Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Extraction and Characterizations of Puerarin
2.2.1. Extraction of Puerarin from the Root of Plant Pueraria lobata
2.2.2. UV/Visible Spectroscopy and High-Performance Liquid Chromatography for Purity of Puerarin Extract
2.2.3. The Radical Scavenge Assay of Puerarin
2.2.4. Preparation and Characterizations of Liposomal Puerarin
2.2.5. Particle Size Analysis of Liposomal Puerarin
2.2.6. Morphology Observation of the Liposome under Transmission Electron Microscope (TEM)
2.3. Cytoprotective Effect of Iposomal Puerarin on RMCs
2.3.1. Normal Cell Culture and the High Glucose-Induced Injury of RMCs
2.3.2. Cell Viability Assay for Puerarin and Its Liposome
2.3.3. The Effect of High Glucose Environment on Intracellular ROS and of RMCs
2.3.4. The Effect of High Glucose Environment on the Proliferation of RMCs
2.3.5. The Cytoprotective Effect of Liposomal Puerarin on the TGF-β1 Gene Expression
2.3.6. Immunofluorescence Staining: Intracellular Localization of Smad Proteins 2/3
2.3.7. Statistical Analysis
3. Results
3.1. Extraction and Characterization of Puerarin
3.2. Preparation and Characterizations of Liposomal Puerarin
3.3. Cytoprotective Effect of Puerarin in RMCs under High Glucose-Induced Injury
3.4. Effects of Liposomal Puerarin on the Inhibition of TGF-β Expression and Translocation of Smad Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Classification of Diabetes Mellitus; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/classification-of-diabetes-mellitus (accessed on 14 May 2021).
- Pálsson, R.; Patel, U.D. Cardiovascular complications of diabetic kidney disease. Adv. Chronic Kidney Dis. 2014, 21, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizicarova, D.; Krahulec, B.; Hirnerova, E.; Gaspar, L.; Celecova, Z. Risk factors in diabetic nephropathy progression at present. Bratisl Lek Listy 2014, 115, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Mora-Fernández, C.; Domínguez-Pimentel, V.; de Fuentes, M.M.; Górriz, J.L.; Martínez-Castelao, A.; Navarro-González, J.F. Diabetic kidney disease: From physiology to therapeutics. J. Physiol. 2014, 592, 3997–4012. [Google Scholar] [CrossRef]
- Choi, M.E.; Ding, Y.; Kim, S.I. TGF-β Signaling via TAK1 Pathway: Role in Kidney Fibrosis. Semin. Nephrol. 2012, 32, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Dennler, S.; Prunier, C.; Ferrand, N.; Gauthier, J.-M.; Atfi, A. c-Jun inhibits transforming growth factor β-mediated transcription by repressing Smad3 transcriptional activity. J. Biol. Chem. 2000, 275, 28858–28865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runyan, C.E.; Schnaper, H.W.; Poncelet, A.-C. The role of internalization in transforming growth factor β1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J. Biol. Chem. 2005, 280, 8300–8308. [Google Scholar] [CrossRef] [Green Version]
- Verrecchia, F.; Mauviel, A. Transforming growth factor-β and fibrosis. World J. Gastroenterol. WJG 2007, 13, 3056. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.Y. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int. J. Biol. Sci. 2011, 7, 1056. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.-Q.; Wei, Y.-Q.; Yin, X.-X.; Lu, Q.; Hao, H.-H.; Zhai, Y.-P.; Wang, J.-Y.; Ren, J. In vitro suppression of quercetin on hypertrophy and extracellular matrix accumulation in rat glomerular mesangial cells cultured by high glucose. Fitoterapia 2011, 82, 920–926. [Google Scholar] [CrossRef]
- Jha, J.C.; Banal, C.; Chow, B.S.; Cooper, M.E.; Jandeleit-Dahm, K. Diabetes and kidney disease: Role of oxidative stress. Antioxid. Redox Signal. 2016, 25, 657–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, W.K.; Cattran, D.C.; Williams, M.E.; Adler, S.G.; Appel, G.B.; Cartwright, K.; Foiles, P.G.; Freedman, B.I.; Raskin, P.; Ratner, R.E. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol. 2004, 24, 32–40. [Google Scholar] [CrossRef]
- Cherdshewasart, W.; Subtang, S.; Dahlan, W. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J. Pharm. Biomed. Anal. 2007, 43, 428–434. [Google Scholar] [CrossRef]
- Guerra, M.; Speroni, E.; Broccoli, M.; Cangini, M.; Pasini, P.; Minghetti, A.; Crespi-Perellino, N.; Mirasoli, M.; Cantelli-Forti, G.; Paolini, M. Comparison between Chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin: Antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci. 2000, 67, 2997–3006. [Google Scholar] [CrossRef]
- Fu-Liang, X.; Xiao-Hui, S.; Lu, G.; Xiang-Liang, Y.; Hui-Bi, X. Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur. J. Pharmacol. 2006, 529, 1–7. [Google Scholar] [CrossRef]
- Xu, W.; Tang, M.; Wang, J.; Wang, L. Anti-inflammatory activities of puerarin in high-fat diet-fed rats with streptozotocin-induced gestational diabetes mellitus. Mol. Biol. Rep. 2020, 47, 7537–7546. [Google Scholar] [CrossRef] [PubMed]
- Lucas, E.A.; Khalil, D.A.; Daggy, B.P.; Arjmandi, B.H. Ethanol-extracted soy protein isolate does not modulate serum cholesterol in golden Syrian hamsters: A model of postmenopausal hypercholesterolemia. J. Nutr. 2001, 131, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, D.M.; Gardner, C.D.; Haskell, W.L. Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab. 1998, 83, 2223–2235. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-Y.; Barro, L.; Tsai, S.-T.; Feng, T.-W.; Wu, X.-Y.; Chao, C.-W.; Yu, R.-S.; Chin, T.-Y.; Hsieh, M.F. Epigallocatechin-3-Gallate-Loaded Liposomes Favor Anti-Inflammation of Microglia Cells and Promote Neuroprotection. Int. J. Mol. Sci. 2021, 22, 3037. [Google Scholar] [CrossRef]
- Cuong, N.V.; Li, Y.L.; Hsieh, M.F. Targeted delivery of doxorubicin to human breast cancers by folate-decorated star-shaped PEG-PCL micelle. J. Mater. Chem. 2012, 22, 1006–1020. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Pho, Q.H.; Wu, X.Y.; Chin, T.Y.; Chen, C.M.; Fang, P.H.; Lin, Y.C.; Hsieh, M.F. PLGA Microspheres Loaded with -Cyclodextrin Complexes of Epigallocatechin-3-Gallate for the Anti-Inflammatory Properties in Activated Microglial Cells. Polymers 2018, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-H.; Cheng, Y.-Y. Solubility of Puerarin in Water, Ethanol, and Acetone from (288.2 to 328.2) K. J. Chem. Eng. Data 2005, 50, 1375–1376. [Google Scholar] [CrossRef]
- Xu, H.-N.; Huang, W.-N.; He, C.-H. Modeling for extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi using n-butanol/water two-phase solvent system. Sep. Purif. Technol. 2008, 62, 590–595. [Google Scholar] [CrossRef]
- Xu, H.-N.; He, C.-H. Separation and purification of puerarin with solvent extraction. Sep. Purif. Technol. 2007, 56, 397–400. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Liu, Q.; Xie, S.; Zhu, F.; Chen, X. Preparative isolation and purification of 12 main antioxidants from the roots of Polygonum multiflorum Thunb. using high-speed countercurrent chromatography and preparative HPLC guided by 1, 1′-diphenyl-2-picrylhydrazyl-HPLC. J. Sep. Sci. 2020, 43, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Khuluk, R.H.; Yunita, A.; Rohaeti, E.; Syafitri, U.D.; Linda, R.; Lim, L.W.; Takeuchi, T.; Rafi, M. An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. Separations 2021, 8, 12. [Google Scholar] [CrossRef]
- Cherdshewasart, W.; Sutjit, W. Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine 2008, 15, 38–43. [Google Scholar] [CrossRef]
- Xi, J.; Guo, R. Studies on molecular interactions between puerarin and PC liposomes. Chin. Sci. Bull. 2007, 52, 2612–2617. [Google Scholar] [CrossRef]
- Crouch, S.R.; Malmstadt, H.V. Mechanistic investigation of molybdenum blue method for determination of phosphate. Anal. Chem. 1967, 39, 1084–1089. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Hague, A.; Hsieh, M.F.; Hassan, S.I.; Faizi, M.S.H.; Dege, N.; Khan, M.S. 1,4-Disubstituted 1H-1,2,3-Triazoles for Renal Diseases: Studies of Viability, Anti-Inflammatory, and Antioxidant Activities. Int. J. Mol. Sci. 2020, 21, 3823. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.T.; Lin, C.F.; Huang, Y.L.; Chong, K.Y.; Hsieh, M.F.; Huang, T.H.; Cheng, C.Y. Protective mechanisms of resveratrol derivatives against TNF-alpha-induced inflammatory responses in rat mesangial cells. Cytokine 2019, 113, 380–392. [Google Scholar] [CrossRef]
- Nele, V.; Holme, M.N.; Kauscher, U.; Thomas, M.R.; Doutch, J.J.; Stevens, M.M. Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. Langmuir 2019, 35, 6064–6074. [Google Scholar] [CrossRef] [Green Version]
- Kanwar, Y.S.; Wada, J.; Sun, L.; Xie, P.; Wallner, E.I.; Chen, S.; Chugh, S.; Danesh, F.R. Diabetic nephropathy: Mechanisms of renal disease progression. Exp. Biol. Med. 2008, 233, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Chen, C.; Liang, H.; Zhong, S.; Cheng, X.; Li, L. Astragaloside IV inhibits excessive mesangial cell proliferation and renal fibrosis caused by diabetic nephropathy via modulation of the TGF-β1/Smad/miR-192 signaling pathway. Exp. Ther. Med. 2019, 18, 3053–3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, M.; Makino, N.; Matsuda, A.; Ikeda, Y.; Kakizaki, Y.; Saito, Y.; Ueno, Y.; Kawata, S. High Glucose Accelerates Cell Proliferation and Increases the Secretion and mRNA Expression of Osteopontin in Human Pancreatic Duct Epithelial Cells. Int. J. Mol. Sci. 2017, 18, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubiczkova, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. TGF-β–an excellent servant but a bad master. J. Transl. Med. 2012, 10, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Bae, C.S.; Lim, S.K.; Kim, D.I.; Lim, J.C.; Kim, J.C.; Han, H.J.; Moon, J.H.; Kim, K.Y.; Yoon, K.-C. Effect of protopanaxadiol derivatives in high glucose-induced fibronectin expression in primary cultured rat mesangial cells: Role of mitogen-activated protein kinases and Akt. Arch. Pharmacal Res. 2010, 33, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lu, H.; Rao, X.; Li, X.; Lu, H.; Li, F.; He, Y.; Yu, R.; Zhong, R.; Zhang, Y. Enhanced treatment for cerebral ischemia-reperfusion injury of puerarin loading liposomes through neutrophils-mediated targeted delivery. Nano Res. 2021, 1–10. [Google Scholar] [CrossRef]
Liposomal Puerarin | Weight of E (mg) | Weight of C (mg) | Weight of T (mg) |
---|---|---|---|
E70C30T0 | 5.3 | 1.2 | 0 |
E65C30T5 | 4.9 | 1.2 | 0.8 |
E60C30T10 | 4.6 | 1.2 | 1.2 |
Genes | Access Number | Primers (Sense/Antisense) | Base Pair | Cycle |
---|---|---|---|---|
Rat TGF-β1 | P17246 | 5′-CCCGCATCCCAGGACCTCTCT-3′ | 519 | 30 |
5′-CGGGGGACTGGCGAGCCTTAG-3′ | ||||
β-actin | P60711 | 5′-GCTGCGTGTGGCCCCTGAG-3′ | 252 | 30 |
5′-ACGCAGGATGGCATGAGGGA-3′ |
Temperature (°C) | Extraction Yield (%) | Puerarin Purity (%) |
---|---|---|
RT | 1.82 ± 0.8 | 83.4 ± 2.8 |
50 | 1.90 ± 0.7 | 70.5 ± 5.1 |
70 | 1.80 ± 1.2 | 55.6 ± 4.3 |
Empty Liposome | Ultrasonic Bath | Membrane Extrusion (10 Times) | Membrane Extrusion (20 Times) |
---|---|---|---|
E70C30T0 | 916.3 nm | 220.4 nm | 202.8 nm |
E65C30T5 | 795.3 nm | 197.3 nm | 186.4 nm |
E60C30T10 | 637.0 nm | 183.0 nm | 165.1 nm |
Liposomal Puerarin | Particle Size (nm) | Loading Efficiency (%) | Loading Contents (%) |
---|---|---|---|
E70C30T0 | 293.6 | 40.45 | 9.38 |
E65C30T5 | 190.3 | 49.24 | 9.56 |
E60C30T10 | 199.4 | 53.79 | 9.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barro, L.; Hsiao, J.-T.; Chen, C.-Y.; Chang, Y.-L.; Hsieh, M.-F. Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells. Antioxidants 2021, 10, 1177. https://doi.org/10.3390/antiox10081177
Barro L, Hsiao J-T, Chen C-Y, Chang Y-L, Hsieh M-F. Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells. Antioxidants. 2021; 10(8):1177. https://doi.org/10.3390/antiox10081177
Chicago/Turabian StyleBarro, Lassina, Jui-Ting Hsiao, Chu-Yin Chen, Yu-Lung Chang, and Ming-Fa Hsieh. 2021. "Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells" Antioxidants 10, no. 8: 1177. https://doi.org/10.3390/antiox10081177
APA StyleBarro, L., Hsiao, J.-T., Chen, C.-Y., Chang, Y.-L., & Hsieh, M.-F. (2021). Cytoprotective Effect of Liposomal Puerarin on High Glucose-Induced Injury in Rat Mesangial Cells. Antioxidants, 10(8), 1177. https://doi.org/10.3390/antiox10081177