Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale cereale) Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Glassware’s
2.2. Sample Preparation
2.3. Phytochemical Analysis
2.4. Total Phenolic Content (TPC) and HPLC Analysis
2.5. DPPH (C18H12N5O6) Assay
2.6. ABTS Assay
2.7. Total Antioxidant Capacity (TAC)
2.8. Reducing Power Activity (RPA)
2.9. Ferric Reducing Antioxidant Power (FRAP)
2.10. Condensed Tannin Content (CTC)
2.11. DNA Damage Protection Potential (DDPPA) Assay
2.12. Statistical Analysis
3. Results and Discussion
3.1. Bioactive Compounds
3.2. Phenolics in Rye Extracts
3.3. Antioxidant Properties
3.4. Relationship between Bioactive Compounds and Antioxidant Properties
3.5. DNA Damage Protection Potential (DDPP)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kaur, P.; Purewal, S.S.; Sandhu, K.S.; Kaur, M.; Salar, R.K. Millets: A cereal grain with potent antioxidants and health benefits. J. Food Meas. Charact. 2019, 13, 793–806. [Google Scholar] [CrossRef]
- Salar, R.K.; Purewal, S.S.; Sandhu, K.S. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Food Res. Int. 2017, 100, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Senser, H.A.; Hawkes, J.G. On the origin of cultivated rye. Biol. J. Linn. Soc. 1980, 13, 299–313. [Google Scholar] [CrossRef]
- Wrigley, C.W.; Bushuk, W. Rye and triticale: Characteristics and quality requirements. In Cereal Grains: Assessing and Managing Quality; Wrigley, C.W., Batey, I.L., Eds.; Woodhead: Washington, DC, USA, 2010; p. 532. [Google Scholar]
- Bushuk, W. Rye production and uses worldwide. Cereal Food World 2001, 46, 70–73. [Google Scholar]
- Crespo-Herrera, L.A.; Garkava-Gustavsson, L.; Ahman, I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 2017, 154, 14. [Google Scholar] [CrossRef]
- Torrinha, A.; Oliveira, M.; Marinho, S.; Paiga, P.; Delerue-Matos, C.; Morais, S. Mineral Content of Various Portuguese Breads: Characterization, Dietary Intake, and Discriminant Analysis. Molecules 2019, 24, 2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodehutscord, M.; Ruckert, C.; Maurer, H.P.; Schenkel, H.; Schipprack, W.; Bach Knudsen, K.E.; Schollenberger, M.; Laux, M.; Eklund, M.; Siegert, W.; et al. Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch. Anim. Nutr. 2016, 70, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Zuber, T.; Miedaner, T.; Rosenfelder, P.; Rodehutscord, M. Amino acid digestibility of different rye genotypes in caecectomised laying hens. Arch. Anim. Nutr. 2016, 70, 470–487. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Aura, A.M.; Vuorela, S.; Kolehmainen, M.; Mykkanen, H.; Poutanen, K. Rye phenolics in nutrition and health. J. Cereal Sci. 2009, 49, 323–336. [Google Scholar] [CrossRef]
- Nystrom, L.; Lampi, A.M.; Andersson, A.A.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fras, A.; et al. Phytochemicals and dietary fiber components in rye varieties in the HELTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef]
- Kulichova, K.; Sokol, J.; Nemecek, P.; Maliarova, M.; Maliar, T.; Havrlentova, M.; Kraic, J. Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chem. 2019, 17, 988–999. [Google Scholar] [CrossRef]
- Ross, A.B.; Kamal-Eldin, A.; Aman, P. Diet alkylresorcinols: Absorption, bioactivities, and possible use as biomarkers of whole-grain wheat and rye-rich foods. Nutr. Rev. 2004, 62, 81–95. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Landbo, A.K.; Christensen, L.P.; Hansen, A.; Meyer, A.S. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. J. Agric. Food Chem. 2001, 49, 4090–4096. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Yan, G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007, 105, 548–554. [Google Scholar] [CrossRef]
- Mattila, P.; Pihlava, J.M.; Hellstrom, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef]
- Michalska, A.; Ceglinska, A.; Zielinski, H. Bioactive compounds in rye flours with different extraction rates. Eur. Food Res. Technol. 2007, 225, 545–551. [Google Scholar] [CrossRef]
- Heinio, R.L.; Liukkonen, K.H.; Myllymaki, O.; Pihlava, J.M.; Adlercreutz, H.; Heinonen, S.M.; Poutanen, K. Quantities of phenolic compounds and their impacts on the perceived flavour attributes of rye grain. J. Cereal Sci. 2008, 47, 566–575. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purewal, S.S.; Salar, R.K.; Bhatti, M.S.; Sandhu, K.S.; Singh, S.K.; Kaur, P. Solid-state fermentation of pearl millet with Aspergillus oryzae and Rhizopus azygosporus: Effects on bioactive profile and DNA damage protection activity. J. Food Meas. Charact. 2020, 14, 150–162. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2020, 334, 127521. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Mora-Adames, W.I.; Fuenmayor, C.A.; Darghan-Contreras, A.E.; Gardana, C.; Gutierrez, L.F. Microwave-assisted extraction of phenolic compounds from Sacha Inchi shell: Optimization, physicochemical properties and evaluation of their antioxidant activity. Chem. Eng. Process 2020, 153, 107922. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Chakraborty, S.; Uppaluri, R.; Das, C. Optimization of Ultrasound-assisted Extraction (UAE) Process for the Recovery of Bioactive Compounds from Bitter Gourd using Response Surface Methodology (RSM). Food Bioprod. Process. 2020, 120, 114–122. [Google Scholar] [CrossRef]
- Ahmad Jelani, N.A.; Azlan, A.; Khoo, H.E.; Razman, M.R. Fatty acid profile and antioxidant properties of oils extracted from dabai pulp using supercritical carbon dioxide extraction. Int. Food Res. J. 2019, 26, 1587–1598. [Google Scholar]
- Azman, N.F.I.N.; Azlan, A.; Khoo, H.E.; Razman, M.R. Antioxidant properties of fresh and frozen peels of citrus species. Curr. Res. Nutr. Food Sci. 2019, 7, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.S.; Sofian-Seng, N.S.; Wan Mustapha, W.A. Functional properties of oleoresin extracted from white pepper (Piper nigrum L.) retting waste water. Sains Malays. 2018, 47, 2009–2015. [Google Scholar] [CrossRef]
- Chemah, T.C.; Aminah, A.; Noreham, A.; Wan Aida, W.M. Antioxidant activity and color of red pitaya puree muffin (Hilosereus polirhizus). Sains Malays. 2011, 40, 431–436. [Google Scholar]
- Abdul Rehman, H.; Saari, N.; Abas, F.; Ismail, A.; Mamtaz, M.W.; Abdul Hamid, A. Anti-obesity and antioxidant activities of selected medicinal plant and phytochemical profiling of bioactive compounds. Int. J. Food Prop. 2017, 20, 2616–2629. [Google Scholar] [CrossRef]
- Trease, G.E.; Evans, E.C. Pharmacognosy, 13th ed.; Bailliere Tindall: London, UK, 1996; pp. 282–396. [Google Scholar]
- Yu, L.; Haley, S.; Perret, J.; Harris, M. Comparison of wheat flours grown at different locations for their antioxidant properties. Food Chem. 2004, 86, 11–16. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing activity of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Kumar, V.; Lemos, M.; Sharma, M.; Shriram, V. Antioxidant and DNA damage protection activities of Eulophia nuda Lindl. Free Radic. Antioxid. 2013, 3, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Mishra, L.K.; Sarkar, D.; Zwinger, S.; Shetty, K. Phenolic antioxidant-linked anti-hyperglycemic properties of rye cultivars grown under conventional and organic production systems. J. Cereal Sci. 2017, 76, 108–115. [Google Scholar] [CrossRef]
- Zieliński, H.; Ceglińska, A.; Michalska, A. Antioxidant contents and properties as quality indices of rye cultivars. Food Chem. 2007, 104, 980–988. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdelaal, E.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Pihlava, J.M.; Nordlund, E.; Heiniö, R.L.; Hietaniemi, V.; Lehtinen, P.; Poutanen, K. Phenolic compounds in wholegrain rye and its fractions. J. Food Compos. Anal. 2015, 38, 89–97. [Google Scholar] [CrossRef]
- Aoussar, N.; Rhallabi, N.; AitMhand, R.; Manzali, R.; Bouksaim, M.; Douira, A.; Mellouki, F. Seasonal variation of antioxidant activity and phenolic content of Pseudeverniafurfuracea, Evernia prunastri and Ramalinafarinacea from Morocco. J. Saudi Soc. Agric. Sci. 2020, 19, 1–6. [Google Scholar]
- Shi, B.; Zhang, W.; Li, X.; Pan, X. Seasonal variations of phenolic profiles and antioxidant activity of walnut (Juglans sigillata Dode) green husks. Int. J. Food Prop. 2018, 20, 2635–2646. [Google Scholar] [CrossRef] [Green Version]
- Salar, R.K.; Purewal, S.S. Phenolic content, antioxidant potential and DNA damage protection of pearl millet (Pennisetum glaucum) cultivars of North Indian region. J. Food Meas. Charact. 2017, 11, 126–133. [Google Scholar] [CrossRef]
- Teixeira, E.W.; Message, D.; Negri, G.; Salatino, A.; Stringheta, P.C. Seasonal variation, chemical composition and antioxidant activity of Brazilian Propolis samples. Evid.-Based Complement. Altern. Med. 2010, 7, 307–315. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Christensen, L.P.; Meyer, A.S.; Hansen, A. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J. Agric. Food Chem. 2000, 48, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, M.F.; Christensen, J.; Meyer, A.S.; Hansen, A. Ferulic acid dehydrodimers in rye (Secale cereale L.). J. Cereal Sci. 2000, 31, 303–307. [Google Scholar] [CrossRef]
- Glitso, L.V.; Bach Knudsen, K.E. Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J. Cereal Sci. 1999, 29, 89–97. [Google Scholar] [CrossRef]
- Aura, A.M. Phenolic Acids in Rye. In Rye and Health; Woodhead Publishing: Sawston, UK, 2014; pp. 109–119. [Google Scholar]
- Sandhu, K.S.; Kaur, P.; Siroha, A.K.; Purewal, S.S. Phytochemicals and antioxidant properties in pearl millet: A cereal grain with potential applications. In Pearl Millet: Properties, Functionality and its Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 33–50. [Google Scholar]
- Lim, D.Y.; Shin, S.H.; Lee, M.H.; Malakhova, M.; Kurinov, I.; Wu, Q.; Xu, J.; Jiang, Y.; Dong, Z.; Liu, K.; et al. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget 2016, 7, 35001–35014. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A.; Chowta, M.; Pallempati, G.; Rai, A.; Singh, A. Evaluation of antidepressant activity of vanillin in mice. Indian J. Pharmacol. 2013, 45, 141–144. [Google Scholar]
- Zdunska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar]
- Mao, X.; Yang, Q.; Chen, D.; Yu, B.; He, J. Benzoic acid used as food and feed additives can regulate gut functions. BioMed Res. Int. 2019, 2019, 5721585. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Sun, Y.; Men, X.; Xu, Z. A compound plant extract and its antibacterial and antioxidant properties in vitro and in vivo. 3 Biotech 2020, 10, 532. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ray, A.; Nasim, N.; Nayak, S.; Mohanty, S. Effect of different extraction techniques on total phenolic and flavonoid contents, and antioxidant activity of betelvine and quantification of its phenolic constituents by validated HPTLC method. 3 Biotech 2019, 9, 37. [Google Scholar] [CrossRef]
- Alfatemi, S.M.H.; Rad, J.S.; Rad, M.S.; Mohsenzadeh, S.; Da Silva, J.A.T. Chemical composition, antioxidant activity and in vitro antibacterial activity of Achillea wilhelmsii C. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp. 3 Biotech 2014, 5, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kaur, M.; Sogi, D.S.; Purewal, S.S. A comparative study of phytochemicals, antioxidant potential and in-vitro DNA damage protection activity of different oat (Avena sativa) cultivars from India. J. Food Meas. Charact. 2018, 13, 347–356. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods 2011, 3, 159–170. [Google Scholar] [CrossRef]
Specific Phytochemicals/Tests | Solvents | |||||
---|---|---|---|---|---|---|
Water | Ethanol | Methanol | Acidified Methanol | Acetone | Benzene | |
Phlabotannin | − | − | − | − | − | − |
Coumarins | + | − | + | + | − | − |
Flavonoids | − | − | − | + | − | + |
Anthocyanins | − | − | − | − | − | − |
Steroids | − | − | − | − | − | − |
Molisch’s test | − | − | − | − | − | − |
Fehling’s solution test | + | − | − | − | − | − |
Benedict’s reagent test | + | − | − | + | − | − |
Tannins | + | − | − | + | − | − |
Protein | + | − | − | − | − | + |
Saponins | + | + | + | + | + | + |
Flavonon | − | − | − | − | − | − |
Alkaloids | − | − | − | − | − | − |
Cultivars | Specific Bioactive Compounds (mg/100 g) | |||||
---|---|---|---|---|---|---|
Resorcinol | Catechol | Vanillin | Ferulic acid | Quercetin | Benzoic Acid | |
BR | 70.4 b ± 0.11 | 120.4 b ± 0.08 | 5.5 b ± 0.23 | 1.52 a ± 0.15 | 4.68 a ± 0.12 | 5.3 a ± 0.18 |
WR | 52 a ± 0.17 | 91.1 a ± 0.24 | 1.4 a ± 0.14 | 1.46 a ± 0.13 | 4.6 a ± 0.19 | ND |
Specific Compounds | Chemical Formula | Health Benefits | Reference |
---|---|---|---|
Resorcinol | C6H6O2 | Prevents acne formation, dermatitis, eczema, psoriasis, and other skin disorders; also used to treat corns, calluses, and warts | [51] |
Catechol | C6H6O2 | Anti-carcinogenic | [52] |
Vanillin | C8H8O3 | Anti-mutagenic, cosmetic and beverages industries | [53] |
Ferulic acid | C10H10O4 | Skin care product formulation | [51,54] |
Quercetin | C15H10O7 | Prevent heart diseases, cancer and blood sugar regulator | [55,56] |
Benzoic acid | C7H6O2 | Resolve skin related health issues, food preservative | [51,57] |
Solvents | DPPH (% Inhibition) | ABTS (% Inhibition) | TAC (mg AAE/g) | RPA (mg QE/g) | FRAP (mg FSE/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
BR | WR | BR | WR | BR | WR | BR | WR | BR | WR | |
Ethanol | 31.4 c ± 1.15 | 21.3 c ± 1.12 | 61.4 c ± 0.49 | 54.0 c ± 0.79 | 1.8 b ± 0.05 | 1.6 b ± 0.11 | 2.8 c ± 0.10 | 2.2 c ± 0.07 | 2.6 b ± 0.12 | 2.2 b ± 0.11 |
Methanol | 43.5 d ± 0.90 | 38.7 d ± 1.06 | 66.8 d ± 0.41 | 61.2 d ± 0.62 | 3.9 c ± 0.03 | 3.9 c ± 0.08 | 4.1 d ± 0.05 | 3.9 d ± 0.04 | 5.4 c ± 0.15 | 4.1 c ± 0.18 |
Acetone | 26.0 b ± 0.72 | 14.8 b ± 0.94 | 49.2 b ± 0.53 | 42.7 b ± 0.75 | 1.7 b ± 0.04 | 1.6 b ± 0.06 | 1.9 b ± 0.08 | 1.7 b ± 0.02 | 1.5 a ± 0.09 | 1.4 a ± 0.16 |
Acidified methanol | 74.3 e ± 1.04 | 64.8 e ± 0.89 | 75.3 e ± 0.68 | 69.2 e ± 0.70 | 4.9 d ± 0.07 | 4.5 d ± 0.05 | 4.8 e ± 0.04 | 4.5 e ± 0.03 | 5.8 c ± 0.17 | 4.6 d ± 0.14 |
Benzene | 14.1 a ± 1.08 | 10.7 a ± 1.05 | 22.8 a ± 0.96 | 18.1 a ± 0.83 | 0.9 a ± 0.09 | 0.9 a ± 0.07 | 0.9 a ± 0.02 | 0.7 a ± 0.09 | 1.2 a ± 0.11 | 1.1 a ± 0.13 |
Water | 84 f ± 0.85 | 80.3 f ± 0.91 | 89.7 f ± 0.72 | 87.6 f ± 0.77 | 6.8 e ± 0.13 | 6.1 e ± 0.04 | 8.7 f ± 0.09 | 7.4 f ± 0.11 | 8.2 d ± 0.14 | 7.6 e ± 0.08 |
TPC | CTC | DPPH | ABTS | TAC | RPA | FRAP | |
---|---|---|---|---|---|---|---|
TPC | 1 | -- | -- | -- | -- | -- | -- |
CTC | −0.424 | 1 | -- | -- | -- | -- | -- |
DPPH | 0.968 ** | −0.380 | 1 | -- | -- | -- | -- |
ABTS | 0.882 ** | −0.045 | 0.915 ** | 1 | -- | -- | -- |
TAC | 0.990 ** | −0.381 | 0.969 ** | 0.911 ** | 1 | -- | -- |
RPA | 0.969 ** | −0.263 | 0.948 ** | 0.925 ** | 0.976 ** | 1 | -- |
FRAP | 0.992 ** | −0.352 | 0.981 ** | 0.914 ** | 0.992 ** | 0.982 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, P.; Sandhu, K.S.; Bangar, S.P.; Purewal, S.S.; Kaur, M.; Ilyas, R.A.; Asyraf, M.R.M.; Razman, M.R. Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale cereale) Flour. Antioxidants 2021, 10, 1214. https://doi.org/10.3390/antiox10081214
Kaur P, Sandhu KS, Bangar SP, Purewal SS, Kaur M, Ilyas RA, Asyraf MRM, Razman MR. Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale cereale) Flour. Antioxidants. 2021; 10(8):1214. https://doi.org/10.3390/antiox10081214
Chicago/Turabian StyleKaur, Pinderpal, Kawaljit Singh Sandhu, Sneh Punia Bangar, Sukhvinder Singh Purewal, Maninder Kaur, Rushdan Ahmad Ilyas, Muhammad Rizal Muhammad Asyraf, and Muhammad Rizal Razman. 2021. "Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale cereale) Flour" Antioxidants 10, no. 8: 1214. https://doi.org/10.3390/antiox10081214
APA StyleKaur, P., Sandhu, K. S., Bangar, S. P., Purewal, S. S., Kaur, M., Ilyas, R. A., Asyraf, M. R. M., & Razman, M. R. (2021). Unraveling the Bioactive Profile, Antioxidant and DNA Damage Protection Potential of Rye (Secale cereale) Flour. Antioxidants, 10(8), 1214. https://doi.org/10.3390/antiox10081214