Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Sample Preparation
2.3. Pomological analyses
2.4. LC-Q/TOF Analysis
2.5. Data Processing for Feature Selection and Identification
2.6. Chemometrics Analyses for Genotype Comparison
3. Results and Discussion
3.1. Pomological Parameters
3.2. Feature Selection and Annotation
Feature Annotation
3.3. Genotype Effects
3.4. Correlations Between Identified Features and Pomological Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ancillotti, C.; Ciofi, L.; Rossini, D.; Chiuminatto, U.; Stahl-Zeng, J.; Orlandini, S.; Furlanetto, S.; Del Bubba, M. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation. Anal. Bioanal. Chem. 2017, 409, 1347–1368. [Google Scholar] [CrossRef]
- Kula, M.; Majdan, M.; Głód, D.; Krauze-Baranowska, M. Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. J. Food Compos. Anal. 2016, 52, 74–82. [Google Scholar] [CrossRef]
- La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Chiozzi, R.Z.; Laganà, A. Comprehensive polyphenol profiling of a strawberry extract (Fragaria× ananassa) by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 2127–2142. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red raspberries and their bioactive polyphenols: Cardiometabolic and neuronal health links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Mezzetti, B.; Battino, M. The genetic aspects of berries: From field to health. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef]
- Del Bubba, M.; Di Serio, C.; Renai, L.; Scordo, C.V.A.; Checchini, L.; Ungar, A.; Tarantini, F.; Bartoletti, R. Vaccinium myrtillus L. extract and its native polyphenol-recombined mixture have anti-proliferative and pro-apoptotic effects on human prostate cancer cell lines. Phytother. Res. 2020, 35, 1089–1098. [Google Scholar] [CrossRef]
- Domazetovic, V.; Marcucci, G.; Falsetti, I.; Bilia, A.R.; Vincenzini, M.T.; Brandi, M.L.; Iantomasi, T. Blueberry Juice Antioxidants Protect Osteogenic Activity against Oxidative Stress and Improve Long-Term Activation of the Mineralization Process in Human Osteoblast-Like SaOS-2 Cells: Involvement of SIRT1. Antioxidants 2020, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- God, J.; Tate, P.L.; Larcom, L.L. Red raspberries have antioxidant effects that play a minor role in the killing of stomach and colon cancer cells. Nutr. Res. 2010, 30, 777–782. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, A.; Pino-García, R.D.; George, T.W.; Vidal-Diez, A.; Heiss, C.; Spencer, J.P. Impact of processing on the bioavailability and vascular effects of blueberry (poly) phenols. Mol. Nutr. Food Res. 2014, 58, 1952–1961. [Google Scholar] [CrossRef]
- Park, E.; Edirisinghe, I.; Wei, H.; Vijayakumar, L.P.; Banaszewski, K.; Cappozzo, J.C.; Burton-Freeman, B. A dose–response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol. Nutr. Food Res. 2016, 60, 1099–1109. [Google Scholar] [CrossRef]
- Lee, J.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Hidalgo, G.-I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinczinger, D.; Reth, M.v.; Keilwagen, J.; Berner, T.; Peil, A.; Flachowsky, H.; Emeriewen, O.F. Mapping of the Waxy Bloom Gene in ‘Black Jewel’in a Parental Linkage Map of ‘Black Jewel’בGlen Ample’(Rubus) Interspecific Population. Agronomy 2020, 10, 1579. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 January 2021).
- Teegarden, M.D.; Schwartz, S.J.; Cooperstone, J.L. Profiling the impact of thermal processing on black raspberry phytochemicals using untargeted metabolomics. Food Chem. 2019, 274, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Paudel, L.; Wyzgoski, F.J.; Giusti, M.M.; Johnson, J.L.; Rinaldi, P.L.; Scheerens, J.C.; Chanon, A.M.; Bomser, J.A.; Miller, A.R.; Hardy, J.K. NMR-based metabolomic investigation of bioactivity of chemical constituents in black raspberry (Rubus occidentalis L.) fruit extracts. J. Agric. Food Chem. 2014, 62, 1989–1998. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.-B.; Remberg, S.F.; Aaby, K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef]
- Dincheva, I.; Badjakov, I.; Kondakova, V.; Dobson, P.; Mcdougall, G.; Stewart, D. Identification of the phenolic components in Bulgarian raspberry cultivars by LC-ESI-MSn. Int. J. Agric. Sci. Res. 2013, 3, 137–138. [Google Scholar]
- Mullen, W.; Lean, M.E.; Crozier, A. Rapid characterization of anthocyanins in red raspberry fruit by high-performance liquid chromatography coupled to single quadrupole mass spectrometry. J. Chromatogr. A 2002, 966, 63–70. [Google Scholar] [CrossRef]
- Remberg, S.F.; Sønsteby, A.; Aaby, K.; Heide, O.M. Influence of postflowering temperature on fruit size and chemical composition of Glen Ample raspberry (Rubus idaeus L.). J. Agric. Food Chem. 2010, 58, 9120–9128. [Google Scholar] [CrossRef]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2009, 58, 3901–3909. [Google Scholar] [CrossRef]
- Bradish, C.M.; Perkins-Veazie, P.; Fernandez, G.E.; Xie, G.; Jia, W. Comparison of flavonoid composition of red raspberries (Rubus idaeus L.) grown in the Southern United States. J. Agric. Food Chem. 2011, 60, 5779–5786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sandhu, A.; Edirisinghe, I.; Burton-Freeman, B. An exploratory study of red raspberry (Rubus idaeus L.)(poly) phenols/metabolites in human biological samples. Food Funct. 2018, 9, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Ancillotti, C.; Ulaszewska, M.; Mattivi, F.; Del Bubba, M. Untargeted Metabolomics Analytical Strategy Based on Liquid Chromatography/Electrospray Ionization Linear Ion Trap Quadrupole/Orbitrap Mass Spectrometry for Discovering New Polyphenol Metabolites in Human Biofluids after Acute Ingestion of Vaccinium myrtillus Berry Supplement. J. Am. Soc. Mass Spectrom. 2019, 30, 381–402. [Google Scholar]
- Carvalho, E.; Franceschi, P.; Feller, A.; Palmieri, L.; Wehrens, R.; Martens, S. A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiol. Biochem. 2013, 72, 79–86. [Google Scholar] [CrossRef]
- Renai, L.; Tozzi, F.; Scordo, C.V.; Giordani, E.; Bruzzoniti, M.C.; Fibbi, D.; Mandi, L.; Ouazzani, N.; Del Bubba, M. Productivity and nutritional and nutraceutical value of strawberry fruits (Fragaria x ananassa Duch.) cultivated under irrigation with treated wastewaters. J. Sci. Food Agric. 2021, 101, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Del Bubba, M.; Giordani, E.; Ancillotti, C.; Petrucci, W.A.; Ciofi, L.; Morelli, D.; Marinelli, C.; Checchini, L.; Furlanetto, S. Morphological, nutraceutical and sensorial properties of cultivated Fragaria vesca L. berries: Influence of genotype, plant age, fertilization treatment on the overall fruit quality. Agric. Food Sci. 2016, 25, 187–201. [Google Scholar] [CrossRef]
- Tozzi, F.; Legua, P.; Martínez-Nicolás, J.J.; Núñez-Gómez, D.; Giordani, E.; Melgarejo, P. Morphological and nutraceutical characterization of six pomegranate cultivars of global commercial interest. Sci. Hortic. 2020, 272, 109557. [Google Scholar] [CrossRef]
- Douglas, C.E.; Michael, F.A. On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Stat. Theory Methods 1991, 20, 127–139. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E.; Dietrich, H.; Schöpplein, E.; Rasim, S.; Kürbel, P. Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biol. Technol. 2011, 60, 31–37. [Google Scholar] [CrossRef]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Stavang, J.A.; Freitag, S.; Foito, A.; Verrall, S.; Heide, O.M.; Stewart, D.; Sønsteby, A. Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Sci. Hortic. 2015, 195, 216–225. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.-T.; Wang, C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009, 112, 676–684. [Google Scholar] [CrossRef]
- Schulz, M.; Chim, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Del Bubba, M.; Checchini, L.; Chiuminatto, U.; Doumett, S.; Fibbi, D.; Giordani, E. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation. J. Mass Spectrom. 2012, 47, 1207–1220. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R.; Liyanage, R.; Lay, J.O.; Prior, R.L. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669. [Google Scholar] [CrossRef]
- Mullen, W.; Yokota, T.; Lean, M.E.; Crozier, A. Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MSn. Phytochemistry 2003, 64, 617–624. [Google Scholar] [CrossRef]
- McDougall, G.; Martinussen, I.; Stewart, D. Towards fruitful metabolomics: High throughput analyses of polyphenol composition in berries using direct infusion mass spectrometry. J. Chromatogr. B 2008, 871, 362–369. [Google Scholar] [CrossRef]
- Mullen, W.; McGinn, J.; Lean, M.E.; MacLean, M.R.; Gardner, P.; Duthie, G.G.; Yokota, T.; Crozier, A. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J. Agric. Food Chem. 2002, 50, 5191–5196. [Google Scholar] [CrossRef]
- Teixeira, N.; Azevedo, J.; Mateus, N.; de Freitas, V. Proanthocyanidin screening by LC–ESI-MS of Portuguese red wines made with teinturier grapes. Food Chem. 2016, 190, 300–307. [Google Scholar] [CrossRef]
- Carvalho, E.; Fraser, P.D.; Martens, S. Carotenoids and tocopherols in yellow and red raspberries. Food Chem. 2013, 139, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Justino, G.C.; Borges, C.M.; Florêncio, M.H. Electrospray ionization tandem mass spectrometry fragmentation of protonated flavone and flavonol aglycones: A re-examination. Rapid Commun. Mass Spectrom. 2009, 23, 237–248. [Google Scholar] [CrossRef]
- Yuan, T.; Guo, X.-F.; Shao, S.-Y.; An, R.-M.; Wang, J.; Sun, J. Characterization and identification of flavonoids from Bambusa chungii leaves extract by UPLC-ESI-Q-TOF-MS/MS. Acta Chromatogr. 2020. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2011, 60, 5716–5727. [Google Scholar] [CrossRef] [PubMed]
- Regos, I.; Urbanella, A.; Treutter, D. Identification and quantification of phenolic compounds from the forage legume sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 2009, 57, 5843–5852. [Google Scholar] [CrossRef]
- Chen, L.; Xin, X.; Yuan, Q.; Su, D.; Liu, W. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 2014, 94, 180–188. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Chen, S.; Sun, Y.; Shen, Y.; Ye, X. Chemical composition and antioxidant activity of Chinese wild raspberry (Rubus hirsutus Thunb.). Food Sci. Technol. 2015, 60, 1262–1268. [Google Scholar] [CrossRef]
- Weber, C.; Perkins-Veazie, P.; Moore, P.; Howard, L. Variability of antioxidant content in raspberry germplasm. Acta Hortic. 2008, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Barabás, C.; Tóth, A.; Kéry, Á.; Béni, S.; Boldizsár, I.; Varga, E.; Noszál, B. Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed. Chromatogr. 2016, 30, 923–932. [Google Scholar] [CrossRef]
- de Andrade Neves, N.; Stringheta, P.C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chem. 2018, 252, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Duan, J.-A.; Tang, Y.-P.; Yang, N.-Y.; Qian, D.-W.; Su, S.-L.; Shang, E.-X. Characterization of triterpenic acids in fruits of Ziziphus species by HPLC-ELSD-MS. J. Agric. Food Chem. 2010, 58, 6285–6289. [Google Scholar] [CrossRef]
- Wang, Y.; Suo, Y.; Sun, Y.; You, J. Determination of triterpene acids from 37 different varieties of raspberry using pre-column derivatization and HPLC fluorescence detection. Chromatographia 2016, 79, 1515–1525. [Google Scholar] [CrossRef]
- Chai, L.; Li, Y.; Chen, S.; Perl, A.; Zhao, F.; Ma, H. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. Plant Sci. 2014, 229, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Pérez, F.J.; Viani, C.; Retamales, J. Bioactive gibberellins in seeded and seedless grapes: Identification and changes in content during berry development. Am. J. Enol. Vitic. 2000, 51, 315–318. [Google Scholar]
- Palonen, P.; Pehkonen, E.; Rantanen, M. Growth control of “Glen Ample” and “Tulameen” raspberry cultivars with single and repeated ProCa applications. Eur. J. Hortic. Sci. 2013, 78, 22–29. [Google Scholar]
L | a | b | TSS (°Brix) | TA (g CA kg−1 f.w.) | |
---|---|---|---|---|---|
Rubus idaeus | |||||
GA | 35 (1) a | 23 (3) a | 16 (3) a | 11.1 (1.1) a | 19.7 (1.4) a |
T | 35 (3) a | 23 (3) a | 16 (3) a | 11.8 (1.7) a | 19.9 (1.3) a |
G | 53 (1) b | 12 (2) a | 34 (2) b | 8.1 (1.1) b | 12.4 (1.0) b |
Rubus occidentalis | |||||
J | 25 (1) c | 2 (1) b | 3 (1) c | 13.1 (1.1) c | 10.7 (1.0) c |
Peak | tR | TOF | Charge | Q/TOF | Formula | Exact Mass | Δ | GA | T | G | J | Tentative Identification |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.61 | 169.0144 | −H | 125.0233; 126.0275; 124.0154; 79.0173 | C7H6O5 | 169.0143 | 0.6 | − | − | − | + | Gallic acid a |
2 | 3.17 | 153.0200 | −H | 109.0291; 108.0210 | C7H6O4 | 153.0194 | 3.9 | − | − | − | + | 3,4-Dihydroxybenzoic acid a |
3 | 5.28 | 633.0735 | −H | 331.0685; 301.0003 | C27H22O18 | 633.0733 | 0.3 | + | + | + | + | Galloyl-HHDP-hexose |
4 | 6.03 | 577.1380 | −H | 425.0909; 407.0804; 289.0732; 125.0232 | C30H26O12 | 577.1352 | 4.9 | + | + | + | + | B-type procyanidin dimer |
5 | 6.26 | 865.2017 | −H | 577.1394; 575.1259; 287.0570 | C45H38O18 | 865.1985 | 3.7 | + | + | + | + | Procyanidin C1 a |
6 | 6.34 | 355.1024 | −H | 191.0203; 147.0304; 129.0192 | C16H20O9 | 355.1035 | −3.1 | + | + | + | − | Ferulic acid hexoside I |
7 | 6.49 | 783.0703 | −2H | 935.0892; 933.0731; 633.0777; 617.0370; 331.0679; 300.9993 | C68H48O44 | 783.0687 | 2.0 | + | + | + | + | Sanguiin H-10 I |
8 | 6.68 | 858.0684 | −2H | 935.0890; 858.0752; 633.0756; 631.0607; 300.9991 | C75H50O48 | 858.0663 | 2.4 | + | + | + | + | Sanguiin H-6 degalloylated |
9 | 6.89 | 355.1026 | −H | 191.0203; 147.0304; 129.0192 | C16H20O9 | 355.1035 | −2.5 | + | + | + | − | Ferulic acid hexoside II |
10 | 7.06 | 289.0724 | −H | 245.0819; 205.0502; 203.0707; 125.0228; 123.0434; 109.0276 | C15H14O6 | 289.0718 | 2.2 | + | + | + | + | (+)-Catechin a |
11 | 7.13 | 863.1903 | −H | 711.1413; 693.1335; 575.1237; 449.0896; 423.0721; 413.0851; 405.0695; 287.0567 | C45H36O18 | 863.1914 | −1.3 | + | + | + | - | A/B type procyanidin trimer |
12 | 7.31 | 633.0760 | −H | 300.9993 | C27H22O18 | 633.0733 | 4.3 | + | + | + | + | Corilagin |
13 | 7.31 | 609.1490 | −H | 300.0287; 301.0351; 178.9983; 151.0035 | C27H30O16 | 609.1461 | 4.7 | − | − | - | + | Quercetin deoxyhexose-hexoside |
14 | 7.46 | 577.1378 | −H | 407.0822; 289.0757; 125.0233 | C30H26O12 | 577.1352 | 4.6 | + | + | + | + | Procyanidin B1 a |
15 | 7.67 | 463.0892 | −H | 327.0522; 175.0255; 125.0234 | C21H20O12 | 463.0882 | 2.2 | + | + | + | − | Tetrahydroxyflavonol-3-O-hexoside |
16 | 7.85 | 865.2023 | −H | 577.1380; 407.0781; 287.0560; 125.0224 | C45H38O18 | 865.1985 | 4.4 | + | + | + | + | B-type procyanidin trimer |
17 | 8.13 | 353.0884 | −H | 191.0551 | C16H18O9 | 353.0878 | 1.7 | + | + | + | + | Chlorogenic acid a |
18 | 8.37 | 325.0940 | −H | 146.0319; 145.0289; 118.0364; 117.0332 | C15H18O8 | 325.0929 | 3.4 | + | + | + | + | p-Coumaryl hexoside |
19 | 8.44 | 783.0702 | −2H | 935.0892; 933.0731; 633.0777; 617.0370; 331.0679; 300.9993 | C68H48O44 | 783.0687 | 1.9 | + | + | + | + | Sanguiin H-10 II |
20 | 8.60 | 577.1355 | −H | 425.0887; 407.0775; 289.0716 | C30H26O12 | 577.1351 | 0.6 | + | + | + | + | Procyanidin B2 a |
21 | 9.20 | 933.7395 | −3H | 617.0367 *; 300.9912 | C123H80O78 | 933.7358 | 4.0 | + | + | + | + | Lambertianin C |
22 | 9.25 | 934.0796 | −2H | 915.0632; 897.0499; 633.0775; 301.0077 | C82H54O52 | 934.0757 | 4.2 | + | + | + | + | Sanguiin H-6 I |
23 | 9.57 | 934.0779 | −2H | 915.0618; 897.0485; 633.0759; 301.0056 | C82H54O52 | 934.0737 | 4.5 | + | + | + | + | Sanguiin H-6 II |
24 | 9.58 | 551.0433 | −2H | 469.0072; 300.9998; 169.0133 | C48H32O31 | 551.0410 | 4.2 | + | + | + | + | Sanguiin H-2 |
25 | 9.82 | 289.0724 | −H | 245.0818; 203.0704; 125.0226; 123.0434 | C15H14O6 | 289.0717 | 2.2 | + | + | + | + | (−)-Epicatechin a |
26 | 10.23 | 341.1245 | −H | 179.0710; 121.0280 | C16H22O8 | 341.1241 | 1.0 | − | − | + | − | Coniferin |
27 | 10.28 | 385.1154 | −H | 223.0622; 205.0528; 190.0276 | C17H22O10 | 385.1135 | 4.9 | + | + | + | − | Sinapic acid hexoside |
28 | 10.33 | 859.0802 | −2H | 785.0884; 633.0781; 300.9993 | C75H52O48 | 859.0760 | 4.9 | + | + | + | − | Ellagitannin-like Nobotanin/Malabathrin |
29 | 10.61 | 593.1510 | −H | 475.1400; 431.0600; 245.1390 | C27H30O15 | 593.1506 | −0.01 | + | + | − | + | Apigenin diglucoside |
30 | 11.69 | 651.1983 | −H | 593.1694; 325.0782; 285.0420; 284.0347 | C30H38O17 | 651.1945 | 4.6 | + | + | − | + | Trihydroxy-methoxyflavone deoxyhexose-hexose derivative |
31 | 11.71 | 303.0523 | −H | 285.0417; 125.0233 | C15H12O7 | 303.0510 | 4.2 | − | − | + | − | Taxifolin a |
32 | 11.91 | 625.1433 | −H | 301.0323; 245.0937 | C27H30O17 | 625.1410 | 3.7 | + | + | + | − | Quercetin-3-O-sophoroside a |
33 | 12.14 | 389.1244 | −H | 227.0718 | C20H22O8 | 389.1241 | 0.5 | − | − | − | + | Polydatin a |
34 | 12.20 | 625.1434 | −H | 301.0356 | C27H30O17 | 625.1410 | 3.8 | + | + | + | − | Quercetin-3,4-diglucoside a |
35 | 13.89 | 301.0002 | −H | 270.9953; 257.0102; 245.0096; 229.0152 | C14H6O8 | 300.9989 | 4.0 | + | + | + | + | Ellagic acid a |
36 | 13.97 | 463.0870 | −H | 300.0281; 301.0341; 271.0245 | C21H20O13 | 463.0882 | −2.6 | + | + | + | + | Quercetin-3-O-galactoside a |
37 | 13.99 | 477.0680 | −H | 301.0354; 178.9969; 151.0025 | C21H18O13 | 477.06746 | 1.1 | + | + | + | + | Quercetin-3-O-glucoronide a |
38 | 14.34 | 463.0890 | −H | 300.0281; 301.0341; 271.0244 | C21H20O12 | 463.0882 | 1.7 | + | + | + | + | Quercetin-3-O-glucoside a |
39 | 14.39 | 609.1483 | −H | 300.0287; 301.0351 | C27H30O16 | 609.14611 | 3.6 | + | + | + | + | Quercetin-3-O-rutinoside a |
40 | 14.68 | 433.1144 | −H | 271.0606 | C21H22O10 | 433.114 | 0.9 | + | + | + | + | Naringenin-7-O-glucoside a |
41 | 15.61 | 461.0730 | −H | 447.0615; 315.0188; 285.0417 | C21H18O12 | 461.07255 | 1.0 | + | + | + | + | Kaempferol-3-O-glucoronide |
42 | 15.64 | 447.0572 | −H | 315.0205; 285.0418 | C20H16O12 | 447.0569 | 0.7 | + | + | + | + | Methylellagic acid pentose conjugate |
43 | 15.64 | 435.1302 | −H | 273.0774; 229.0868; 167.0.347 | C21H24O10 | 435.12967 | 1.2 | + | + | + | + | Phloridzin a |
44 | 15.86 | 447.0942 | −H | 300.0281; 284.0326 | C21H20O11 | 447.09329 | 2.0 | + | + | + | + | Kaempferol-3-O-glucoside a |
45 | 15.97 | 475.0522 | −H | 432.0343; 329.1265; 300.9980 | C21H16O13 | 475.05181 | 0.8 | + | + | + | − | Ellagic acid acetyl-pentose conjugate |
46 | 17.73 | 301.0357 | −H | 178.9970; 151.0028; 121.0277 | C15H10O7 | 301.03538 | 1.1 | + | + | + | + | Quercetin a |
47 | 19.01 | 273.0776 | −H | 167.0357; 125.0227; 123.0435; 119.0487 | C15H14O5 | 273.07685 | 2.7 | − | − | − | + | Phloretin a |
48 | 26.37 | 503.3396 | −H | 485.3325; 441.485 | C30H48O6 | 503.33781 | 3.6 | + | + | + | − | Madecassic acid |
49 | 27.22 | 487.3427 | −H | 469.3341; 425.3448 | C30H48O5 | 487.3429 | −0.4 | + | + | − | − | Asiatic acid |
Peak | tR | TOF | Charge | Q/TOF | Formula | Exact Mass | Δ | GA | T | G | J | Tentative Identification |
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | 7.07 | 611.1604 | 287.0574; 449.1067 | C27H31O16 | 611.1621 | −2.8 | + | + | + | + | Cyanidin-3-O-sophoroside a | |
51 | 7.3 | 757.2191 | 757.1961; 611.1593; 287.0577 | C33H41O20 | 757.21912 | 0.1 | + | + | − | + | Cyanidin-3-O-(2G-glucosylrutinoside) | |
52 | 7.38 | 449.1080 | 287.062 | C21H21O11 | 449.10839 | −0.8 | + | + | + | + | Cyanidin-3-galactoside a | |
53 | 7.39 | 727.2073 | 581.1491; 433.1129; 281.0590 | C32H39O19 | 727.20855 | −1.7 | + | + | − | + | Cyanidin 3-xylosylrutinoside | |
54 | 7.4 | 449.1085 | 287.0603 | C21H21O11 | 449.1084 | 0.2 | + | + | + | + | Cyanidin-3-O-glucoside a | |
55 | 7.44 | 481.0973 | +H | 319.0462 | C21H20O13 | 481.0982 | −1.9 | − | − | + | - | Myricetin hexoside |
56 | 7.57 | 595.1658 | 287.0626; 271.0657 | C27H31O15 | 595.1663 | −0.9 | + | + | + | + | Pelargonidin-3-O-sophoroside | |
57 | 7.64 | 595.1672 | 449.1072; 287.0689 | C27H31O15 | 595.1663 | 1.5 | + | + | + | + | Cyanidin-3-O-rutinoside a | |
58 | 7.8 | 741.2243 | 549.1948; 271.0644 | C33H41O19 | 741.2242 | 0.1 | + | + | − | − | Pelargonidin-3-O-(2G)-glucosylrutinoside | |
59 | 7.93 | 433.1135 | 305.1562; 271.0653 | C21H21O10 | 433.11347 | 0.1 | + | + | − | + | Pelargonidin-3-O-glucoside | |
60 | 8.08 | 595.1660 | 449.1058; 287.0702 | C27H31O15 | 595.1663 | −0.5 | + | + | − | + | Cyanidin hexoside rhamnoside I | |
61 | 8.16 | 579.1693 | 453.0077; 271.0595 | C27H31O14 | 579.17138 | −3.6 | − | − | − | + | Pelargonidin-3-O-rutinoside | |
62 | 8.25 | 419.0971 | 287.0543 | C20H19O10 | 419.09782 | −1.7 | + | − | − | + | Cyanidin-3-O-aldopentose | |
63 | 8.26 | 419.0975 | 301.0719; 287.0552 | C20H19O10 | 419.09782 | −0.7 | − | − | − | + | Cyanidin-3-arabinoside a | |
64 | 8.29 | 595.1662 | 449.1060; 287.0701 | C27H31O15 | 595.1663 | −0.2 | + | + | − | + | Cyanidin hexoside rhamnoside II | |
65 | 8.31 | 463.1251 | 301.0731 | C22H23O11 | 463.12404 | 2.3 | + | + | + | + | Peonidin-3-O-glucoside a | |
66 | 9.35 | 611.1608 | 303.0517 | C27H31O16 | 611.16121 | −0.7 | − | − | − | + | Delphinidin-3-O-rutinoside | |
67 | 10.11 | 331.1545 | +H | 287.1258; 285.1118; 151.0736; 137.0584 | C19H22O5 | 331.1540 | −0.3 | + | + | + | + | Gibberellin A7 |
68 | 10.88 | 535.1080 | 487.2175; 287.5045 | C24H23O14 | 535.10878 | −1.5 | + | − | + | + | Cyanidin-3-O-malonyl-glucoside |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renai, L.; Scordo, C.V.A.; Chiuminatto, U.; Ulaszewska, M.; Giordani, E.; Petrucci, W.A.; Tozzi, F.; Nin, S.; Del Bubba, M. Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation. Antioxidants 2021, 10, 704. https://doi.org/10.3390/antiox10050704
Renai L, Scordo CVA, Chiuminatto U, Ulaszewska M, Giordani E, Petrucci WA, Tozzi F, Nin S, Del Bubba M. Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation. Antioxidants. 2021; 10(5):704. https://doi.org/10.3390/antiox10050704
Chicago/Turabian StyleRenai, Lapo, Cristina Vanessa Agata Scordo, Ugo Chiuminatto, Marynka Ulaszewska, Edgardo Giordani, William Antonio Petrucci, Francesca Tozzi, Stefania Nin, and Massimo Del Bubba. 2021. "Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation" Antioxidants 10, no. 5: 704. https://doi.org/10.3390/antiox10050704
APA StyleRenai, L., Scordo, C. V. A., Chiuminatto, U., Ulaszewska, M., Giordani, E., Petrucci, W. A., Tozzi, F., Nin, S., & Del Bubba, M. (2021). Liquid Chromatographic Quadrupole Time-of-Flight Mass Spectrometric Untargeted Profiling of (Poly)phenolic Compounds in Rubus idaeus L. and Rubus occidentalis L. Fruits and Their Comparative Evaluation. Antioxidants, 10(5), 704. https://doi.org/10.3390/antiox10050704