The Effect of Environmental pH during Trichothecium roseum (Pers.:Fr.) Link Inoculation of Apple Fruits on the Host Differential Reactive Oxygen Species Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit and Strain
2.2. Spore Suspension with Different pH Values
2.3. Fruit Inoculation
2.4. Maintenance of pH Value in Inoculation Site
2.5. Sampling
2.6. Determination of Cell Membrane Permeability and Malondialdehyde (MDA) Content
2.7. Determination of NADPH Oxidase and Superoxide Dismutase (SOD) Activity
2.8. Determination of Rate of O2●− Production and H2O2 Content
2.9. Determination of Catalase (CAT) and Peroxidases (POD) Activities
2.10. Determination of Key Enzyme Activities of the AsA-GSH Cycle
2.11. Determination of AsA-GSH Cycle Substrates and Products Contents
2.12. Statistical Analysis
3. Results
3.1. Effect of Inoculation of T. roseum at Different pH Conditions on Cell Membrane Permeability and MDA Content of Colonized Apple Tissue
3.2. Effect of Inoculation of T. roseum at Different pH Conditions on NADPH Oxidase and SOD Activities of Colonized Apple Tissue
3.3. Effect of Inoculation of T. roseum at Different pH Spore Suspensions on the Rate of O2●− Production and H2O2 of Colonized Apple Tissue
3.4. Effect of Inoculation of T. roseum at Different pH Conditions on the Activities of CAT and POD of Colonized Apple Tissue
3.5. Effect of Inoculation of T. roseum at Different pH Conditions on the Activities of APX, MDHAR, DHAR, and GR of Colonized Apple Tissue
3.6. Effect of Inoculation of T. roseum at Different pH Conditions on the Contents of AsA, DHA, GSH, and GSSG of Colonized Apple Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denison, S.H. pH regulation of gene expression in fungi. Fungal Genet. Biol. 2000, 29, 61–71. [Google Scholar] [CrossRef]
- Prusky, D.; Yakoby, N. Pathogenic fungi: Leading or led by ambient pH. Mol. Plant Pathol. 2003, 4, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Manteau, S.; Abouna, S.; Lambert, B.; Legendre, L. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol. Ecol. 2003, 43, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Bateman, D.F.; Beer, S.V. Simultaneous production and syner-gistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 1965, 58, 204–211. [Google Scholar]
- Ruijter, G.J.G.; van de Vondervoort, P.J.I.; Visser, J. Oxalic acid production by Aspergillus niger: An oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 1999, 145, 2569–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y. Post-harvest Diseases of Fruits and Vegetables, Symptoms and Pathogens. In Postharvest Diseases of Fruits and Vegetables: Principle and Control; Bi, Y., Ed.; Science Press Publishing: Beijing, China, 2016; pp. 5–6. [Google Scholar]
- Wang, Z.Y.; Hu, H.M.; Gong, D.; Zhang, G.J.; Prusky, D.; Bi, Y. Acid-base property of Trichothecium roseum and effect of pH on its extracellular enzyme activities and pathogenicity. Food Sci. 2019, 40, 161–166. (In Chinese) [Google Scholar]
- Zhang, Z.Q.; Chen, Y.; Li, B.Q.; Chen, T.; Tian, S.P. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Comput. Struct. Biotechnol. J. 2020, 4, 3344–3349. [Google Scholar] [CrossRef]
- Bao, G.H.; Bi, Y.; Li, Y.C.; Kou, Z.H.; Hu, L.G.; Ge, Y.H.; Wang, Y.; Wang, D. Overproduction of reactive oxygen species involved in the pathogenicity of Fusarium in potato tubers. Physiol. Mol. Plant Pathol. 2014, 86, 35–42. [Google Scholar] [CrossRef]
- Kuźniak, E.; Skłodowska, M. Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J. Exp. Bot. 2005, 56, 921–933. [Google Scholar] [CrossRef] [Green Version]
- Bolwell, G.P. The origin of the oxidative burst in plants. Biochem. Soc. Trans. 1996, 24, 438–442. [Google Scholar] [CrossRef]
- Yin, F.; Liu, X.; Cao, B.; Xu, K. Low pH altered salt stress in antioxidant metabolism and nitrogen assimilation in ginger (Zingiber officinale) seedlings. Physiol. Plant 2020, 168, 648–659. [Google Scholar] [CrossRef]
- Wang, J.; Mao, L.C.; Li, X.W.; Lv, Z.; Liu, C.H.; Huang, Y.Y.; Li, D.D. Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo var. reticulatus Naud.) by regulating enzymes involved in antioxidative pathways. Sci. Hortic. 2018, 241, 201–208. [Google Scholar] [CrossRef]
- Bai, X.D.; Bi, Y.; Li, Y.C.; Wang, Y.; Niu, L.L.; Wang, T.; Shang, Q. Mechanism of latent infection for postharvest diseases of fruits and vegetables. Food Sci. 2015, 36, 298–302. [Google Scholar]
- Zhang, R.; Xue, H.L.; Si, M.; Bi, Y.; Nan, M.N.; Zong, Y.Y.; Long, H.T.; Prusky, D.; Cheng, X.Y. Mechanism of Ca2+-mediated NOX modulated in ROS metabolism induced by T-2 toxin in potato tuber. Food Chem. 2020, 317, 126416. [Google Scholar]
- Alkan, N.; Davydov, O.; Sagi, M.; Fluhr, R.; Prusky, D. Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits. Mol. Plant Microbe Interact. 2009, 22, 1484–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshel, D.; Miyara, I.; Ailing, T.; Dinoor, A.; Prusky, D. pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruit. Mol. Plant Microbe Interact. 2002, 15, 774–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, D.; Bi, Y.; Jiang, H.; Xue, S.L.; Wang, Z.Y.; Li, Y.C.; Zong, Y.Y.; Prusky, D. A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum. Postharvest Biol. Technol. 2019, 15, 95–104. [Google Scholar] [CrossRef]
- Lester, G.E.; Bruton, B.D. Relationship of netted muskmelon fruit water loss to postharvest storage life. J. Am. Soc. Hortic. Sci. 1986, 111, 727–731. [Google Scholar]
- Hodges, D.M.; Delong, J.M.; Prange, F.R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Morré, D.J.; Morré, D.M. Applications of aqueous two-phase partition to isolation of membranes from plants: A periodic NADH oxidase activity as a marker for right side-out plasma membrane vesicles. J. Chromatogr. B Biomed. Sci. Appl. 2000, 743, 369–376. [Google Scholar] [CrossRef]
- Supapvanich, S.; Mitsang, P. Preharvest salicylic acid application maintains physicochemical quality of ‘Taaptimjaan’ wax apple fruit (Syzygium samarangenese) during short-term storage. Sci. Hortic. 2017, 215, 178–183. [Google Scholar] [CrossRef]
- Luo, G.H.; Wang, A.G.; Guo, J.Y. Effect of several exogenous factors on the SOD activity of soybean seedlings. Sci. Hortic. 1990, 3, 239–244. (In Chinese) [Google Scholar]
- Fan, M.C.; Li, W.X.; Hu, X.L. Effect of micro-vacuum storage on active oxygen metabolism, internal browning and related enzyme activities in Laiyang pear (Pyrus bretschneideri Reld). LWT Food Sci. Technol. 2016, 72, 467–474. [Google Scholar] [CrossRef]
- Venisse, J.S.; Gullner, G.; Brisset, M.N. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol. 2001, 125, 2164–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Halliwell, B.; Foyer, C.H. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 1978, 139, 9–17. [Google Scholar] [CrossRef]
- Prusky, D.; McEvoy, J.L.; Leverentz, B.; Conway, W.S. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol. Plant Microbe Interact. 2001, 14, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Nürnberger, T.; Scheel, D. Signal transmission in the plant immune response. Trends Plant Sci. 2001, 6, 372–379. [Google Scholar] [CrossRef]
- Adachi, H.; Yoshioka, H. Kinase-mediated orchestration of NADPH oxidase in plant immunity. Brief. Funct. Genom. 2015, 14, 253–259. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, D.C.; Chen, T.; Li, B.Q.; Zhang, Z.Q.; Qin, G.Z.; Tian, S.P. Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit-pathogen interactions. Int. J. Mol. Sci. 2019, 20, 2994. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.H.; Chen, Y.R.; Li, C.Y.; Zhao, J.R.; Wei, M.L.; Li, X.H.; Yang, S.Q.; Mi, Y.T. Effect of sodium nitroprusside treatment on shikimate and phenylpropanoid pathways of apple fruit. Food Chem. 2019, 290, 263–269. [Google Scholar] [CrossRef]
- Krantev, A.; Yordanova, R.; Janda, T.; Szalai, G.; Popova, L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol. 2008, 165, 920–931. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.; Wang, Y.R.; Yang, D.; Guan, C.F.; Ji, J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol. Environ. Saf. 2019, 172, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.L.; Wang, Y.F.; Bi, Y. Postharvest BTH treatment induced disease resistance and enhanced reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Eur. Food Res. Technol. 2012, 234, 963–971. [Google Scholar] [CrossRef]
- Zeng, K.F.; Deng, Y.Y.; Ming, J.A.; Deng, L.L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci. Hortic. 2010, 126, 223–228. [Google Scholar] [CrossRef]
- Naing, A.H.; Lee, D.B.; Ai, T.N.; Lim, K.B.; Kim, C.K. Enhancement of low pH stress tolerance in anthocyanin-enriched transgenic petunia overexpressing RsMYB1 gene. Front. Plant Sci. 2018, 9, 1124. [Google Scholar] [CrossRef] [PubMed]
- Shanan, N. Optimum pH value for improving postharvest characteristics and extending vase life of Rosa hybrida cv. Tereasa cut flowers. Asian J. Adv. Agric. Res. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Shan, C.J.; Wang, B.S.; Sun, H.L.; Gao, S.; Li, H. H2S induces NO in the regulation of AsA-GSH cycle in wheat seedlings by water stress. Protoplasma 2020, 257, 1487–1493. [Google Scholar] [CrossRef]
- Imahori, Y.; Bai, J.; Baldwin, E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Sci. Hortic. 2016, 198, 398–406. [Google Scholar] [CrossRef]
- Ding, Z.S.; Tian, S.P.; Zheng, X.L.; Zhou, Z.W.; Xu, Y. Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol. Plant 2007, 130, 112–121. [Google Scholar] [CrossRef]
- Bi, F.; Barad, S.; Ment, D.; Luria, N.; Casado, V.; Galam, N.; Dubay, A.; Mínguez, J.D.; Espeso, E.; Fluhr, R.; et al. Carbon regulation of environmental pH by secreted small molecule effectors modulates pathogenicity in fungi. Mol. Plant Pathol. 2016, 17, 1178–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Wang, Z.; Bi, Y.; Zong, Y.; Gong, D.; Wang, B.; Li, B.; Sionov, E.; Prusky, D. The Effect of Environmental pH during Trichothecium roseum (Pers.:Fr.) Link Inoculation of Apple Fruits on the Host Differential Reactive Oxygen Species Metabolism. Antioxidants 2021, 10, 692. https://doi.org/10.3390/antiox10050692
Han Z, Wang Z, Bi Y, Zong Y, Gong D, Wang B, Li B, Sionov E, Prusky D. The Effect of Environmental pH during Trichothecium roseum (Pers.:Fr.) Link Inoculation of Apple Fruits on the Host Differential Reactive Oxygen Species Metabolism. Antioxidants. 2021; 10(5):692. https://doi.org/10.3390/antiox10050692
Chicago/Turabian StyleHan, Zhanhong, Zhenyu Wang, Yang Bi, Yuanyuan Zong, Di Gong, Bin Wang, Baojun Li, Edward Sionov, and Dov Prusky. 2021. "The Effect of Environmental pH during Trichothecium roseum (Pers.:Fr.) Link Inoculation of Apple Fruits on the Host Differential Reactive Oxygen Species Metabolism" Antioxidants 10, no. 5: 692. https://doi.org/10.3390/antiox10050692
APA StyleHan, Z., Wang, Z., Bi, Y., Zong, Y., Gong, D., Wang, B., Li, B., Sionov, E., & Prusky, D. (2021). The Effect of Environmental pH during Trichothecium roseum (Pers.:Fr.) Link Inoculation of Apple Fruits on the Host Differential Reactive Oxygen Species Metabolism. Antioxidants, 10(5), 692. https://doi.org/10.3390/antiox10050692