B |
Yoghurt with soaked chia 0 days 14 days 28 days | 42.54 (±2.04) aB 43.42 (±1.56) abB 47.66 (±2.99) bB | 25.42 (±2.04) aB 25.34 (±1.17) aB 27.02 (±1.52) aB | 4.92 (±2.54) aA 4.48 (±2.54) aA ** nd | 1.21 (±0.09) aA 1.21 (±0.08) aB 1.07 (±0.08) aB | 0.10 (±0.002) aA 0.11 (±0.002) aA 0.10 (±0.003) aA | 1920 (±0.3) C | 40.8 (±2.6) A | 254.4 (±2.0) C | 135.2 (±1.9) B |
Chia Seeds | Yoghurt with Chia Seeds | Yoghurt with Soaked Chia Seeds | |||||
---|---|---|---|---|---|---|---|
0 days | 14 days | 28 days | 0 days | 14 days | 28 days | ||
Phenolic acids: | |||||||
Caffeic acid | 12.72 (±1.17) | 2.51 (±0.64) aA | 2.23 (±0.09) aA | 2.21 (±0.15) aA | 2.72 (±0.24) aA | 2.57 (±0.61) aA | 2.16 (±0.66) bA |
Ferulic acid | 7.21 (±1.04) | 1.27 (±0.04) aA | 1.02 (±0.24) aA | 0.87 (±0.09) aA | 1.22 (±0.04) aA | 0.98 (±0.14) aA | 0.65 (±0.08) bA |
Gallic acid | 17.72 (±1.09) | 3.16 (±0.09) aA | 2.92 (±0.09) aA | 2.97 (±0.13) aA | 3.23 (±0.71) aA | 2.87 (±0.45) aA | 2.21 (±0.23) bB |
p-coumaric acid | 5.71 (±1.23) | 0.95 (±0.09) aA | 1.05 (±0.31) aA | 0.93 (±0.01) aA | 1.54 (±0.25) aB | 1.49 (±0.29) aB | 1.03 (±0.31) bA |
Chlorogenic acid | 7.22 (±1.02) | 1.23 (±0.08) aA | 1.03 (±0.19) aA | 1.19 (±0.08) aA | 2.54 (±0.64) aB | 2.38 (±0.56) aB | 1.99 (±0.19) bB |
Cinnamic acid | 9.71 (±1.17) | 1.51 (±0.08) aB | 1.54 (±0.21) aB | 1.82 (±0.43) aB | 0.87 (±0.09) aA | 0.83 (±0.11) aA | 0.54 (±0.09) aA |
Flavonoids: | |||||||
Apigenin | 9.71 (±1.55) | 1.01 (±0.17) aA | 0.94 (±0.09) aA | 0.43 (±0.02) bB | 1.12 (±0.11) aA | 0.89 (±0.04) aA | 0.71 (±0.09) aA |
Quercetin | 15.11 (±1.12) | 1.66 (±0.02) aA | 0.52 (±0.04) bA | 0.48 (±1.07) bA | 3.56 (±0.87) aB | 3.23 (±0.46) aB | 2.45 (±0.50) bB |
Myricetin | 27.21 (±1.176) | 2.41 (±0.07) aA | 1.56 (±0.12) bA | 1.12 (±0.17) bA | 2.05 (±0.07) aA | 1.67 (±0.09) aA | 1.10 (±0.09) bA |
Kaempferol | 10.71 (±1.01) | 1.12 (±0.19) aA | 0.41 (±0.01) bA | 0.42 (±0.04) bA | 0.89 (±0.10) aA | 0.56 (±0.12) aA | 0.39 (±0.17) abA |
Rutin | 10.21 (±1.52) | 1.09 (±0.22) aA | 1.03 (±0.10) aA | 0.92 (±0.04) aA | 1.34 (±0.45) aA | 1.30 (±0.46) aA | 1.27 (±0.08) aA |
Catechin | * nd | 1.11 (±0.27) aA | 1.29 (±0.11) aA | 1.10 (±0.11) aA | 2.76 (±0.61) aB | 2.65 (±0.58) aB | 2.23 (±0.50) aB |
Epicatechin | * nd | 0.96 (±0.13) aA | 1.02 (±0.13) aA | 1.06 (±0.09) aA | 3.54 (±0.34) aB | 3.20 (±0.48) aB | 2.16 (±0.49) bB |
Phloridzin | * nd | * nd | * nd | * nd | 2.45 (±0.41) a | 2.19 (±0.36) a | 1.89 (±0.36) ab |
DPPH (%) | ABTS (%) | Chelating Ability (%) | |
---|---|---|---|
Chia seeds | 95.6 (±2.5) | 36.4 (±3.6) | 98.1 (±1.9) |
Natural yoghurt | |||
0 days | 30.6 (±2.1) b | * nd | 98.00 (±1.4) a |
14 days | 26.9 (±2.4) a | * nd | 98.22 (±1.5) a |
28 days | 24.5 (±2.5) a | * nd | 98.24 (±1.5) a |
Yoghurt with chia | |||
0 days | 33.6 (±1.9) aA | 0.6 (±0.2) aA | 98.19 (±1.9) aA |
14 days | 34.5 (±1.1) aA | 0.6 (±0.1) aA | 98.10 (±1.6) aA |
28 days | 38.1 (±1.3) aA | 0.9 (±0.1) aA | 98.32 (±2.0) aA |
Yoghurt with soaked chia | |||
0 days | 35.2 (±1.5) aA | 10.2 (±0.9) aB | 98.90 (±1.4) aA |
14 days | 37.1 (±2.0) aA | 9.8 (±0.8) aB | 98.90 (±1.4) aA |
28 days | 37.8 (±1.5) aA | 9.7 (±0.7) aB | 99.01 (±1.2) aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drużyńska, B.; Wołosiak, R.; Grzebalska, M.; Majewska, E.; Ciecierska, M.; Worobiej, E. Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds (Salvia hispanica L.) and Chia Seeds Soaked in Apple Juice. Antioxidants 2021, 10, 1989. https://doi.org/10.3390/antiox10121989
Drużyńska B, Wołosiak R, Grzebalska M, Majewska E, Ciecierska M, Worobiej E. Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds (Salvia hispanica L.) and Chia Seeds Soaked in Apple Juice. Antioxidants. 2021; 10(12):1989. https://doi.org/10.3390/antiox10121989
Chicago/Turabian StyleDrużyńska, Beata, Rafał Wołosiak, Monika Grzebalska, Ewa Majewska, Marta Ciecierska, and Elwira Worobiej. 2021. "Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds (Salvia hispanica L.) and Chia Seeds Soaked in Apple Juice" Antioxidants 10, no. 12: 1989. https://doi.org/10.3390/antiox10121989
APA StyleDrużyńska, B., Wołosiak, R., Grzebalska, M., Majewska, E., Ciecierska, M., & Worobiej, E. (2021). Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds (Salvia hispanica L.) and Chia Seeds Soaked in Apple Juice. Antioxidants, 10(12), 1989. https://doi.org/10.3390/antiox10121989